Mutational Profiling Detection in FNAC Samples of Different Types of Thyroid Neoplasms Using Targeted NGS
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Characteristics
2.2. Tumor Selection and Processing
2.3. Next-Generation Sequencing
2.4. Data Analysis
3. Results
3.1. Patient Characteristics
3.2. Characterization of Genomic Alterations in Thyroid Neoplasms
3.3. Genomic Alterations of Four Mutation Types in Thyroid Neoplasms
3.4. Association of BRAF/RAS and TERT Co-Mutations with Tumor Size and Lymph Node Metastasis in Thyroid Carcinoma
3.5. Assessment of Tumor Mutation Burden in Thyroid Neoplasms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NGS | Next-Generation Sequencing |
FNAC | Fine-Needle Aspiration Cytology |
PTC | Papillary Thyroid Carcinoma |
FTC | Follicular Thyroid Carcinoma |
PDTC | Poorly Differentiated Thyroid Carcinoma |
ATC | Anaplastic Thyroid Carcinoma |
MTC | Medullary Thyroid Carcinoma |
LRN | Low-Risk Neoplasms |
BT | Benign Tumors |
NIFTP | non-invasive follicular thyroid neoplasm with papillary-like nuclear features |
References
- Chen, D.W.; Lang, B.H.H.; McLeod, D.S.A.; Newbold, K.; Haymart, M.R. Thyroid cancer. Lancet 2023, 401, 1531–1544. [Google Scholar] [CrossRef] [PubMed]
- Boucai, L.; Zafereo, M.; Cabanillas, M.E. Thyroid Cancer: A Review. JAMA 2024, 331, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Beheshtirouy, S.; Shayanfar, A. A Review of Thyroid Cancer. JAMA 2024, 331, 1862–1863. [Google Scholar] [CrossRef] [PubMed]
- Fagin, J.A.; Krishnamoorthy, G.P.; Landa, I. Pathogenesis of cancers derived from thyroid follicular cells. Nat. Rev. Cancer 2023, 23, 631–650. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.; Hegedüs, L.; Czarniecka, A.; Paschke, R.; Russ, G.; Schmitt, F.; Soares, P.; Solymosi, T.; Papini, E. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur. Thyroid J. 2023, 12, e230067. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, L.; Salmon, I. Pathology and new insights in thyroid neoplasms in the 2022 WHO classification. Curr. Opin. Oncol. 2024, 36, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Landa, I.; Cabanillas, M.E. Genomic alterations in thyroid cancer: Biological and clinical insights. Nat. Rev. Endocrinol. 2023, 20, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Toda, S.; Hiroshima, Y.; Iwasaki, H.; Masudo, K. Genomic Landscape and Clinical Features of Advanced Thyroid Carcinoma: A National Database Study in Japan. J. Clin. Endocrinol. Metab. 2024, 109, 2784–2792. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yu, B.; Zhang, S.; Wang, D.; Xiao, Z.; Meng, H.; Dong, L.; Zhang, Y.; Wu, J.; Hou, Z.; et al. Papillary Thyroid Carcinoma: Correlation Between Molecular and Clinical Features. Mol. Diagn. Ther. 2024, 28, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Su, C.; Chen, G.; Wan, F.; Jin, M.; Duan, X.; Wang, Y.; Wang, G. Significance of FNAC, BRAF mutation, and intraoperative frozen section in surgical decision-making of thyroid nodules. Diagn. Cytopathol. 