Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (317)

Search Parameters:
Keywords = neutrophil-associated genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1211 KiB  
Review
Epigenetic Regulation of Neutrophils in ARDS
by Jordan E. Williams, Zannatul Mauya, Virginia Walkup, Shaquria Adderley, Colin Evans and Kiesha Wilson
Cells 2025, 14(15), 1151; https://doi.org/10.3390/cells14151151 - 25 Jul 2025
Viewed by 341
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory pulmonary condition that remains at alarming rates of fatality, with neutrophils playing a vital role in its pathogenesis. Beyond their classical antimicrobial functions, neutrophils contribute to pulmonary injury via the release of reactive oxygen species, [...] Read more.
Acute respiratory distress syndrome (ARDS) is an inflammatory pulmonary condition that remains at alarming rates of fatality, with neutrophils playing a vital role in its pathogenesis. Beyond their classical antimicrobial functions, neutrophils contribute to pulmonary injury via the release of reactive oxygen species, proteolytic enzymes, and neutrophil extracellular traps (NETs). To identify targets for treatment, it was found that epigenetic mechanisms, including histone modifications, hypomethylation, hypermethylation, and non-coding RNAs, regulate neutrophil phenotypic plasticity, survival, and inflammatory potential. It has been identified that neutrophils in ARDS patients exhibit abnormal methylation patterns and are associated with altered gene expression and prolonged neutrophil activation, thereby contributing to sustained inflammation. Histone citrullination, particularly via PAD4, facilitates NETosis, while histone acetylation status modulates chromatin accessibility and inflammatory gene expression. MicroRNAs have also been shown to regulate neutrophil activity, with miR-223 and miR-146a potentially being biomarkers and therapeutic targets. Neutrophil heterogeneity, as evidenced by distinct subsets such as low-density neutrophils (LDNs), varies across ARDS etiologies, including COVID-19. Single-cell RNA sequencing analyses, including the use of trajectory analysis, have revealed transcriptionally distinct neutrophil clusters with differential activation states. These studies support the use of epigenetic inhibitors, including PAD4, HDAC, and DNMT modulators, in therapeutic intervention. While the field has been enlightened with new findings, challenges in translational application remain an issue due to species differences, lack of stratification tools, and heterogeneity in ARDS presentation. This review describes how targeting neutrophil epigenetic regulators could help regulate hyperinflammation, making epigenetic modulation a promising area for precision therapeutics in ARDS. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

16 pages, 654 KiB  
Article
Effect of Pharmacogenetics on Renal Outcomes of Heart Failure Patients with Reduced Ejection Fraction (HFrEF) in Response to Dapagliflozin
by Neven Sarhan, Mona F. Schaalan, Azza A. K. El-Sheikh and Bassem Zarif
Pharmaceutics 2025, 17(8), 959; https://doi.org/10.3390/pharmaceutics17080959 - 24 Jul 2025
Viewed by 356
Abstract
Background/Objectives: Heart failure with reduced ejection fraction (HFrEF) is associated with significant renal complications, affecting disease progression and patient outcomes. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have emerged as a key therapeutic strategy, offering cardiovascular and renal benefits in these patients. However, interindividual variability [...] Read more.
Background/Objectives: Heart failure with reduced ejection fraction (HFrEF) is associated with significant renal complications, affecting disease progression and patient outcomes. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have emerged as a key therapeutic strategy, offering cardiovascular and renal benefits in these patients. However, interindividual variability in response to dapagliflozin underscores the role of pharmacogenetics in optimizing treatment efficacy. This study investigates the influence of genetic polymorphisms on renal outcomes in HFrEF patients treated with dapagliflozin, focusing on variations in genes such as SLC5A2, UMOD, KCNJ11, and ACE. Methods: This prospective, observational cohort study was conducted at the National Heart Institute, Cairo, Egypt, enrolling 200 patients with HFrEF. Genotyping of selected single nucleotide polymorphisms (SNPs) was performed using TaqMan™ assays. Renal function, including estimated glomerular filtration rate (eGFR), Kidney Injury Molecule-1 (KIM-1), and Neutrophil Gelatinase-Associated Lipocalin (NGAL) levels, was assessed at baseline and after six months of dapagliflozin therapy. Results: Significant associations were found between genetic variants and renal outcomes. Patients with AA genotype of rs3813008 (SLC5A2) exhibited the greatest improvement in eGFR (+7.2 mL ± 6.5, p = 0.004) and reductions in KIM-1 (−0.13 pg/mL ± 0.49, p < 0.0001) and NGAL (−6.1 pg/mL ± 15.4, p < 0.0001). Similarly, rs12917707 (UMOD) TT genotypes showed improved renal function. However, rs5219 (KCNJ11) showed no significant impact on renal outcomes. Conclusions: Pharmacogenetic variations influenced renal response to dapagliflozin in HFrEF patients, particularly in SLC5A2 and UMOD genes. These findings highlighted the potential of personalized medicine in optimizing therapy for HFrEF patients with renal complications. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

