Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,717)

Search Parameters:
Keywords = natural products or compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 523 KiB  
Article
Mutation Rates and Fitness Genes in Staphylococcus aureus Treated with the Medicinal Plant Synadenium glaucescens
by Zaituni Msengwa, Martin Saxtorph Bojer, Frank Rwegoshora, James Mwesongo, Magesa Mafuru, Faith Philemon Mabiki, Beda John Mwang’onde, Madundo Mkumbukwa Mtambo, Lughano Jeremy Kusiluka, Henrik Christensen, Robinson Hammerthon Mdegela and John Elmerdahl Olsen
Appl. Sci. 2025, 15(15), 8753; https://doi.org/10.3390/app15158753 (registering DOI) - 7 Aug 2025
Abstract
Extracts, fractions and the pure compound epifriedelanol of the medicinal plant Synadenium glaucescens have antibacterial properties. Herbal products are generally considered less prone to resistance development than conventional antimicrobials, as they contain multiple compounds, which makes bacteria less likely to develop resistance. However, [...] Read more.
Extracts, fractions and the pure compound epifriedelanol of the medicinal plant Synadenium glaucescens have antibacterial properties. Herbal products are generally considered less prone to resistance development than conventional antimicrobials, as they contain multiple compounds, which makes bacteria less likely to develop resistance. However, data supporting this notion are lacking. This study evaluated the development of resistance in Staphylococcus aureus subjected to extract, fractions and epifriedelanol of S. glaucescens. It also identified S. aureus fitness genes contributing to intrinsic resistance to extract of S. glaucescens. Fluctuation and gradient concentration assays were used to determine mutation rates and growth adaptation, respectively, which were lower following exposure to growth in crude extract than the pure compound epifriedelanol. By subjecting 1920 single gene mutants from the Nebraska Transposon Mutant Library to growth in the presence of extract of S. glaucescens, 12 genes were identified as important for natural resistance in S. aureus JE2; however, only mutation in the hemB gene decreased the minimum inhibitory concentration by greater than 4-fold (64-fold). In conclusion, purifying active antimicrobial compounds from S. glaucescens and using them as antibacterial substances as an alternative to crude extract increased the risk of resistance development. Further, the gene hemBappears to have a significant role in the natural resistance to the extracts obtained from S. glaucescens in this study. Full article
33 pages, 732 KiB  
Review
Transforming By-Products into Functional Resources: The Potential of Cucurbitaceae Family Seeds in Cosmetics
by Carla Sousa, Carla Guimarães Moutinho, Márcia Carvalho, Carla Matos and Ana Ferreira Vinha
Seeds 2025, 4(3), 36; https://doi.org/10.3390/seeds4030036 (registering DOI) - 7 Aug 2025
Abstract
Seeds of Cucurbitaceae crops represent a promising yet underexplored source of bioactive compounds with potential applications beyond nutrition, particularly in the cosmetics industry. This review examines the seeds of Citrullus lanatus (watermelon), Cucumis melo (melon), and Cucurbita pepo (pumpkin), focusing on their biochemical [...] Read more.
Seeds of Cucurbitaceae crops represent a promising yet underexplored source of bioactive compounds with potential applications beyond nutrition, particularly in the cosmetics industry. This review examines the seeds of Citrullus lanatus (watermelon), Cucumis melo (melon), and Cucurbita pepo (pumpkin), focusing on their biochemical composition and evaluating their functional value in natural cosmetic development. Although these fruits are widely consumed, industrial processing generates substantial seed by-products that are often discarded. These seeds are rich in polyunsaturated fatty acids, proteins, carbohydrates, and phytochemicals, positioning them as sustainable raw materials for value-added applications. The incorporation of seed-derived extracts into cosmetic formulations offers multiple skin and hair benefits, including antioxidant activity, hydration, and support in managing conditions such as hyperpigmentation, acne, and psoriasis. They also contribute to hair care by improving oil balance, reducing frizz, and enhancing strand nourishment. However, challenges such as environmental instability and low dermal permeability of seed oils have prompted interest in nanoencapsulation technologies to improve delivery, stability, and efficacy. This review summarizes current scientific findings and highlights the potential of Cucurbitaceae seeds as innovative and sustainable ingredients for cosmetic and personal care applications. Full article
20 pages, 3766 KiB  
Review
Challenges, Unmet Needs, and Future Directions for Nanocrystals in Dermal Drug Delivery
by Muzn Alkhaldi and Cornelia M. Keck
Molecules 2025, 30(15), 3308; https://doi.org/10.3390/molecules30153308 - 7 Aug 2025
Abstract
Nanocrystals, defined as crystalline particles with dimensions in the nanometer range (<1000 nm), exhibit unique properties that enhance the efficacy of poorly soluble active compounds. This review explores the fundamental aspects of nanocrystals, including their characteristics and various preparation methods, while addressing critical [...] Read more.
Nanocrystals, defined as crystalline particles with dimensions in the nanometer range (<1000 nm), exhibit unique properties that enhance the efficacy of poorly soluble active compounds. This review explores the fundamental aspects of nanocrystals, including their characteristics and various preparation methods, while addressing critical factors that influence their stability and incorporation into final products. A key focus of the review is the advantages offered by nanocrystals in dermal applications. It also highlights their ability to enhance passive diffusion into the skin and facilitate penetration via particle-assisted dermal penetration. Additionally, the review discusses their capacity to penetrate into hair follicles, enabling targeted drug delivery, and their synergistic potential when combined with microneedles, which further enhance the dermal absorption of active compounds. The review also addresses several commercial products that successfully employ nanocrystal technology, showcasing its practical applications. Summary: Nanocrystals with their special properties are an emerging trend for dermal applications, particularly the development of plantCrystals—natural nanocrystals sourced from plant materials—which represent a promising path for future research and formulation strategies. These advancements could lead to more sustainable and effective dermal products. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

