Mutation Rates and Fitness Genes in Staphylococcus aureus Treated with the Medicinal Plant Synadenium glaucescens
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Media
2.2. Plant Collection, Processing and Preparation of Extracts, Fractions, and Compounds
2.3. Minimum Inhibitory Concentration
2.4. Fluctuation Assay
2.5. Gradient Concentration Assay
2.6. Screening for Mutants with Increased Susceptibility to the Extract
2.7. Statistical Analysis
3. Results
3.1. Measuring Mutation Rate with Fluctuation Assay
3.2. Adaptation to Growth on Gradient Agar
3.3. Screening for Mutants with Hyper-Susceptibility to Crude Extract of S. glaucescens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
LA-MRSA | Livestock-associated methicillin-resistant S. aureus |
CA-MRSA | Community-associated methicillin-resistant S. aureus |
NTML | Nebraska Transposon Mutant Library |
MHA | Mueller Hinton agar |
TSA | Trypton Soy Agar |
TSB | Tryptic soy broth |
MHB | Mueller Hinton Broth |
ETC | Electron Transport Chain |
DCCD | N,N′-dicyclohexylcarbodiimide |
ATP | Adenosine Triphosphate |
SCV | Small Colony Variant |
MIC | Minimum Inhibitory Concentration |
References
- Salam, A.; Al-Amin, Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- EClinical Medicine. Antimicrobial resistance: A top ten global public health threat. eClinicalMedicine 2021, 41, 101221. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations: The Review on Antimicrobial Resistance. 2019, pp. 1–35. Available online: https://amr-review.org (accessed on 14 November 2021).
- Lade, H.; Kim, J.-S. Bacterial targets of antibiotics in methicillin-resistant Staphylococcus aureus. Antibiotics 2021, 10, 398. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Wang, C.; Fang, R.; Zhou, B.; Tian, X.; Zhang, X.; Zheng, X.; Zhang, S.; Dong, G.; Cao, J.; Zhou, T. Evolution of resistance mechanisms and biological characteristics of rifampicin-resistant Staphylococcus aureus strains selected in vitro. BMC Microbiol. 2019, 19, 1–8. [Google Scholar] [CrossRef]
- Fey, P.D.; Endres, J.L.; Yajjala, V.K.; Widhelm, T.J.; Boissy, R.J.; Bose, J.L.; Bayles, K.W.; Bush, K. A Genetic Resource for Rapid and Comprehensive Phenotype. MBio 2013, 4, e00537-12. [Google Scholar] [CrossRef]
- WHO. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 14 November 2021).
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2020, 10, 107. [Google Scholar] [CrossRef]
- Bakal, S.N.; Bereswill, S.; Heimesaat, M.M. Finding novel antibiotic substances from medicinal plants—Antimicrobial properties of Nigella sativa directed against multidrug resistant bacteria. Eur. J. Microbiol. Immunol. 2017, 7, 92–98. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Innocent, E.; Marealle, A.I.; Imming, P.; Moeller, L. An Annotated Inventory of Tanzanian Medicinal Plants Bacterial Infections. Plants 2022, 11, 931. [Google Scholar] [CrossRef]
- Ruiz, G. Bacterial development of resistance to botanical antimicrobials. J. Evol. Health 2017, 2, 3. [Google Scholar] [CrossRef]
- Bardoloi, A.; Soren, A.D. Genotoxicity induced by medicinal plants. Bull. Natl. Res. Cent. 2022, 46, 1–11. [Google Scholar] [CrossRef]
- Msengwa, Z.; Rwegoshora, F.; David, C.; Mwesongo, J.; Mafuru, M.; Mabiki, F.P.; Mwang’oNde, B.J.; Mtambo, M.M.; Kusiluka, L.J.M.; Mdegela, R.H.; et al. Epifriedelanol is the key compound to antibacterial effects of extracts of Synadenium glaucescens (Pax) against medically important bacteria. Front. Trop. Dis. 2023, 3, 1104543. [Google Scholar] [CrossRef]