25 pages, 3717 KiB  
Article
A Prebiotic Diet Containing Galactooligosaccharides and Polydextrose Attenuates Hypergravity-Induced Disruptions to the Microbiome in Female Mice
by Robert S. Thompson, Shelby Hopkins, Tel Kelley, Christopher G. Wilson, Michael J. Pecaut and Monika Fleshner
Nutrients 2025, 17(15), 2417; https://doi.org/10.3390/nu17152417 - 24 Jul 2025
Viewed by 459
Abstract
Background/Objectives: Environmental stressors, including spaceflight and altered gravity, can negatively affect the symbiotic relationship between the gut microbiome and host health. Dietary prebiotics, which alter components of the gut microbiome, show promise as an effective way to mitigate the negative impacts of stressor [...] Read more.
Background/Objectives: Environmental stressors, including spaceflight and altered gravity, can negatively affect the symbiotic relationship between the gut microbiome and host health. Dietary prebiotics, which alter components of the gut microbiome, show promise as an effective way to mitigate the negative impacts of stressor exposure. It remains unknown, however, if the stress-protective effects of consuming dietary prebiotics will extend to chronic altered-gravity exposure. Methods: Forty female C57BL/6 mice consumed either a control diet or a prebiotic diet containing galactooligosaccharides (GOS) and polydextrose (PDX) for 4 weeks, after which half of the mice were exposed to 3 times the gravitational force of Earth (3g) for an additional 4 weeks. Fecal microbiome samples were collected weekly for 8 weeks, sequenced, and analyzed using 16S rRNA gene sequencing. Terminal physiological endpoints, including immune and red blood cell characteristics, were collected at the end of the study. Results: The results demonstrate that dietary prebiotic consumption altered the gut microbial community structure through changes to β-diversity and multiple genera across time. In addition, consuming dietary prebiotics reduced the neutrophil-to-lymphocyte ratio (NLR) and increased red blood cell distribution width (RDW-CV). Importantly, the prebiotic diet prevented the impacts of altered-gravity on β-diversity and the bloom of problematic genera, such as Clostridium_sensu_stricto_1 and Turicibacter. Furthermore, several prebiotic diet-induced genera-level changes were significantly associated with several host physiological changes induced by 3g exposure. Conclusions: These data demonstrate that the stress-protective potential of consuming dietary prebiotics extends to environmental stressors such as altered gravity, and, potentially, spaceflight. Full article
(This article belongs to the Special Issue Advances in Gut Microbial Genomics and Metabolomics in Human Health)
Show Figures

Figure 1

73 pages, 19750 KiB  
Article
Transcriptomic Profiling of the Immune Response in Orthotopic Pancreatic Tumours Exposed to Combined Boiling Histotripsy and Oncolytic Reovirus Treatment
by Petros Mouratidis, Ricardo C. Ferreira, Selvakumar Anbalagan, Ritika Chauhan, Ian Rivens and Gail ter Haar
Pharmaceutics 2025, 17(8), 949; https://doi.org/10.3390/pharmaceutics17080949 - 22 Jul 2025
Viewed by 317
Abstract
Background: Boiling histotripsy (BH) uses high-amplitude, short-pulse focused ultrasound to disrupt tissue mechanically. Oncolytic virotherapy using reovirus has shown modest clinical benefit in pancreatic cancer patients. Here, reovirus and BH were used to treat pancreatic tumours, and their effects on the immune [...] Read more.
Background: Boiling histotripsy (BH) uses high-amplitude, short-pulse focused ultrasound to disrupt tissue mechanically. Oncolytic virotherapy using reovirus has shown modest clinical benefit in pancreatic cancer patients. Here, reovirus and BH were used to treat pancreatic tumours, and their effects on the immune transcriptome of these tumours were characterised. Methods: Orthotopic syngeneic murine pancreatic KPC tumours grown in immune-competent subjects, were allocated to control, reovirus, BH and combined BH and reovirus treatment groups. Acoustic cavitation was monitored using a passive broadband cavitation sensor. Treatment effects were assessed histologically with hematoxylin and eosin staining. Single-cell multi-omics combining whole-transcriptome analysis with the expression of surface-expressed immune proteins was used to assess the effects of treatments on tumoural leukocytes. Results: Acoustic cavitation was detected in all subjects exposed to BH, causing cellular disruption in tumours 6 h after treatment. Distinct cell clusters were identified in the pancreatic tumours 24 h post-treatment. These included neutrophils and cytotoxic T cells overexpressing genes associated with an N2-like and an exhaustion phenotype, respectively. Reovirus decreased macrophages, and BH decreased regulatory T cells compared to controls. The combined treatments increased neutrophils and the ratio of various immune cells to Treg. All treatments overexpressed genes associated with an innate immune response, while ultrasound treatments downregulated genes associated with the transporter associated with antigen processing (TAP) complex. Conclusions: Our results show that the combined BH and reovirus treatments maximise the overexpression of genes associated with the innate immune response compared to that seen with each individual treatment, and illustrate the anti-immune phenotype of key immune cells in the pancreatic tumour microenvironment. Full article
Show Figures