18 pages, 2972 KiB  
Article
Flavonoids from Cercidiphyllum japonicum Exhibit Bioactive Potential Against Skin Aging and Inflammation in Human Dermal Fibroblasts
by Minseo Kang, Sanghyun Lee, Dae Sik Jang, Sullim Lee and Daeyoung Kim
Curr. Issues Mol. Biol. 2025, 47(8), 631; https://doi.org/10.3390/cimb47080631 - 7 Aug 2025
Abstract
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a [...] Read more.
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a tumor necrosis factor-alpha (TNF-α)-stimulated normal human dermal fibroblast (NHDF) model. The aerial parts of C. japonicum were extracted and analyzed by high-performance liquid chromatography (HPLC), leading to the identification of four major compounds: maltol, chlorogenic acid, ellagic acid, and quercitrin. Each compound was evaluated for its antioxidant and anti-aging activities in TNF-α-stimulated NHDFs. Among them, ellagic acid exhibited the most potent biological activity and was selected for further mechanistic analysis. Ellagic acid significantly suppressed intracellular reactive oxygen species (ROS) generation and matrix metalloproteinase-1 (MMP-1) secretion (both p < 0.001), while markedly increasing type I procollagen production (p < 0.01). Mechanistic studies demonstrated that ellagic acid inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinases (MAPKs), downregulated cyclooxygenase-2 (COX-2), and upregulated heme oxygenase-1 (HO-1), a key antioxidant enzyme. Additionally, ellagic acid attenuated the mRNA expression of inflammatory cytokines, including interleukin-6 (IL-6) and interleukin-8 (IL-8), indicating its broad modulatory effects on oxidative and inflammatory pathways. Collectively, these findings suggest that ellagic acid is a promising plant-derived bioactive compound with strong antioxidant and anti-inflammatory properties, offering potential as a therapeutic agent for the prevention and treatment of skin aging. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

25 pages, 1677 KiB  
Review
Sustainable, Targeted, and Cost-Effective Laccase-Based Bioremediation Technologies for Antibiotic Residues in the Ecosystem: A Comprehensive Review
by Rinat Ezra, Gulamnabi Vanti and Segula Masaphy
Biomolecules 2025, 15(8), 1138; https://doi.org/10.3390/biom15081138 - 7 Aug 2025
Abstract
Widespread antibiotic residues are accumulating in the environment, potentially causing adverse effects for humans, animals, and the ecosystem, including an increase in antibiotic-resistant bacteria, resulting in worldwide concern. There are various commonly used physical, chemical, and biological treatments for the degradation of antibiotics. [...] Read more.
Widespread antibiotic residues are accumulating in the environment, potentially causing adverse effects for humans, animals, and the ecosystem, including an increase in antibiotic-resistant bacteria, resulting in worldwide concern. There are various commonly used physical, chemical, and biological treatments for the degradation of antibiotics. However, the elimination of toxic end products generated by physicochemical methods and the need for industrial applications pose significant challenges. Hence, environmentally sustainable, green, and readily available approaches for the transformation and degradation of these antibiotic compounds are being sought. Herein, we review the impact of sustainable fungal laccase-based bioremediation strategies. Fungal laccase enzyme is considered one of the most active enzymes for biotransformation and biodegradation of antibiotic residue in vitro. For industrial applications, the low laccase yields in natural and genetically modified hosts may constitute a bottleneck. Methods to screen for high-laccase-producing sources, optimizing cultivation conditions, and identifying key genes and metabolites involved in extracellular laccase activity are reviewed. These include advanced transcriptomics, proteomics, and metagenomics technologies, as well as diverse laccase-immobilization technologies with different inert carrier/support materials improving enzyme performance whilst shifting from experimental assays to in situ monitoring of residual toxicity. Still, more basic and applied research on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics that are recalcitrant and prevalent, is needed. Full article
(This article belongs to the Special Issue Recent Advances in Laccases and Laccase-Based Bioproducts)
Show Figures