- Schijffelen, M.J.; Boel, C.H.E.; Van Strijp, J.A.G.; Fluit, A.C. Whole genome analysis of a livestock-associated methicillin-resistant. BMC Genom. 2010, 11, 376. [Google Scholar] [CrossRef]
- Tenover, F.; McDougal, L.; Goering, R.; Killgore, G.; Projan, S.; Patel, J.; Dunman, P. Characterization of a Strain of Community-Associated Methicillin-Resistant Staphylococcus aureus. J. Infect. 2006, 53, 218. [Google Scholar] [CrossRef]
- Rwegoshora, F.; Mabiki, F.; Machumi, F.; Chacha, M.; Styrishave, B.; Cornett, C. Isolation and toxicity evaluation of feruloyl ester and other triterpenoids from Synadenium glaucescens Pax. J. Phytopharm. 2022, 11, 347–352. [Google Scholar] [CrossRef]
- NCCLS. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline; NCCLS document M26-A; NCCLS: Wayne, PA, USA, 1999; ISBN 1-56238-384-1. [Google Scholar]
- Krašovec, R.; Richards, H.; Gomez, G.; Gifford, D.R.; Mazoyer, A.; Knight, C.G. Measuring microbial mutation rates with the fluctuation assay. J. Vis. Exp. 2019, 153, e60406. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.L. National Institute of Health (NIH) Public Access. Methods Enzymol. 2007, 409, 195–213. [Google Scholar]
- Gantzhorn, M.R.; Olsen, J.E.; Thomsen, L.E. Importance of sigma factor mutations in increased triclosan resistance in Salmonella Typhimurium. BMC Microbiol. 2015, 15, 105. [Google Scholar] [CrossRef]
- Vestergaard, M.; Nøhr-Meldgaard, K.; Ingmer, H. Multiple pathways towards reduced membrane potential and concomitant reduction in aminoglycoside susceptibility in Staphylococcus aureus. Int. J. Antimicrob. Agents 2018, 51, 132–135. [Google Scholar] [CrossRef]
- Ein, M.E.; Smith, N.J.; Aruffo, J.F.; Heerema, M.S.; Bradshaw, M.W.; Williams, T.W. Susceptibility and Synergy Studies of Methicillin-Resistant Staphylococcus epidermidis. Antimicrob. Agents Chemother. 1979, 16, 655–659. [Google Scholar] [CrossRef]
- Eliopoulos, G.M.; Eliopoulos, C.T. Antibiotic combinations: Should they be tested? Clin. Microbiol. Rev. 1988, 1, 139–156. [Google Scholar] [CrossRef]
- Werngren, J.; Hoffner, S.E. Drug-susceptible Mycobacterium tuberculosis Beijing genotype does not develop mutation-conferred resistance to rifampin at an elevated rate. J. Clin. Microbiol. 2003, 41, 1520–1524. [Google Scholar] [CrossRef]
- Chapman, J.S. Biocide resistance mechanisms. Int. Biodeterior. Biodegradation 2003, 51, 133–138. [Google Scholar] [CrossRef]
- von Eiff, C.; Heilmann, C.; Proctor, R.A.; Woltz, C.; Peters, G.; Götz, F. A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly. J. Bacteriol. 1997, 179, 4706–4712. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.; Fischetti, V.A.; Novick, R.P.; Ferretti, J.J.; Portnoy, D.A.; Braunstein, M.; Rood, J.I. Respiration and Small Colony Variants of Staphylococcus aureus. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.H.; Edberg, S.C.; Mandel, L.J.; Behar, C.F.; Steigbigel, N.H. Gentamicin uptake in wild-type and aminoglycoside-resistant small-colony mutants of Staphylococcus aureus. Antimicrob. Agents Chemother. 1980, 18, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.; Gattuso, M.; Grondin, G.; Marsault, É.; Bouarab, K.; Malouin, F. Tomatidine inhibits replication of Staphylococcus aureus small-colony variants in cystic fibrosis airway epithelial cells. Antimicrob. Agents Chemother. 2011, 55, 1937–1945. [Google Scholar] [CrossRef]