Figure 1

14 pages, 846 KiB  
Article
Uncovering Allele-Specific Expression Patterns Associated with Sea Lice (Caligus rogercresseyi) Burden in Atlantic Salmon
by Pablo Cáceres, Paulina López, Carolina Araya, Daniela Cichero, Liane N. Bassini and José M. Yáñez
Genes 2025, 16(7), 841; https://doi.org/10.3390/genes16070841 - 19 Jul 2025
Viewed by 388
Abstract
Background/Objetives: Sea lice (Caligus rogercresseyi) pose a major threat to Atlantic salmon (Salmo salar) aquaculture by compromising fish health and reducing production efficiency. While genetic variation in parasite load has been reported, the molecular mechanisms underlying this variation remain [...] Read more.
Background/Objetives: Sea lice (Caligus rogercresseyi) pose a major threat to Atlantic salmon (Salmo salar) aquaculture by compromising fish health and reducing production efficiency. While genetic variation in parasite load has been reported, the molecular mechanisms underlying this variation remain unclear. Methods: two sea lice challenge trials were conducted, achieving high infestation rates (47.5% and 43.5%). A total of 85 fish, selected based on extreme phenotypes for lice burden (42 low, 43 high), were subjected to transcriptomic analysis. Differential gene expression was integrated with allele-specific expression (ASE) analysis to uncover cis-regulatory variation influencing host response. Results: Sixty genes showed significant ASE (p < 0.05), including 33 overexpressed and 27 underexpressed. Overexpressed ASE genes included Keratin 15, Collagen IV/V, TRIM16, and Angiopoietin-1-like, which are associated with epithelial integrity, immune response, and tissue remodeling. Underexpressed ASE genes such as SOCS3, CSF3R, and Neutrophil cytosolic factor suggest individual variation in cytokine signaling and oxidative stress pathways. Conclusions: several ASE genes co-localized with previously identified QTLs for sea lice resistance, indicating that cis-regulatory variants contribute to phenotypic differences in parasite susceptibility. These results highlight ASE analysis as a powerful tool to identify functional regulatory elements and provide valuable candidates for selective breeding and genomic improvement strategies in aquaculture. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 5784 KiB  
Article
Identification of Exosome-Associated Biomarkers in Diabetic Foot Ulcers: A Bioinformatics Analysis and Experimental Validation
by Tianbo Li, Lei Gao and Jiangning Wang
Biomedicines 2025, 13(7), 1687; https://doi.org/10.3390/biomedicines13071687 - 10 Jul 2025
Viewed by 450
Abstract
Background: Diabetic foot ulcers (DFUs) are a severe complication of diabetes and are characterized by impaired wound healing and a high amputation risk. Exosomes—which are nanovesicles carrying proteins, RNAs, and lipids—mediate intercellular communication in wound microenvironments, yet their biomarker potential in DFUs remains [...] Read more.
Background: Diabetic foot ulcers (DFUs) are a severe complication of diabetes and are characterized by impaired wound healing and a high amputation risk. Exosomes—which are nanovesicles carrying proteins, RNAs, and lipids—mediate intercellular communication in wound microenvironments, yet their biomarker potential in DFUs remains underexplored. Methods: We analyzed transcriptomic data from GSE134431 (13 DFU vs. 8 controls) as a training set and validated findings in GSE80178 (6 DFU vs. 3 controls). A sum of 7901 differentially expressed genes (DEGs) of DFUs were detected and intersected with 125 literature-curated exosome-related genes (ERGs) to yield 51 candidates. This was followed by GO/KEGG analyses and a PPI network construction. Support vector machine–recursive feature elimination (SVM-RFE) and the Boruta random forest algorithm distilled five biomarkers (DIS3L, EXOSC7, SDC1, STX11, SYT17). Expression trends were confirmed in both datasets. Analyses included nomogram construction, functional and correlation analyses, immune infiltration, GSEA, gene co-expression and regulatory network construction, drug prediction, molecular docking, and RT-qPCR validation in clinical samples. Results: A nomogram combining these markers achieved an acceptable calibration (Hosmer–Lemeshow p = 0.0718, MAE = 0.044). Immune cell infiltration (CIBERSORT) revealed associations between biomarker levels and NK cell and neutrophil subsets. Gene set enrichment analysis (GSEA) implicated IL-17 signaling, proteasome function, and microbial infection pathways. A GeneMANIA network highlighted RNA processing and vesicle trafficking. Transcription factor and miRNA predictions uncovered regulatory circuits, and DGIdb-driven drug repurposing followed by molecular docking identified Indatuximab ravtansine and heparin as high-affinity SDC1 binders. Finally, RT-qPCR validation in clinical DFU tissues (n = 5) recapitulated the bioinformatic expression patterns. Conclusions: We present five exosome-associated genes as novel DFU biomarkers with diagnostic potential and mechanistic links to immune modulation and vesicular transport. These findings lay the groundwork for exosome-based diagnostics and therapeutic targeting in DFU management. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