Figure 1

17 pages, 2046 KiB  
Article
Characterization of Natural Products as Inhibitors of Shikimate Dehydrogenase from Methicillin-Resistant Staphylococcus aureus: Kinetic and Molecular Dynamics Simulations, and Biological Activity Studies
by Noé Fabián Corral-Rodríguez, Valeria Itzel Moreno-Contreras, Erick Sierra-Campos, Mónica Valdez-Solana, Jorge Cisneros-Martínez, Alfredo Téllez-Valencia and Claudia Avitia-Domínguez
Biomolecules 2025, 15(8), 1137; https://doi.org/10.3390/biom15081137 - 6 Aug 2025
Abstract
Antibiotic resistance is considered to be one of the most complex health obstacles of our time. Methicillin-resistant Staphylococcus aureus (MRSA) represents a global health challenge due to its broad treatment resistance capacity, resulting in high mortality rates. The shikimate pathway (SP) is responsible [...] Read more.
Antibiotic resistance is considered to be one of the most complex health obstacles of our time. Methicillin-resistant Staphylococcus aureus (MRSA) represents a global health challenge due to its broad treatment resistance capacity, resulting in high mortality rates. The shikimate pathway (SP) is responsible for the biosynthesis of chorismate from glycolysis and pentose phosphate pathway intermediates. This pathway plays a crucial role in producing aromatic amino acids, folates, ubiquinone, and other secondary metabolites in bacteria. Notably, SP is absent in humans, which makes it a specific and potential therapeutic target to explore for discovering new antibiotics against MRSA. The present study characterized in vitro and in silico natural products as inhibitors of the shikimate dehydrogenase from methicillin-resistant S. aureus (SaSDH). The results showed that, from the set of compounds studied, phloridzin, rutin, and caffeic acid were the most potent inhibitors of SaSDH, with IC50 values of 140, 160, and 240 µM, respectively. Furthermore, phloridzin showed a mixed-type inhibition mechanism, whilst rutin and caffeic acid showed non-competitive mechanisms. The structural characterization of the SaSDH–inhibitor complex indicated that these compounds interacted with amino acids from the catalytic site and formed stable complexes. In biological activity studies against MRSA, caffeic acid showed an MIC of 2.2 mg/mL. Taken together, these data encourage using these compounds as a starting point for developing new antibiotics based on natural products against MRSA. Full article
Show Figures

Figure 1

14 pages, 3011 KiB  
Article
Ameliorative Effects of Soybean Powder Fermented by Bacillus subtilis on Constipation Induced by Loperamide in Rats
by Gi Soo Lee, Su Kang Kim, Ju Yeon Ban and Chung-Hun Oh
Int. J. Mol. Sci. 2025, 26(15), 7615; https://doi.org/10.3390/ijms26157615 - 6 Aug 2025
Abstract
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated [...] Read more.
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated the laxative effects of soybean powder fermented by Bacillus subtilis DKU_09 in a loperamide-induced rat model of constipation. The probiotic strain was isolated from cheonggukjang, a traditional Korean fermented soybean paste, and its identity was confirmed through 16S rRNA sequencing. Fermented soybean powder was characterized morphologically via scanning electron microscopy and chemically via HPLC to assess its isoflavone content. Rats were administered loperamide (5 mg/kg) for four days to induce constipation and were then treated with fermented soybean powder at doses of 100, 200, or 300 mg/kg. No pharmacological laxatives (e.g., PEG) were used as a positive control; instead, values from the treatment groups were compared with those from the loperamide-only constipation group. Key outcomes of fecal output, water content, colonic fecal retention, and gastrointestinal transit ratio were measured. The fermented product significantly improved stool frequency and moisture content, reduced colonic fecal retention, and restored gastrointestinal transit in a dose-dependent manner. Notably, the 300 mg/kg group demonstrated nearly complete recovery of fecal parameters without affecting body weight. Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test. These findings suggest that Bacillus subtilis-fermented soybean powder exerts synergistic laxative effects through the combined action of probiotic viability and fermentation-enhanced bioactive compounds such as aglycone isoflavones. This study supports the potential use of fermented soybean-based nutraceuticals as a natural and safe intervention for constipation and gastrointestinal dysregulation. Full article
(This article belongs to the Special Issue Functions and Applications of Natural Products)
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 - 6 Aug 2025
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