2023, 51, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Abou-Foul, A.K.; Muzaffar, J.; Diakos, E.; Best, J.E.; Momtahan, N.; Jayaram, S. Correlation Between Thyroid Fine Needle Aspiration Cytology and Postoperative Histology: A 10-Year Single-Centre Experience. Cureus 2021, 13, e14504. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.S. Clinical use of Molecular Data in Thyroid Nodules and Cancer. J. Clin. Endocrinol. Metab. 2023, 108, 2759–2771. [Google Scholar] [CrossRef] [PubMed]
- McMurtry, V.; Canberk, S.; Deftereos, G. Molecular testing in fine-needle aspiration of thyroid nodules. Diagn. Cytopathol. 2022, 51, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Capdevila, J.; Awada, A.; Fuhrer-Sakel, D.; Leboulleux, S.; Pauwels, P. Molecular diagnosis and targeted treatment of advanced follicular cell-derived thyroid cancer in the precision medicine era. Cancer Treat. Rev. 2022, 106, 102380. [Google Scholar] [CrossRef] [PubMed]
- Mosele, M.F.; Westphalen, C.B.; Stenzinger, A.; Barlesi, F.; Bayle, A.; Bieche, I.; Bonastre, J.; Castro, E.; Dienstmann, R.; Kramer, A.; et al. Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2024, 35, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Hu, X.; Liu, L.; Wang, Y.; Jiang, J.; Li, H.; Fei, W.; Zhong, T.; Jiang, Z. Clinical value of multi-gene testing in distinguishing benign and malignant thyroid nodules. Medicine 2024, 103, e35960. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, Y.E.; Carty, S.E.; Chiosea, S.I.; Coyne, C.; Duvvuri, U.; Ferris, R.L.; Gooding, W.E.; LeBeau, S.O.; Ohori, N.P.; Seethala, R.R.; et al. Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. Thyroid 2015, 25, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Hudson, T.J.; Pusztaszeri, M.P.; Hier, M.P.; Forest, V.I.; Yang, J.W.; Payne, R.J. Does the likelihood of malignancy in thyroid nodules with RAS mutations increase in direct proportion with the allele frequency percentage? J. Otolaryngol. Head Neck Surg. 2023, 52, 12. [Google Scholar] [CrossRef] [PubMed]
- Chiosea, S.; Hodak, S.P.; Yip, L.; Abraham, D.; Baldwin, C.; Baloch, Z.; Gulec, S.A.; Hannoush, Z.C.; Haugen, B.R.; Joseph, L.; et al. Molecular Profiling of 50 734 Bethesda III-VI Thyroid Nodules by ThyroSeq v3: Implications for Personalized Management. J. Clin. Endocrinol. Metab. 2023, 108, 2999–3008. [Google Scholar] [CrossRef] [PubMed]
- Ibrahimpasic, T.; Ghossein, R.; Shah, J.P.; Ganly, I. Poorly Differentiated Carcinoma of the Thyroid Gland: Current Status and Future Prospects. Thyroid 2019, 29, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Riya, I.J.; Piya, I.J.; Priantti, J.N.; Lee, C.L.; Barman, L.; Altobi, A. Efficacy and safety of RET-kinase inhibitors in RET-altered thyroid cancers: A systematic review and single-arm meta-analysis. Endocr.-Relat. Cancer 2025, 32, e240219. [Google Scholar] [CrossRef] [PubMed]
