Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,381)

Search Parameters:
Keywords = natural products drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3766 KiB  
Review
Challenges, Unmet Needs, and Future Directions for Nanocrystals in Dermal Drug Delivery
by Muzn Alkhaldi and Cornelia M. Keck
Molecules 2025, 30(15), 3308; https://doi.org/10.3390/molecules30153308 - 7 Aug 2025
Abstract
Nanocrystals, defined as crystalline particles with dimensions in the nanometer range (<1000 nm), exhibit unique properties that enhance the efficacy of poorly soluble active compounds. This review explores the fundamental aspects of nanocrystals, including their characteristics and various preparation methods, while addressing critical [...] Read more.
Nanocrystals, defined as crystalline particles with dimensions in the nanometer range (<1000 nm), exhibit unique properties that enhance the efficacy of poorly soluble active compounds. This review explores the fundamental aspects of nanocrystals, including their characteristics and various preparation methods, while addressing critical factors that influence their stability and incorporation into final products. A key focus of the review is the advantages offered by nanocrystals in dermal applications. It also highlights their ability to enhance passive diffusion into the skin and facilitate penetration via particle-assisted dermal penetration. Additionally, the review discusses their capacity to penetrate into hair follicles, enabling targeted drug delivery, and their synergistic potential when combined with microneedles, which further enhance the dermal absorption of active compounds. The review also addresses several commercial products that successfully employ nanocrystal technology, showcasing its practical applications. Summary: Nanocrystals with their special properties are an emerging trend for dermal applications, particularly the development of plantCrystals—natural nanocrystals sourced from plant materials—which represent a promising path for future research and formulation strategies. These advancements could lead to more sustainable and effective dermal products. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

17 pages, 2046 KiB  
Article
Characterization of Natural Products as Inhibitors of Shikimate Dehydrogenase from Methicillin-Resistant Staphylococcus aureus: Kinetic and Molecular Dynamics Simulations, and Biological Activity Studies
by Noé Fabián Corral-Rodríguez, Valeria Itzel Moreno-Contreras, Erick Sierra-Campos, Mónica Valdez-Solana, Jorge Cisneros-Martínez, Alfredo Téllez-Valencia and Claudia Avitia-Domínguez
Biomolecules 2025, 15(8), 1137; https://doi.org/10.3390/biom15081137 - 6 Aug 2025
Abstract
Antibiotic resistance is considered to be one of the most complex health obstacles of our time. Methicillin-resistant Staphylococcus aureus (MRSA) represents a global health challenge due to its broad treatment resistance capacity, resulting in high mortality rates. The shikimate pathway (SP) is responsible [...] Read more.
Antibiotic resistance is considered to be one of the most complex health obstacles of our time. Methicillin-resistant Staphylococcus aureus (MRSA) represents a global health challenge due to its broad treatment resistance capacity, resulting in high mortality rates. The shikimate pathway (SP) is responsible for the biosynthesis of chorismate from glycolysis and pentose phosphate pathway intermediates. This pathway plays a crucial role in producing aromatic amino acids, folates, ubiquinone, and other secondary metabolites in bacteria. Notably, SP is absent in humans, which makes it a specific and potential therapeutic target to explore for discovering new antibiotics against MRSA. The present study characterized in vitro and in silico natural products as inhibitors of the shikimate dehydrogenase from methicillin-resistant S. aureus (SaSDH). The results showed that, from the set of compounds studied, phloridzin, rutin, and caffeic acid were the most potent inhibitors of SaSDH, with IC50 values of 140, 160, and 240 µM, respectively. Furthermore, phloridzin showed a mixed-type inhibition mechanism, whilst rutin and caffeic acid showed non-competitive mechanisms. The structural characterization of the SaSDH–inhibitor complex indicated that these compounds interacted with amino acids from the catalytic site and formed stable complexes. In biological activity studies against MRSA, caffeic acid showed an MIC of 2.2 mg/mL. Taken together, these data encourage using these compounds as a starting point for developing new antibiotics based on natural products against MRSA. Full article
Show Figures