17 pages, 822 KiB  
Article
From Forest to Fork: Antioxidant and Antimicrobial Potential of Laetiporus sulphureus (Bull.) Murrill in Cooked Sausages
by Aleksandra Novaković, Maja Karaman, Branislav Šojić, Predrag Ikonić, Tatjana Peulić, Jelena Tomić and Mirjana Šipovac
Microorganisms 2025, 13(8), 1832; https://doi.org/10.3390/microorganisms13081832 - 6 Aug 2025
Abstract
In response to the growing demand for clean-label preservatives, this study investigates the potential of Laetiporus sulphureus, an edible polypore mushroom, as a multifunctional additive in cooked sausages. The ethanolic extract of L. sulphureus (LsEtOH) was evaluated for its chemical composition, antioxidant [...] Read more.
In response to the growing demand for clean-label preservatives, this study investigates the potential of Laetiporus sulphureus, an edible polypore mushroom, as a multifunctional additive in cooked sausages. The ethanolic extract of L. sulphureus (LsEtOH) was evaluated for its chemical composition, antioxidant capacity, and antimicrobial activity. Leucine (12.4 ± 0.31 mg/g d.w.) and linoleic acid (68.6%) were identified as the dominant essential amino acid and fatty acid. LsEtOH exhibited strong antioxidant activity, with IC50 values of 215 ± 0.05 µg/mL (DPPH•), 182 ± 0.40 µg/mL (NO•), and 11.4 ± 0.01 µg/mL (OH•), and showed a selective inhibition of Gram-positive bacteria, particularly Staphylococcus aureus (MIC/MBC: 0.31/0.62 mg/mL). In cooked sausages treated with 0.05 mg/kg of LsEtOH, lipid peroxidation was reduced (TBARS: 0.26 mg MDA/kg compared to 0.36 mg MDA/kg in the control), microbial growth was suppressed (33.3 ± 15.2 CFU/g in the treated sample compared to 43.3 ± 5.7 CFU/g in the control group), and color and pH were stabilized over 30 days. A sensory evaluation revealed minor flavor deviations due to the extract’s inherent aroma. Encapsulation and consumer education are recommended to enhance acceptance. This is the first study to demonstrate the efficacy of L. sulphureus extract as a natural preservative in a meat matrix, supporting its application as a clean-label additive for shelf life and safety improvement. Full article
(This article belongs to the Special Issue Microbial Biocontrol in the Agri-Food Industry, 2nd Edition)
Show Figures

Figure 1

38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

19 pages, 3697 KiB  
Article
Investigating the Behavior of a Natural Emulsifier in One-Pot and Standard Cosmetic Emulsions
by Mauro Battaiotto, Paolo Sonzini, Simone Conti, Miryam Chiara Malacarne and Enrico Caruso
Cosmetics 2025, 12(4), 164; https://doi.org/10.3390/cosmetics12040164 - 5 Aug 2025
Viewed by 29
Abstract
The cosmetic industry is growing at an impressive rate worldwide. In the cosmetic field, natural-origin ingredients represent the new frontier in this industry. Among the main components of cosmetics, lipids, emulsifiers, rheological modifiers, preservatives, colorants, and antioxidants can be found. These compounds form [...] Read more.
The cosmetic industry is growing at an impressive rate worldwide. In the cosmetic field, natural-origin ingredients represent the new frontier in this industry. Among the main components of cosmetics, lipids, emulsifiers, rheological modifiers, preservatives, colorants, and antioxidants can be found. These compounds form emulsions, which are among the main cosmetic formulations. An important aspect in this regard is the evaluation of emulsions’ stability over time and emulsions’ production methodology. In this paper, a comparison is made between two emulsion production technologies, the Standard and the “One-Pot” methods, through the characterization of the raw material ABWAX® Revomul, a multifunctional wax for cosmetic use which consists of a low-melting structuring wax of vegetal origin (Rhus wax) and a natural emulsifier (Polyglyceril-3 Stearate). First, we evaluated the affinity between the wax raw materials and emollients of different chemical nature; then, we analyzed the impact of the production method on the emulsions to identify similarities and differences. ABWAX® Revomul demonstrated a high level of effectiveness in regard to stabilizing water-in-oil emulsions. This study suggests that from an industrial point of view, the application of the two procedures allows products with different characteristics to be obtained, consequently allowing a specific method to be chosen to obtain the desired product. Full article
(This article belongs to the Special Issue Advanced Cosmetic Sciences: Sustainability in Materials and Processes)
Show Figures