- Haddad, R.; Elisei, R.; Hoff, A.O.; Liu, Z.; Pitoia, F.; Pruneri, G.; Sadow, P.M.; Soares, F.; Turk, A.; Williams, M.D.; et al. Diagnosis and Management of Tropomyosin Receptor Kinase Fusion-Positive Thyroid Carcinomas: A Review. JAMA Oncol. 2023, 9, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Stein, A.; van den Bent, M.; De Greve, J.; Wick, A.; de Vos, F.; von Bubnoff, N.; van Linde, M.E.; Lai, A.; Prager, G.W.; et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): A multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022, 23, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N. Engl. J. Med. 2020, 383, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Akbani, R.; Aksoy, B.A.; Ally, A.; Arachchi, H.; Asa Sylvia, L.; Auman, J.T.; Balasundaram, M.; Balu, S.; Baylin Stephen, B.; et al. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef] [PubMed]
- Pozdeyev, N.; Gay, L.M.; Sokol, E.S.; Hartmaier, R.; Deaver, K.E.; Davis, S.; French, J.D.; Borre, P.V.; LaBarbera, D.V.; Tan, A.-C.; et al. Genetic Analysis of 779 Advanced Differentiated and Anaplastic Thyroid Cancers. Clin. Cancer Res. 2018, 24, 3059–3068. [Google Scholar] [CrossRef] [PubMed]
- Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simões, M.; Tallini, G.; et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr. Pathol. 2022, 33, 27–63. [Google Scholar] [CrossRef] [PubMed]
- Velez Torres, J.M.; Tjendra, Y.; Kerr, D.A. A Triumvirate. Surg. Pathol. Clin. 2023, 16, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Pizzato, M.; Li, M.; Vignat, J.; Laversanne, M.; Singh, D.; La Vecchia, C.; Vaccarella, S. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022, 10, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Zheng, R.; Sun, K.; Zhou, M.; Wang, S.; Li, L.; Chen, R.; Han, B.; Liu, M.; Zhou, J.; et al. Cancer survival statistics in China 2019–2021: A multicenter, population-based study. J. Natl. Cancer Cent. 2024, 4, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Potonnier, W.; Guillerm, E.; Bigorgne, C.; Ghander, C.; Roy, M.; Coulet, F.; Ansart, F.; Menegaux, F.; Leenhardt, L.; Brocheriou, I.; et al. Performance of the AmpliSeq NGS panel in thyroid nodules with indeterminate cytology. Eur. Thyroid J. 2024, 14, e240160. [Google Scholar] [CrossRef] [PubMed]