31 pages, 8559 KiB  
Article
GPX1 and RCN1 as New Endoplasmic Reticulum Stress-Related Biomarkers in Multiple Sclerosis Brain Tissue and Their Involvement in the APP-CD74 Pathway: An Integrated Study Combining Machine Learning and Multi-Omics
by Zhixin Qiao, Yanping Wang, Xiaoru Ma, Xiyu Zhang, Junfeng Wu, Anqi Li, Chao Wang, Xin Xiu, Sifan Zhang, Xiujuan Lang, Xijun Liu, Bo Sun, Hulun Li and Yumei Liu
Int. J. Mol. Sci. 2025, 26(13), 6286; https://doi.org/10.3390/ijms26136286 - 29 Jun 2025
Viewed by 689
Abstract
This study identified 13 endoplasmic reticulum stress (ERS)-related biomarkers associated with multiple sclerosis (MS) through integrated bioinformatics analysis (including weighted gene co-expression network analysis and machine learning algorithms) and single-cell sequencing, combined with validation in an experimental autoimmune encephalomyelitis (EAE) mouse model. Among [...] Read more.
This study identified 13 endoplasmic reticulum stress (ERS)-related biomarkers associated with multiple sclerosis (MS) through integrated bioinformatics analysis (including weighted gene co-expression network analysis and machine learning algorithms) and single-cell sequencing, combined with validation in an experimental autoimmune encephalomyelitis (EAE) mouse model. Among them, GPX1, RCN1, and UBE2D3 exhibited high diagnostic value (AUC > 0.7, p < 0.05), and the diagnostic potential of GPX1 and RCN1 was confirmed in the animal model. The study found that memory B cells, plasma cells, neutrophils, and M1 macrophages were significantly increased in MS patients, while naive B cells and activated NK cells decreased. Consensus clustering based on key ERS-related genes divided MS patients into two subtypes. Single-cell sequencing showed that microglia and pericytes were the cell types with the highest expression of key ERS-related genes, and the APP-CD74 pathway was enhanced in the brain tissue of MS patients. Mendelian randomization analysis suggested that GPX1 plays a protective role in MS. These findings reveal the mechanisms of ERS-related biomarkers in MS and provide potential targets for diagnosis and treatment. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Bioinformatics and Biomedicine)
Show Figures