Figure 1

42 pages, 1287 KiB  
Review
Antimicrobial Potential of Bee-Derived Products: Insights into Honey, Propolis and Bee Venom
by Agnieszka Grinn-Gofroń, Maciej Kołodziejczak, Rafał Hrynkiewicz, Filip Lewandowski, Dominika Bębnowska, Cezary Adamski and Paulina Niedźwiedzka-Rystwej
Pathogens 2025, 14(8), 780; https://doi.org/10.3390/pathogens14080780 - 6 Aug 2025
Abstract
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or [...] Read more.
Bee products, in particular honey, propolis and bee venom, are of growing scientific interest due to their broad spectrum of antimicrobial activity. In the face of increasing antibiotic resistance and the limitations of conventional therapies, natural bee-derived substances offer a promising alternative or support for the treatment of infections. This paper summarizes the current state of knowledge on the chemical composition, biological properties and antimicrobial activity of key bee products. The main mechanisms of action of honey, propolis and bee venom are presented, and their potential applications in the prevention and treatment of bacterial, viral and fungal infections are discussed. Data on their synergy with conventional drugs and prospects for use in medicine and pharmacology are also included. The available findings suggest that, with appropriate standardization and further preclinical and clinical analyses, bee products could become an effective support for the treatment of infections, especially those caused by pathogens resistant to standard therapies. Full article
Show Figures

Figure 1

33 pages, 4132 KiB  
Review
Mechanical Properties of Biodegradable Fibers and Fibrous Mats: A Comprehensive Review
by Ehsan Niknejad, Reza Jafari and Naser Valipour Motlagh
Molecules 2025, 30(15), 3276; https://doi.org/10.3390/molecules30153276 - 5 Aug 2025
Abstract
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer [...] Read more.
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer fibers across diverse applications. This covers synthetic polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), polycaprolactone (PCL), polyglycolic acid (PGA), and polyvinyl alcohol (PVA), as well as natural polymers including chitosan, collagen, cellulose, alginate, silk fibroin, and starch-based polymers. A range of fiber production methods is discussed, including electrospinning, centrifugal spinning, spunbonding, melt blowing, melt spinning, and wet spinning, with attention to how each technique influences tensile strength, elongation, and modulus. The review also addresses advances in composite fibers, nanoparticle incorporation, crosslinking methods, and post-processing strategies that improve mechanical behavior. In addition, mechanical testing techniques such as tensile test machine, atomic force microscopy, and dynamic mechanical analysis are examined to show how fabrication parameters influence fiber performance. This review examines the mechanical performance of biodegradable polymer fibers and fibrous mats, emphasizing their potential as sustainable alternatives to conventional materials in applications such as tissue engineering, drug delivery, medical implants, wound dressings, packaging, and filtration. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

35 pages, 3988 KiB  
Review
Oxidative–Inflammatory Crosstalk and Multi-Target Natural Agents: Decoding Diabetic Vascular Complications
by Jingwen Liu, Kexin Li, Zixin Yi, Saqirile, Changshan Wang and Rui Yang
Curr. Issues Mol. Biol. 2025, 47(8), 614; https://doi.org/10.3390/cimb47080614 - 4 Aug 2025
Viewed by 90
Abstract
Diabetes mellitus (DM) is one of the leading causes of death and disability worldwide and its prevalence continues to rise. Chronic hyperglycemia exposes patients to severe complications. Among these, diabetic vascular lesions are the most destructive. Their primary driver is the synergistic interaction [...] Read more.
Diabetes mellitus (DM) is one of the leading causes of death and disability worldwide and its prevalence continues to rise. Chronic hyperglycemia exposes patients to severe complications. Among these, diabetic vascular lesions are the most destructive. Their primary driver is the synergistic interaction between hyperglycemia-induced oxidative stress and chronic inflammation. This review systematically elucidates how multiple pathological pathways—namely, metabolic dysregulation, mitochondrial dysfunction, endoplasmic reticulum stress, and epigenetic reprogramming—cooperate to drive oxidative stress and inflammatory cascades. Confronting this complex pathological network, natural products, unlike conventional single-target synthetic drugs, exert multi-target synergistic effects, simultaneously modulating several key pathogenic networks. This enables the restoration of redox homeostasis and the suppression of inflammatory responses, thereby improving vascular function and delaying both microvascular and macrovascular disease progression. However, the clinical translation of natural products still faces multiple challenges and requires comprehensive mechanistic studies and rigorous validation to fully realize their therapeutic potential. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