- Ramone, T.; Ghirri, A.; Prete, A.; Matrone, A.; Ciampi, R.; Piaggi, P.; Scutari, M.; Rago, T.; Torregrossa, L.; Romei, C.; et al. Molecular Profiling of Low-Risk Papillary Thyroid Carcinoma (mPTC) on Active Surveillance. J. Clin. Endocrinol. Metab. 2025, 110, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Yao, Q.; Bao, L.; Wang, Z.; Wei, R.; Bai, Q.; Ping, B.; Chang, C.; Wang, Y.; Zhou, X.; et al. Diagnostic performance of next-generation sequencing and genetic profiling in thyroid nodules from a single center in China. Eur. Thyroid J. 2022, 11, e210124. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Lee, H.S.; Park, J.; Kim, K.S.; Kim, S.K.; Cho, Y.W.; Song, Y.S. Different Molecular Phenotypes of Progression in BRAF- and RAS-Like Papillary Thyroid Carcinoma. Endocrinol. Metab. 2023, 38, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.A.; Liu, C.Y.; Lin, S.Y.; Chen, C.C.; Hang, J.F. Characterization of Driver Mutations in Anaplastic Thyroid Carcinoma Identifies RAS and PIK3CA Mutations as Negative Survival Predictors. Cancers 2020, 12, 1973. [Google Scholar] [CrossRef] [PubMed]
- Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 2013, 13, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Schubert, L.; Mariko, M.L.; Clerc, J.; Huillard, O.; Groussin, L. MAPK Pathway Inhibitors in Thyroid Cancer: Preclinical and Clinical Data. Cancers 2023, 15, 710. [Google Scholar] [CrossRef] [PubMed]
- Riccio, I.; Laforteza, A.; Landau, M.B.; Hussein, M.H.; Linhuber, J.; Staav, J.; Issa, P.P.; Toraih, E.A.; Kandil, E. Decoding RAS mutations in thyroid cancer: A meta-analysis unveils specific links to distant metastasis and increased mortality. Am. J. Otolaryngol. 2025, 46, 104570. [Google Scholar] [CrossRef] [PubMed]
- Bikas, A.; Ahmadi, S.; Pappa, T.; Marqusee, E.; Wong, K.; Nehs, M.A.; Cho, N.L.; Haase, J.; Doherty, G.M.; Sehgal, K.; et al. Additional Oncogenic Alterations inRAS-Driven Differentiated Thyroid Cancers Associate with Worse Clinicopathologic Outcomes. Clin. Cancer Res. 2023, 29, 2678–2685. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jeon, M.J.; Oh, H.-S.; Park, S.; Kim, T.Y.; Shong, Y.K.; Kim, W.B.; Kim, K.; Kim, W.G.; Song, D.E. BRAF and RAS Mutational Status in Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features and Invasive Subtype of Encapsulated Follicular Variant of Papillary Thyroid Carcinoma in Korea. Thyroid 2018, 28, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Harahap, A.S.; Subekti, I.; Panigoro, S.S.; Asmarinah; Lisnawati; Werdhani, R.A.; Agustina, H.; Khoirunnisa, D.; Mutmainnah, M.; Salinah; et al. Profile of BRAFV600E, BRAFK601E, NRAS, HRAS, and KRAS Mutational Status, and Clinicopathological Characteristics of Papillary Thyroid Carcinoma in Indonesian National Referral Hospital. Appl. Clin. Genet. 2023, 16, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Landa, I.; Pozdeyev, N.; Korch, C.; Marlow, L.A.; Smallridge, R.C.; Copland, J.A.; Henderson, Y.C.; Lai, S.Y.; Clayman, G.L.; Onoda, N.; et al. Comprehensive Genetic Characterization of Human Thyroid Cancer Cell Lines: A Validated Panel for Preclinical Studies. Clin. Cancer Res. 2019, 25, 3141–3151. [Google Scholar] [CrossRef] [PubMed]