Figure 1

18 pages, 2096 KiB  
Article
Effect of Dead-Cell Limosilactobacillus ingluviei on Hematological Parameters and Jejunal Transcriptome Profile in Calves During the Weaning Period
by Chao Ban, Supreena Srisaikham, Xingzhou Tian and Pipat Lounglawan
Animals 2025, 15(13), 1905; https://doi.org/10.3390/ani15131905 - 28 Jun 2025
Viewed by 359
Abstract
Weaning is challenging for dairy calves, frequently resulting in digestive issues. This highlights the importance of implementing appropriate nutritional strategies to enhance gut health and support optimal growth. Postbiotics is a promising alternative to traditional probiotics, conferring health benefits without the risks associated [...] Read more.
Weaning is challenging for dairy calves, frequently resulting in digestive issues. This highlights the importance of implementing appropriate nutritional strategies to enhance gut health and support optimal growth. Postbiotics is a promising alternative to traditional probiotics, conferring health benefits without the risks associated with live bacteria. This study aimed to investigate the effect of dietary supplementation with a postbiotic from dead-cell Limosilactobacillus ingluviei C37 (postbiotic LIC37) on blood biochemical parameters and jejunal epithelium transcriptomic profiles in calves. Fourteen Holstein bull calves were randomly allocated into two groups (n = 7). The control group (CON) received a basic diet, while the postbiotic group (DCLI) was supplemented with 1 g/d of postbiotic LIC37 for 90 days. Blood samples were collected on days 76, 83, and 90, respectively. The jejunal epithelial tissue was obtained from four randomly selected calves per group at day 90 for transcriptome analysis. The results showed that postbiotic LIC37 supplementation reduced globulin, total protein, neutrophil (Neu) levels, and neutrophil-to-lymphocyte ratio (NLR) levels in the DCLI group (p < 0.05). Transcriptomic analysis identified 76 differentially expressed genes (DEGs), with significant upregulation of genes involved in fatty acid metabolism (FABP1), intestinal barrier function (B4GALNT2), and detoxification (GSTA1), alongside downregulation of immune response regulation (FCRLA, FCRL4). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses highlighted enrichment in pathways related to glutathione metabolism, drug metabolism, and vitamin digestion, indicating that postbiotic supplementation improved detoxification, oxidative stress defense, and nutrient absorption in calves. This study provides novel insights into the molecular mechanisms underlying the benefits of postbiotic LIC37 and supports its potential as a sustainable alternative to probiotics in calf nutrition. Full article
Show Figures

Figure 1

14 pages, 2139 KiB  
Article
Cross-Sectional Study: Associations of A20 and Cezanne with Leukocyte Accumulation in B-Cell Acute Lymphoblastic Leukemia
by Le Thuy Ha, Nguyen Hoang Giang, Nguyen Linh Toan, Nguyen Van Giang, Can Van Mao, Nguyen Quoc Nhat, Tran Dang Quan, Nguyen Huy Hoang, Ngo Thu Hang and Nguyen Thi Xuan
Medicina 2025, 61(7), 1166; https://doi.org/10.3390/medicina61071166 - 27 Jun 2025
Viewed by 272
Abstract
Background and Objectives: Acute lymphoblastic leukemia (ALL) is a hematologic malignancy characterized by the aberrant proliferation of immature lymphoid cells. Lymphoblasts derived from the B-cell lymphoid lineage are identified as B-ALL. A20, CYLD and Cezanne are deubiquitinase genes that inhibit inflammatory response and [...] Read more.
Background and Objectives: Acute lymphoblastic leukemia (ALL) is a hematologic malignancy characterized by the aberrant proliferation of immature lymphoid cells. Lymphoblasts derived from the B-cell lymphoid lineage are identified as B-ALL. A20, CYLD and Cezanne are deubiquitinase genes that inhibit inflammatory response and tumor progression. Age-related increases in tumor necrosis factor (TNF)-α are associated with poor outcomes in ALL. Little is known about the associations of A20, CYLD and Cezanne with leukocyte accumulation in B-ALL. Materials and Methods: Blood samples of 147 patients with B-ALL and 144 healthy subjects were examined. Gene expression profiles were determined by quantitative PCR, gene polymorphisms by direct DNA sequencing, immunophenotype by flow cytometry and secretion of inflammatory cytokines by an ELISA. Results: Genetic analysis of the A20 gene identified six nucleotide changes in exon 7. Sequencing of the Cezanne gene identified three variants in intron 10. The results indicated that B-ALL patients carrying the A20 p.P348L and Cezanne rs1230581026 variants had higher variant frequencies and lower expression levels than healthy controls. Importantly, carriers of the A20 p.P348L variant had a higher numbers of CD20+ and HLA DR+ cells than those with a normal genotype, and carriers of the Cezanne rs1230581026 variant had increases in neutrophil, basophil, monocyte, lymphocyte, and CD38+ cell counts as well as age-related increases in the levels of TNF-α. Conclusions: The results indicate that the A20 p.P348L and Cezanne rs1230581026 variants are associated with low expression levels of A20/Cezanne, leukocyte expansion and poor outcomes in B-ALL patients. Full article
(This article belongs to the Section Genetics and Molecular Medicine)
Show Figures