Figure 1

24 pages, 1951 KiB  
Review
Antioxidant Capacity and Therapeutic Applications of Honey: Health Benefits, Antimicrobial Activity and Food Processing Roles
by Ivana Tlak Gajger, Showket Ahmad Dar, Mohamed Morsi M. Ahmed, Magda M. Aly and Josipa Vlainić
Antioxidants 2025, 14(8), 959; https://doi.org/10.3390/antiox14080959 - 4 Aug 2025
Viewed by 127
Abstract
Honey is a natural product of honeybees that has been consumed for centuries due to its nutritional value and potential health benefits. Recent scientific research has focused on its antioxidant capacity, which is linked to a variety of bioactive compounds such as phenolic [...] Read more.
Honey is a natural product of honeybees that has been consumed for centuries due to its nutritional value and potential health benefits. Recent scientific research has focused on its antioxidant capacity, which is linked to a variety of bioactive compounds such as phenolic acids, enzymes (e.g., glucose oxidase, catalase), flavonoids, ascorbic acid, carotenoids, amino acids, and proteins. Together, these components work synergistically to neutralize free radicals, regulate antioxidant enzyme activity, and reduce oxidative stress. This review decisively outlines the antioxidant effects of honey and presents compelling clinical and experimental evidence supporting its critical role in preventing diseases associated with oxidative stress. Honey stands out for its extensive health benefits, which include robust protection against cardiovascular issues, notable anticancer and anti-inflammatory effects, enhanced glycemic control in diabetes, immune modulation, neuroprotection, and effective wound healing. As a recognized functional food and dietary supplement, honey is essential for the prevention and adjunct treatment of chronic diseases. However, it faces challenges due to variations in composition linked to climatic conditions, geographical and floral sources, as well as hive management practices. The limited number of large-scale clinical trials further underscores the need for more research. Future studies must focus on elucidating honey’s antioxidant mechanisms, standardizing its bioactive compounds, and examining its synergistic effects with other natural antioxidants to fully harness its potential. Full article
Show Figures

Figure 1

18 pages, 21877 KiB  
Article
Celery and Spinach Flavonoid-Rich Extracts Enhance Phytoalexin Production in Powdery Mildew-Infected Cucumber Leaves
by Hajar Soleimani, Shima Gharibi, Santa Olga Cacciola and Reza Mostowfizadeh-Ghalamfarsa
Plants 2025, 14(15), 2414; https://doi.org/10.3390/plants14152414 - 4 Aug 2025
Viewed by 159
Abstract
Phytoalexins are antimicrobial compounds of diverse chemical classes whose production is triggered in plants in response to pathogen infection. This study demonstrated that spraying with a celery flavonoid-rich extract (CFRE) or a spinach flavonoid-rich extract (SFRE) enhanced the production of phytoalexins in cucumber [...] Read more.
Phytoalexins are antimicrobial compounds of diverse chemical classes whose production is triggered in plants in response to pathogen infection. This study demonstrated that spraying with a celery flavonoid-rich extract (CFRE) or a spinach flavonoid-rich extract (SFRE) enhanced the production of phytoalexins in cucumber leaves artificially infected with powdery mildew incited by Podosphaera fusca. High-performance liquid chromatographic (HPLC) analysis revealed a noticeable increase in the content of phenolic acids, including caffeic acid, ellagic acid, ferulic acid, gallic acid, p-coumaric acid, and syringic acid, as well as the flavonoid rutin in both non-inoculated and inoculated leaves of cucumber seedlings treated with CFRE and SFRE, compared to healthy untreated leaves used as a control. Fluorescence microscopy revealed the accumulation of phenolic acid compounds in chloroplasts and at the periphery of epidermal cells. Overall, results suggest the reduced severity of P. fusca infection following the application of CFRE and SFRE in cucumber leaves could be due, at least in part, to the production of phytoalexins of polyphenolic nature. These findings provide insights into the mechanisms of systemic resistance induced by CFRE and SFRE. Moreover, they confirm these two natural flavonoid-rich products could be promising alternatives to synthetic chemical fungicides for the safe and ecofriendly control of cucumber powdery mildew. Full article
(This article belongs to the Collection Plant Disease Diagnostics and Surveillance in Plant Protection)
Show Figures