- Fei, M.; Ding, D.; Ouyang, X.; Shen, W.; Zhang, F.; Zhang, B.; Qin, L. The value of NGS-based multi-gene testing for differentiation of benign from malignant and risk stratification of thyroid nodules. Front. Oncol. 2024, 14, 1414492. [Google Scholar] [CrossRef] [PubMed]
- Gallant, J.-N.; Chen, S.-C.; Ortega, C.A.; Rohde, S.L.; Belcher, R.H.; Netterville, J.L.; Baregamian, N.; Wang, H.; Liang, J.; Ye, F.; et al. Evaluation of the Molecular Landscape of Pediatric Thyroid Nodules and Use of a Multigene Genomic Classifier in Children. JAMA Oncol. 2022, 8, 1323. [Google Scholar] [CrossRef] [PubMed]
- Pekova, B.; Sykorova, V.; Dvorakova, S.; Vaclavikova, E.; Moravcova, J.; Katra, R.; Astl, J.; Vlcek, P.; Kodetova, D.; Vcelak, J.; et al. RET, NTRK, ALK, BRAF, and MET Fusions in a Large Cohort of Pediatric Papillary Thyroid Carcinomas. Thyroid 2020, 30, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- Hložek, J.; Rotnágl, J.; Holý, R.; Hložková, T.; Peková Bulanová, B.; Kuklíková, V.; Bendlová, B.; Soukup, J.; Hrabal, P.; Astl, J. BRAF V600E positive papillary thyroid carcinoma (TERT and TP53 mutation coexistence excluded): Correlation of clinicopathological features and the extent of surgical treatment and its complications. J. Appl. Biomed. 2024, 22, 214–220. [Google Scholar] [CrossRef] [PubMed]
Total | BT | LRN | PTC | FTC | PDTC&ATC | MTC | |
---|---|---|---|---|---|---|---|
Number of patients | 952 | 14 (1.47%) | 12 (1.26%) | 907 (95.27%) | 5 (0.53%) | 9 (0.95%) | 5 (0.53%) |
Gender, male (%) | 213 (22.37%) | 6 (42.86%) | 3 (25.00%) | 196 (21.61%) | 3 (60.00%) | 6 (66.67%) | 0 |
Age, mean (years, range) | 41 (8.76) | 41 (12.70) | 43 (18.66) | 42 (8.76) | 58 (44.69) | 61 (50.76) | 37 (13.49) |
Tumor size, mean (mm, range) | 11.12 (1.70) | 32.00 (24.40) | 23.42 (8.50) | 11.06 (1.70) | 13.50 (1.25) | 54.00 (21.80) | 20.00 (5.40) |
Lymph node metastasis, n (%) | 544 (57.14%) | 0 | 2 (16.67%) | 531 (58.54%) | 2 (40.00%) | 6 (66.67%) | 3 (60.00%) |
Genes | Total | BT | LRN | PTC | FTC | PDTC&ATC | MTC |
---|---|---|---|---|---|---|---|
N | 952 | 14 | 12 | 907 | 5 | 9 | 5 |
No mutations | 28 (2.94%) | 4 (28.57%) | 1 (8.33%) | 21 (2.32%) | 1 (20.00%) | 1 (11.11%) | 0 |
BRAFV600E | 804 (84.45%) | 803 (88.53%) | 1 (11.11%) | ||||
RET | 61 (6.41%) | 59 (6.51%) | 1 (11.11%) | 1 (20.00%) | |||
BRCA1/2 | 42 (4.41%) | 41 (4.52%) | 1 (11.11%) | ||||
N/H/K-RAS | 42 (4.41%) | 4 (28.57%) | 4 (33.33%) | 26 (2.87%) | 2 (40.00%) | 6 (66.67%) | |
ATM | 38 (3.99%) | 1 (8.33%) | 37 (4.08%) | ||||
RELN | 30 (3.15%) | 2 (14.29%) | 26 (2.87%) | 2 (22.22%) | |||
POLE | 30 (3.15%) | 29 (3.20%) | 1 (20.00%) | ||||
TP53 | 29 (3.05%) | 23 (2.54%) | 6 (66.67%) | ||||
CPAMD8 | 28 (2.94%) | 28 (3.09%) | |||||
MSH6 | 25 (2.63%) | 1 (7.14%) | 22 (2.43%) | 2 (22.22%) | |||
ALK | 24 (2.52%) | 1 (8.33%) | 23 (2.54%) | ||||
TERT | 21 (2.21%) | 13 (1.43%) | 2 (40.00%) | 6 (66.67%) | |||
ROS1 | 21 (2.21%) | 1 (7.14%) | 20 (2.21%) | ||||