Figure 1

18 pages, 3135 KiB  
Article
Obesity-Associated NAFLD Coexists with a Chronic Inflammatory Kidney Condition That Is Partially Mitigated by Short-Term Oral Metformin
by Amod Sharma, Reza Hakkak, Neriman Gokden, Neelam Joshi and Nirmala Parajuli
Nutrients 2025, 17(13), 2115; https://doi.org/10.3390/nu17132115 - 26 Jun 2025
Viewed by 612
Abstract
Background/Objectives: Chronic kidney disease (CKD) is twice as prevalent in individuals with obesity-associated non-alcoholic fatty liver disease (Ob-NAFLD), highlighting the need to determine the link and mechanisms of kidney injury as well as explore therapies. Metformin, a first-line treatment for type 2 diabetes, [...] Read more.
Background/Objectives: Chronic kidney disease (CKD) is twice as prevalent in individuals with obesity-associated non-alcoholic fatty liver disease (Ob-NAFLD), highlighting the need to determine the link and mechanisms of kidney injury as well as explore therapies. Metformin, a first-line treatment for type 2 diabetes, shows promise in managing NAFLD, but its renal benefits in Ob-NAFLD remain unclear. This study investigates the impact of Ob-NAFLD on kidney injury and assesses the potential protective effects of metformin. Methods: Five-week-old female Zucker rats (obese fa/fa and lean Fa/Fa) were fed an AIN-93G diet for 8 weeks to induce Ob-NAFLD, then fed the diet with Metformin for 10 weeks. Kidneys were collected for histopathological and biochemical analyses. Results: Histopathological studies showed increased tubular injury, mesangial matrix expansion, and fibrosis in kidneys with Ob-NAFLD compared to lean control (LC) rats. Immunohistochemistry further revealed an elevated macrophage and neutrophil infiltration and increased levels of nitrotyrosine and p22phox in Ob-NAFLD kidneys. Furthermore, Ob-NAFLD rat kidneys showed upregulation of TNF-α and CCL2 genes and increased levels of caspase-3 (total and cleaved). Interestingly, metformin treatment significantly decreased TNF-α mRNA and blunted nitrotyrosine levels, and modestly reduced immune cell infiltration in Ob-NAFLD. Conclusions: These findings indicate that Ob-NAFLD promotes CKD as evidenced by tubular injury, oxidative stress, inflammation, and fibrosis. While short-term metformin treatment showed anti-oxidative and anti-inflammatory effects in Ob-NAFLD, its impact on structural kidney damage was limited, highlighting the need for longer treatment or alternative therapeutics such as oxidant scavengers and anti-inflammatory drugs to effectively mitigate renal pathologies. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

21 pages, 6110 KiB  
Article
Integrating Bulk RNA and Single-Cell Sequencing Data Reveals Genes Related to Energy Metabolism and Efferocytosis in Lumbar Disc Herniation
by Lianjun Yang, Jinxiang Li, Zhifei Cui, Lihua Huang, Tao Chen, Xiang Liu and Hai Lu
Biomedicines 2025, 13(7), 1536; https://doi.org/10.3390/biomedicines13071536 - 24 Jun 2025
Viewed by 552
Abstract
Background/Objectives: Lumbar disc herniation (LDH) is the most common condition associated with low back pain, and it adversely impacts individuals’ health. The interplay between energy metabolism and apoptosis is critical, as the loss of viable cells in the intervertebral disc (IVD) can [...] Read more.
Background/Objectives: Lumbar disc herniation (LDH) is the most common condition associated with low back pain, and it adversely impacts individuals’ health. The interplay between energy metabolism and apoptosis is critical, as the loss of viable cells in the intervertebral disc (IVD) can lead to a cascade of degenerative changes. Efferocytosis is a key biological process that maintains homeostasis by removing apoptotic cells, resolving inflammation, and promoting tissue repair. Therefore, enhancing mitochondrial energy metabolism and efferocytosis function in IVD cells holds great promise as a potential therapeutic approach for LDH. Methods: In this study, energy metabolism and efferocytosis-related differentially expressed genes (EMERDEGs) were identified from the transcriptomic datasets of LDH. Machine learning approaches were used to identify key genes. Functional enrichment analyses were performed to elucidate the biological roles of these genes. The functions of the hub genes were validated by RT-qPCR. The CIBERSORT algorithm was used to compare immune infiltration between LDH and Control groups. Additionally, we used single-cell RNA sequencing dataset to analyze cell-specific expression of the hub genes. Results: By using bioinformatics methods, we identified six EMERDEGs hub genes (IL6R, TNF, MAPK13, ELANE, PLAUR, ABCA1) and verified them using RT-qPCR. Functional enrichment analysis revealed that these genes were primarily associated with inflammatory response, chemokine production, and cellular energy metabolism. Further, we identified candidate drugs as potential treatments for LDH. Additionally, in immune infiltration analysis, the abundance of activated dendritic cells, neutrophils, and gamma delta T cells varied significantly between the LDH group and Control group. The scRNA-seq analysis showed that these hub genes were mainly expressed in chondrocyte-like cells. Conclusions: The identified EMERDEG hub genes and pathways offer novel insights into the molecular mechanisms underlying LDH and suggest potential therapeutic targets. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