- Vestergaard, M.; Roshanak, S.; Ingmer, H. Targeting the ATP synthase in Staphylococcus aureus small colony variants, Streptococcus pyogenes and pathogenic fungi. Antibiotics 2021, 10, 376. [Google Scholar] [CrossRef]
- Tuchscherr, L.; Medina, E.; Hussain, M.; Völker, W.; Heitmann, V.; Niemann, S.; Holzinger, D.; Roth, J.; Proctor, R.A.; Becker, K.; et al. Staphylococcus aureus phenotype switching: An effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol. Med. 2011, 3, 129–141. [Google Scholar] [CrossRef]
- Marry, O.G.; Zaituni, M.S.; Faith, M.P.; Lughano, K.J.M.; Robinson, M.H.; John, O.E. Antibacterial Effects Of Single And Combined Crude Extracts Of Synadenium glaucescens And Commiphora swynnertonii. J. Infect. Dis. 2022, 16, 9–16. [Google Scholar] [CrossRef]
- Zhang, P.; Wright, J.A.; Osman, A.A.; Nair, S.P. An aroD ochre mutation results in a Staphylococcus aureus small colony variant that can undergo phenotypic switching via two alternative mechanisms. Front. Microbiol. 2017, 8, 1001. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.A.; Kriegeskorte, A.; Kahl, B.C.; Becker, K.; Lãffler, B.; Peters, G. Staphylococcus aureus Small Colony Variants (SCVs): A road map for the metabolic pathways involved in persistent infections. Front. Cell. Infect. Microbiol. 2014, 4, 99. [Google Scholar] [CrossRef] [PubMed]
S/No | Strain | Inactivated Gene | MIC (µg/mL) |
---|---|---|---|
1 | Wild type of S. aureus JE2 SAUSA300 | - | 6 |
2 | SAUSA300_1615 | hemB | 0.094 |
3 | SAUSA300_1473 | nusB | 3 |
4 | SAUSA300_2406 | cap5A | 3 |
5 | SAUSA300_0228 | Fade | 3 |
6 | SAUSA300_1995 | scrR | 3 |
7 | SAUSA300_1343 | Nth | 3 |
8 | SAUSA300_0605 | sarA | 3 |
9 | SAUSA300_2550 | nrdG | 3 |
10 | SAUSA300_1222 | Nuc | 3 |
11 | SAUSA300_0889 | oppD | 3 |
12 | SAUSA300_1139 | sucD | 3 |
13 | SAUSA300_1359 | unknown | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Msengwa, Z.; Bojer, M.S.; Rwegoshora, F.; Mwesongo, J.; Mafuru, M.; Mabiki, F.P.; Mwang’onde, B.J.; Mtambo, M.M.; Kusiluka, L.J.; Christensen, H.; et al. Mutation Rates and Fitness Genes in Staphylococcus aureus Treated with the Medicinal Plant Synadenium glaucescens. Appl. Sci. 2025, 15, 8753. https://doi.org/10.3390/app15158753
Msengwa Z, Bojer MS, Rwegoshora F, Mwesongo J, Mafuru M, Mabiki FP, Mwang’onde BJ, Mtambo MM, Kusiluka LJ, Christensen H, et al. Mutation Rates and Fitness Genes in Staphylococcus aureus Treated with the Medicinal Plant Synadenium glaucescens. Applied Sciences. 2025; 15(15):8753. https://doi.org/10.3390/app15158753
Chicago/Turabian StyleMsengwa, Zaituni, Martin Saxtorph Bojer, Frank Rwegoshora, James Mwesongo, Magesa Mafuru, Faith Philemon Mabiki, Beda John Mwang’onde, Madundo Mkumbukwa Mtambo, Lughano Jeremy Kusiluka, Henrik Christensen, and et al. 2025. "Mutation Rates and Fitness Genes in Staphylococcus aureus Treated with the Medicinal Plant Synadenium glaucescens" Applied Sciences 15, no. 15: 8753. https://doi.org/10.3390/app15158753
APA StyleMsengwa, Z., Bojer, M. S., Rwegoshora, F., Mwesongo, J., Mafuru, M., Mabiki, F. P., Mwang’onde, B. J., Mtambo, M. M., Kusiluka, L. J., Christensen, H., Mdegela, R. H., & Olsen, J. E. (2025). Mutation Rates and Fitness Genes in Staphylococcus aureus Treated with the Medicinal Plant Synadenium glaucescens. Applied Sciences, 15(15), 8753. https://doi.org/10.3390/app15158753