21 pages, 2399 KiB  
Review
Various Approaches Employed to Enhance the Bioavailability of Antagonists Interfering with the HMGB1/RAGE Axis
by Harbinder Singh
Int. J. Transl. Med. 2025, 5(3), 35; https://doi.org/10.3390/ijtm5030035 - 2 Aug 2025
Viewed by 230
Abstract
High-mobility group box 1 (HMGB1) is a nuclear protein that can interact with a transmembrane cell surface receptor for advanced glycation end products (RAGEs) and mediates the inflammatory pathways that lead to various pathological conditions like cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders. [...] Read more.
High-mobility group box 1 (HMGB1) is a nuclear protein that can interact with a transmembrane cell surface receptor for advanced glycation end products (RAGEs) and mediates the inflammatory pathways that lead to various pathological conditions like cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders. Blocking the HMGB1/RAGE axis using various small synthetic or natural molecules has been proven to be an effective therapeutic approach to treating these inflammatory conditions. However, the low water solubility of these pharmacoactive molecules limits their clinical use. Pharmaceutically active molecules with low solubility and bioavailability in vivo convey a higher risk of failure for drug development and drug innovation. The pharmacokinetic and pharmacodynamics parameters of these compounds are majorly affected by their solubility. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. This review mainly describes various technologies utilized to improve the bioavailability of synthetic or natural molecules which have been particularly used in various inflammatory conditions acting specifically through the HMGB1/RAGE pathway. Full article
Show Figures

Figure 1

23 pages, 4589 KiB  
Review
The Novel Achievements in Oncological Metabolic Radio-Therapy: Isotope Technologies, Targeted Theranostics, Translational Oncology Research
by Elena V. Uspenskaya, Ainaz Safdari, Denis V. Antonov, Iuliia A. Valko, Ilaha V. Kazimova, Aleksey A. Timofeev and Roman A. Zubarev
Med. Sci. 2025, 13(3), 107; https://doi.org/10.3390/medsci13030107 - 1 Aug 2025
Viewed by 217
Abstract
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the [...] Read more.
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the leading causes of death worldwide: as of 2022, approximately 20 million new cases were diagnosed globally, accounting for about 0.25% of the total population. Given prognostic models predicting a steady increase in cancer incidence to 35 million cases by 2050, there is an urgent need for the latest developments in physics, chemistry, molecular biology, pharmacy, and strict adherence to oncological vigilance. The purpose of this work is to demonstrate the relationship between the nature and mechanisms of past diagnostic and therapeutic oncology approaches, their current improvements, and future prospects. Particular emphasis is placed on isotope technologies in the production of therapeutic nuclides, focusing on the mechanisms of formation of simple and complex theranostic compounds and their classification according to target specificity. Methods. The methodology involved searching, selecting, and analyzing information from PubMed, Scopus, and Web of Science databases, as well as from available official online sources over the past 20 years. The search was structured around the structure–mechanism–effect relationship of active pharmaceutical ingredients (APIs). The manuscript, including graphic materials, was prepared using a narrative synthesis method. Results. The results present a sequential analysis of materials related to isotope technology, particularly nucleus stability and instability. An explanation of theranostic principles enabled a detailed description of the action mechanisms of radiopharmaceuticals on various receptors within the metabolite–antimetabolite system using specific drug models. Attention is also given to radioactive nanotheranostics, exemplified by the mechanisms of action of radioactive nanoparticles such as Tc-99m, AuNPs, wwAgNPs, FeNPs, and others. Conclusions. Radiotheranostics, which combines the diagnostic properties of unstable nuclei with therapeutic effects, serves as an effective adjunctive and/or independent method for treating cancer patients. Despite the emergence of resistance to both chemotherapy and radiotherapy, existing nuclide resources provide protection against subsequent tumor metastasis. However, given the unfavorable cancer incidence prognosis over the next 25 years, the development of “preventive” drugs is recommended. Progress in this area will be facilitated by modern medical knowledge and a deeper understanding of ligand–receptor interactions to trigger apoptosis in rapidly proliferating cells. Full article
(This article belongs to the Special Issue Feature Papers in Section Cancer and Cancer-Related Diseases)
Show Figures