27 pages, 6113 KiB  
Article
Peptidylarginine Deiminase 4 Deficiency Suppresses Neutrophil Extracellular Trap Formation and Ameliorates Elastase-Induced Emphysema in Mouse Lung
by Megumi Katsumata, Jun Ikari, Akira Urano, Eiko Suzuki, Kazuto Kugou, Yoshinori Hasegawa, Koichiro Tatsumi and Takuji Suzuki
Int. J. Mol. Sci. 2025, 26(12), 5573; https://doi.org/10.3390/ijms26125573 - 11 Jun 2025
Viewed by 724
Abstract
Neutrophil extracellular traps (NETs) are associated with the extracellular release of nuclear chromatin decorated with cytoplasmic proteins. Excessive release of NETs has been reported in chronic lung diseases, including chronic obstructive pulmonary disease (COPD). However, the role of NETs in the pathogenesis of [...] Read more.
Neutrophil extracellular traps (NETs) are associated with the extracellular release of nuclear chromatin decorated with cytoplasmic proteins. Excessive release of NETs has been reported in chronic lung diseases, including chronic obstructive pulmonary disease (COPD). However, the role of NETs in the pathogenesis of COPD remains unclear. Peptidylarginine deaminase 4 (PAD4) contributes to NET formation. Therefore, in an elastase (ELS)-induced emphysema mouse model, we examined the role of PAD4 using Padi4 gene knockout (KO) mice. First, we confirmed that ELS induced NET formation in the parenchyma of the lungs. PAD4 deficiency suppressed ELS-induced NET expression and tended to ameliorate the lung tissue injury. The cellular profile of bronchoalveolar lavage fluid (BALF) did not differ between the two groups. Additionally, PAD4 deficiency ameliorated emphysema and apoptosis in lung cells. Finally, we examined the effects of PAD4 on comprehensive gene expression signatures using RNA sequencing. Enrichment analysis of the transcriptomic data revealed that the expression of several genes associated with COPD pathogenesis was altered in the KO mice. Overall, the results suggest that PAD4 deficiency improves NET formation and emphysema in the lungs; this pathway can be a potential therapeutic target for the treatment of COPD. Full article
Show Figures

Figure 1

11 pages, 2497 KiB  
Article
IL-1R2 as a Precision Therapeutic Target in Sepsis: Molecular Insights into Immune Regulation
by Kirtan Dave and Cristian R. Munteanu
Curr. Issues Mol. Biol. 2025, 47(6), 429; https://doi.org/10.3390/cimb47060429 - 6 Jun 2025
Viewed by 521
Abstract
Sepsis is a life-threatening condition characterized by systemic inflammation and organ dysfunction, with a complex and not yet fully elucidated molecular basis. Central to its pathogenesis is a dysregulated immune response. In this study, we performed a comprehensive multi-omics analysis on transcriptomic datasets [...] Read more.
Sepsis is a life-threatening condition characterized by systemic inflammation and organ dysfunction, with a complex and not yet fully elucidated molecular basis. Central to its pathogenesis is a dysregulated immune response. In this study, we performed a comprehensive multi-omics analysis on transcriptomic datasets retrieved from the GEO database, including samples from sepsis patients (n = 23) and healthy controls (n = 27). and identified a pivotal role of Interleukin-1 receptor 2 (IL-1R2) in modulating inflammatory responses in sepsis. Transcriptomic integration revealed activation of critical signaling pathways, including NFκB/NLRP3, associated with sepsis-induced immune dysregulation. We identified a pivotal role of Interleukin-1 receptor 2 (IL-1R2) in modulating inflammatory responses in sepsis, with IL-1R2 showing a 2.1-fold upregulation in septic patients. Transcriptomic integration revealed the activation of 42 significantly enriched signaling pathways, with 26 upregulated and 26 downregulated pathways. Notably, the NFκB/NLRP3 signaling axis emerged as a central hub of immune dysregulation. Gene Ontology (GO) enrichment analysis highlighted “neutrophil activation involved in immune response” as the top biological process. Our findings suggest that IL-1R2 functions as a key immunoregulatory molecule and represents a promising therapeutic target. Moreover, we observed distinct patterns of oxidative stress regulation and immune cell activation, with potential biomarkers correlating with disease severity. These insights not only enhance the molecular understanding of sepsis but also point toward novel precision therapeutic strategies focused on modulating inflammation to improve patient outcomes. Full article
(This article belongs to the Special Issue Molecular Biology in Drug Design and Precision Therapy)
Show Figures