TSHR | 18 (1.89%) | 18 (1.98%) | |||||
KDM6B | 18 (1.89%) | 2 (14.29%) | 16 (1.76%) | ||||
DOCK9 | 18 (1.89%) | 18 (1.98%) | |||||
APC | 17 (1.79%) | 2 (14.29%) | 14 (1.54%) | 1 (11.11%) | |||
AXIN1 | 17 (1.79%) | 1 (7.14%) | 16 (1.76%) | ||||
ERCC2 | 16 (1.68%) | 16 (1.76%) | |||||
CHEK1/2 | 16 (1.68%) | 1 (7.14%) | 15 (1.65%) |
RET Alteration | BT | LRN | PTC | FTC | PDTC&ATC | MTC |
---|---|---|---|---|---|---|
N | 14 | 12 | 907 | 5 | 9 | 5 |
Fusion | 28 (3.09%) | |||||
A1051V | 1 (0.11%) | |||||
A144H | 1 (0.11%) | |||||
A475T | 1 (0.11%) | |||||
A540G | 1 (11.11%) | |||||
A587T | 1 (0.11%) | |||||
A1042A | 1 (0.11%) | |||||
C630R | 1 (20.00%) | |||||
G136L | 1 (0.11%) | |||||
G568S | 1 (0.22%) | |||||
G691S | 1 (0.11%) | |||||
G823V | 1 (0.11%) | |||||
G830A | 3 (0.33%) | |||||
L481V | 4 (0.44%) | |||||
P384A | 1 (0.11%) | |||||
R348Q | 1 (0.11%) | |||||
R694Q | 1 (0.11%) | |||||
T1284M | 1 (0.11%) | |||||
T606H | 1 (0.11%) | |||||
V292M | 1 (0.11%) | |||||
V351G | 1 (0.11%) | |||||
G568S | 1 (0.11%) | |||||
P854S | 1 (0.11%) | |||||
A600T | 1 (0.11%) | |||||
G136L | 1 (0.11%) | |||||
V388I | 1 (0.11%) | |||||
A982H | 1 (0.11%) | |||||
V804M | 1 (0.11%) | |||||
Total (%) | 59 (6.51%) | 1 (11.11%) | 1 (20.00%) |
Mutations Number (%) | BT | LRN | PTC | FTC | PDTC&ATC | MTC | |
---|---|---|---|---|---|---|---|
N | 14 | 12 | 907 | 5 | 9 | 5 | |
BRAF-like mutations | BRAFV600E | 803 (88.53%) | 1 (11.11%) | ||||
BARF fusions | 4 (0.44%) | ||||||
RET fusions | 28 (3.09%) | ||||||
RET (point mutation, indel, other) | 31 (3.42%) | 1 (11.11%) | 1 (20.00%) | ||||
NTRK1/3 fusions | 1 (7.14%) | 4 (0.44%) | |||||
ALK | 1 (8.33%) | 23 (2.54%) | |||||
MET | 7 (0.77%) | 1 (11.11%) | |||||
RAS-like mutations | RAS (N/H/K-Ras) | 4 (28.57%) | 4 (33.33%) | 26 (2.87%) | 2 (40.00%) | 6 (66.67%) | |
BRAF K601E | 2 (0.22%) | ||||||
EIF1AX | 1 (7.14%) | 3 (33.33%) | |||||
EZH1 | 3 (0.33%) | 1 (11.11%) | |||||
DICER1 | 2 (14.29%) | 1 (8.33%) | 9 (0.99%) | 1 (20.00%) | |||
PTEN | 3 (0.33%) | 2 (22.22%) | |||||
TSHR | 18 (1.98%) | ||||||
PPARGR fusions | |||||||
THADA fusions | |||||||
high-risk mutations | TP53 | 23 (2.54%) | 6 (66.67%) | ||||
TERT promoter | 13 (1.43%) | 2 (40.00%) | 6 (66.67%) | ||||
PIK3CA | 11 (1.21%) | 2 (40.00%) | 1 (11.11%) | ||||
Other mutations | APC | 2 (14.29%) | 14 (1.54%) | 1 (11.11%) | |||
ATM | 1 (8.33%) | 37 (4.08%) | |||||
AXIN1 | 1 (7.14%) | 17 (1.87%) | |||||
AKT | 12 (1.32%) | ||||||
BRCA1/2 | 41 (4.52%) | 1 (11.11%) | |||||
CHEK1/2 | 1 (7.14%) | 15 (1.65%) | |||||
CPAMD8 | 28 (3.09%) | ||||||
DOCK9 | 18 (1.98%) | ||||||
ERBB2 | 1 (8.33%) | 11 (1.21%) | |||||
ERCC2 | 16 (1.76%) | ||||||
MLH1 | 8 (0.88%) | 1 (20.00%) | |||||
MSH2/6 | 1 (7.14%) | 33 (3.64%) | 3 (33.33%) | ||||
POLE | 29 (3.20%) | 1 (20.00%) | |||||
RELN | 2 (14.29%) | 26 (2.87%) | 2 (22.22%) | ||||
ROS1 | 1 (7.14%) | 20 (2.21%) | |||||