Figure 1

29 pages, 2132 KiB  
Review
Polyphenol-Based Therapeutic Strategies for Mitochondrial Dysfunction in Aging
by Tamara Maksimović, Carmen Gădău, Gabriela Antal, Mihaela Čoban, Oana Eșanu, Elisabeta Atyim, Alexandra Mioc and Codruța Șoica
Biomolecules 2025, 15(8), 1116; https://doi.org/10.3390/biom15081116 - 3 Aug 2025
Viewed by 317
Abstract
Aging, a progressive and time-dependent decline in physiological functions, is driven by interconnected hallmarks, among which mitochondrial dysfunction plays a central role. Mitochondria not only regulate energy production but also play key roles in other cellular processes, including ROS generation, apoptosis, and metabolic [...] Read more.
Aging, a progressive and time-dependent decline in physiological functions, is driven by interconnected hallmarks, among which mitochondrial dysfunction plays a central role. Mitochondria not only regulate energy production but also play key roles in other cellular processes, including ROS generation, apoptosis, and metabolic signaling—all of which decline with aging. Polyphenols are a diverse group of natural compounds found in fruits, vegetables, tea, and wine; they emerged as promising anti-aging agents due to their ability to modulate several hallmarks of aging, particularly mitochondrial dysfunction. This review explores how various polyphenolic classes influence mitochondrial function and mitigate aging-related decline. These natural compounds have been shown to reduce oxidative stress, increase energy production, and help maintain normal mitochondrial structure. Moreover, in vitro and in vivo studies suggest that polyphenols can delay signs of aging and improve physical and cognitive functions. Overall, polyphenols show great potential to promote healthy aging and even delay the decline in physiological functions by protecting and enhancing mitochondrial health. Full article
(This article belongs to the Special Issue Bioactive Compounds as Modifiers of Mitochondrial Function)
Show Figures

Figure 1

18 pages, 1812 KiB  
Review
Nanocarriers for Medical Ozone Delivery: A New Therapeutic Strategy
by Manuela Malatesta and Flavia Carton
Nanomaterials 2025, 15(15), 1188; https://doi.org/10.3390/nano15151188 - 3 Aug 2025
Viewed by 235
Abstract
Ozone (O3) occurs in nature as a chemical compound made of three oxygen atoms. It is an unstable, highly oxidative gas that rapidly decomposes into oxygen. The therapeutic use of O3 dates back to the beginning of the 20th century [...] Read more.
Ozone (O3) occurs in nature as a chemical compound made of three oxygen atoms. It is an unstable, highly oxidative gas that rapidly decomposes into oxygen. The therapeutic use of O3 dates back to the beginning of the 20th century and is currently based on the application of low doses, inducing a moderate oxidative stress that stimulates the antioxidant cellular defenses without causing cell damage. Low O3 doses also induce anti-inflammatory and regenerative effects, and their anticancer potential is under investigation. In addition, the oxidative properties of O3 make it an excellent antibacterial, antimycotic, and antiviral agent. Thanks to these properties, O3 is currently widely used in several medical fields. However, its chemical instability represents an application limit, and ozonated oil is the only stabilized form of medical O3. In recent years, novel O3 formulations have been proposed for their sustained and more efficient administration, based on nanotechnology. This review offers an overview of the nanocarriers designed for the delivery of medical O3, and of their therapeutic applications. The reviewed articles demonstrate that research is active and productive, though it is a rather new entry in the nanotechnological field. Liposomes, nanobubbles, nanoconstructed hydrogels, polymeric nanoparticles, and niosomes were designed to deliver O3 and have been proven to exert antiseptic, anticancer, and pro-regenerative effects when administered in vitro and in vivo. Improving the therapeutic administration of O3 through nanocarriers is a just-started challenge, and multiple prospects may be foreseen. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

Back to TopTop