Figure 1

18 pages, 5615 KiB  
Article
Integrative Analysis of Neutrophil-Associated Genes Reveals Prognostic Significance and Immune Microenvironment Modulation in Cervical Cancer
by Ting Hu, Haijing Wu, Xinghan Cheng, Haoyue Gao and Min Yang
Biomedicines 2025, 13(6), 1348; https://doi.org/10.3390/biomedicines13061348 - 30 May 2025
Viewed by 635
Abstract
Background: Tumour-associated neutrophils play an important role in tumour progression and immunomodulation. However, the prognostic significance and immunological implications of neutrophil-associated genes (NAGS) in cervical cancer remain poorly defined. Methods: We analyzed neutrophil infiltration and its correlation with gene expression in TCGA cervical [...] Read more.
Background: Tumour-associated neutrophils play an important role in tumour progression and immunomodulation. However, the prognostic significance and immunological implications of neutrophil-associated genes (NAGS) in cervical cancer remain poorly defined. Methods: We analyzed neutrophil infiltration and its correlation with gene expression in TCGA cervical cancer data using immune deconvolution. NAGS were identified via correlation and enrichment analysis. A prognostic model was constructed using Cox and LASSO regression and validated in the GSE30759 cohort. Kaplan–Meier analysis, ROC curves, and multivariate Cox regression were used to assess prognostic performance. The model’s association with the tumor immune microenvironment and immunotherapy response was further analyzed. The expression pattern of SEMA6B was explored using cell lines, clinical subgroups, and human protein profiles, and its immunological relevance was evaluated using multiple immune infiltration algorithms. Results: Twelve genes were identified as significantly correlated with neutrophil infiltration and enriched in immune-related pathways such as chemotaxis, neutrophil degranulation, and PI3K-AKT signaling. Further NAGS models were developed based on key genes. High-risk patients exhibited an immunosuppressive tumor microenvironment, elevated TIDE scores, and lower predicted responsiveness to immunotherapy. SEMA6B was significantly downregulated in the tumour group but may be reactivated during metastasis. High expression of SEMA6B was associated with poorer prognostic features and immune evasion. Conclusions: We developed a NAGS signature that may inform prognosis and immune microenvironment status in cervical cancer. These findings suggest the potential clinical utility of NAGs-based models in guiding immunotherapy strategies. Moreover, SEMA6B may serve as a promising immunological and prognostic biomarker, pending further mechanistic validation. Full article
Show Figures

Figure 1

19 pages, 7569 KiB  
Article
Integrative Analysis of EPHX4 as a Novel Prognostic and Diagnostic Biomarker in Lung Adenocarcinoma
by Pengze Liu and Yutong Chen
Int. J. Mol. Sci. 2025, 26(11), 5095; https://doi.org/10.3390/ijms26115095 - 26 May 2025
Viewed by 598
Abstract
Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality, necessitating the identification of novel biomarkers for improved prognosis and diagnosis. This study investigates the role of epoxide hydrolase 4 (EPHX4), a member of the epoxide hydrolase family, in LUAD. Using [...] Read more.
Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality, necessitating the identification of novel biomarkers for improved prognosis and diagnosis. This study investigates the role of epoxide hydrolase 4 (EPHX4), a member of the epoxide hydrolase family, in LUAD. Using data sourced from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, which were subsequently validated by the Gene Expression Omnibus (GEO), we analyzed levels of EPHX4 expression, mutation, and methylation in tumors versus normal tissues. Our findings revealed a significant upregulation of EPHX4 in LUAD tissues compared to normal lung tissues (p < 0.001), correlating with poorer overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). Furthermore, EPHX4 exhibited considerable diagnostic potential, as demonstrated by an area under the curve (AUC) of 0.854 in a Receiver Operating Characteristic (ROC) analysis. Notably, EPHX4 expression was associated with immune infiltration, specifically Th2 cells, neutrophils, and macrophages, along with immune checkpoint molecules including PD-L1, PD-L2, and TIM-3. Additionally, EPHX4 was involved in pivotal tumor-associated pathways, particularly cell cycle regulation. In conclusion, an elevated EPHX4 expression is indicative of poorer prognosis in LUAD and may play a role in immune evasion and cell cycle dysregulation, highlighting its potential as a promising biomarker for the diagnosis and prognostic prediction of LUAD. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

Back to TopTop