No mutations | 4 (28.57%) | 1 (8.33%) | 21 (2.32%) | 1 (20.00%) | 1 (11.11%) |
Characteristic | BRAF-like Mutations | RAS-like Mutations | High-Risk Mutations | Other Mutations | BRAF-like vs. High-Risk | |
---|---|---|---|---|---|---|
N = 830 | N = 36 | N = 25 | N = 28 | OR [95% CI] | p | |
Tumor Type | ||||||
BT | 0 | 5 (13.89%) | 0 | 5 (17.86%) | ||
LRN | 0 | 8 (22.22%) | 0 | 3 (10.71%) | ||
PTC | 829 (99.88%) | 22 (61.11%) | 16 (64.00%) | 19 (67.86%) | ||
FTC | 0 | 0 | 3 (12.00%) | 1 (3.57%) | ||
PDTC&ATC | 1 (0.12%) | 1 (2.78%) | 6 (24.00%) | 0 | ||
Sex, n (%) | ||||||
Female | 652 (78.55%) | 27 (75.00%) | 13 (52.00%) | 22 (78.57%) | 3.25 [1.42–7.45] | 0.008 |
Male | 178 (21.45%) | 9 (25.00%) | 12 (48.00%) | 6 (21.43%) | ||
Years (range) | (8.76) | (13.70) | (14.76) | (21.63) | ||
≥55 y, n (%) | ||||||
No | 725 (87.35%) | 32 (88.89%) | 12 (48.00%) | 2 (89.29%) | 7.50 [3.20–17.60] | 0.000 |
Yes | 105 (12.65%) | 4 (11.11%) | 13 (52.00%) | 3 (10.71%) | ||
Tumor diameter (%) | ||||||
≤1 cm | 319 (38.48%) | 19 (54.29%) | 15 (71.43%) | 15 (53.57%) | 0.24 [0.09–0.62] | 0.005 |
>1 cm | 510 (61.52%) | 16 (45.71%) | 6 (28.57%) | 13 (46.43%) | ||
Tumor diameter (%) | ||||||
≤4 cm | 818 (98.67%) | 31 (88.57%) | 17 (80.95%) | 28 (100.00%) | 17.45 [4.35–70.00] | 0.000 |
>4 cm | 11 (1.33%) | 4 (11.43%) | 4 (19.05%) | 0 (0) | ||
Multifocality, n (%) | ||||||
No | 471 (56.74%) | 21 (58.33%) | 1 (4.00%) | 17 (60.71%) | 30.67 [4.05–232.00] | 0.000 |
Yes | 359 (43.26%) | 15 (41.67%) | 24 (96.00%) | 11 (39.28%) | ||
Nodal metastases, n (%) | ||||||
No | 341 (41.23%) | 25 (66.67%) | 8 (42.11%) | 12 (44.44%) | 0.97 [0.41–2.30] | 0.940 |
Yes | 486 (58.77%) | 12 (33.33%) | 11 (57.89%) | 15 (55.56%) | ||
Extra-thyroid extension n (%) | ||||||
No | 804 (96.87%) | 35 (97.22%) | 22 (88.00%) | 28 (100%) | 0.23 [0.07–0.82] | 0.022 |
Yes | 26 (3.13%) | 1 (2.78%) | 3 (12.00%) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, R.; Luo, M.; Yang, X.; Luo, B.; Liu, R. Mutational Profiling Detection in FNAC Samples of Different Types of Thyroid Neoplasms Using Targeted NGS. Cancers 2025, 17, 2429. https://doi.org/10.3390/cancers17152429
Liang R, Luo M, Yang X, Luo B, Liu R. Mutational Profiling Detection in FNAC Samples of Different Types of Thyroid Neoplasms Using Targeted NGS. Cancers. 2025; 17(15):2429. https://doi.org/10.3390/cancers17152429
Chicago/Turabian StyleLiang, Riying, Man Luo, Xinhua Yang, Baoming Luo, and Rongbin Liu. 2025. "Mutational Profiling Detection in FNAC Samples of Different Types of Thyroid Neoplasms Using Targeted NGS" Cancers 17, no. 15: 2429. https://doi.org/10.3390/cancers17152429
APA StyleLiang, R., Luo, M., Yang, X., Luo, B., & Liu, R. (2025). Mutational Profiling Detection in FNAC Samples of Different Types of Thyroid Neoplasms Using Targeted NGS. Cancers, 17(15), 2429. https://doi.org/10.3390/cancers17152429