Figure 1

19 pages, 1974 KiB  
Review
Research Progress on the Mechanism of Action of Food-Derived ACE-Inhibitory Peptides
by Ting Li, Wanjia Du, Huiyan Huang, Luzhang Wan, Chenglong Shang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1219; https://doi.org/10.3390/life15081219 - 1 Aug 2025
Viewed by 301
Abstract
Hypertension is a major pathogenic contributor to cardiovascular diseases, primarily mediated through activation of the angiotensin-converting enzyme (ACE) system. Food-derived ACE-inhibitory peptides represent a promising alternative to synthetic drugs due to their favorable safety profile and minimal side effects. ACE-inhibitory peptides have been [...] Read more.
Hypertension is a major pathogenic contributor to cardiovascular diseases, primarily mediated through activation of the angiotensin-converting enzyme (ACE) system. Food-derived ACE-inhibitory peptides represent a promising alternative to synthetic drugs due to their favorable safety profile and minimal side effects. ACE-inhibitory peptides have been extensively identified from various foods, with their antihypertensive activity and molecular mechanisms comprehensively characterized through in vitro and in vivo studies. ACE-inhibitory peptides can be prepared by methods such as natural extraction, enzymatic hydrolysis, and fermentation. The production process significantly modulates structural characteristics of the polypeptides including peptide chain length, amino acid composition, and sequence, consequently determining their functional activity. To comprehensively elucidate the gastrointestinal stability and mechanisms action of ACE-inhibitory peptides, integrated experimental approaches combining both in vitro and in vivo methodologies are essential. This review systematically examines current advances in food-derived ACE-inhibitory peptides in terms of sources, production, structure, in vivo and in vitro activities, and bioavailability. Full article
Show Figures

Figure 1

43 pages, 7013 KiB  
Review
Fused-Linked and Spiro-Linked N-Containing Heterocycles
by Mikhail Yu. Moskalik and Bagrat A. Shainyan
Int. J. Mol. Sci. 2025, 26(15), 7435; https://doi.org/10.3390/ijms26157435 - 1 Aug 2025
Viewed by 186
Abstract
Fused and spiro nitrogen-containing heterocycles play an important role as structural motifs in numerous biologically active natural products and pharmaceuticals. The review summarizes various approaches to the synthesis of three-, four-, five-, and six-membered fused and spiro heterocycles with one or two nitrogen [...] Read more.
Fused and spiro nitrogen-containing heterocycles play an important role as structural motifs in numerous biologically active natural products and pharmaceuticals. The review summarizes various approaches to the synthesis of three-, four-, five-, and six-membered fused and spiro heterocycles with one or two nitrogen atoms. The assembling of the titled compounds via cycloaddition, oxidative cyclization, intramolecular ring closure, and insertion of sextet intermediates—carbenes and nitrenes—is examined on a vast number of examples. Many of the reactions proceed with high regio-, stereo-, or diastereoselectivity and in excellent, up to quantitative, yield, which is of principal importance for the synthesis of chiral drug-like compounds. For most unusual and hardly predictable transformations, the mechanisms are given or referred to. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Graphical abstract

14 pages, 1259 KiB  
Review
Engineered Hydrogels for Musculoskeletal Regeneration: Advanced Synthesis Strategies and Therapeutic Efficacy in Preclinical Models
by Gabriela Calin, Mihnea Costescu, Marcela Nour (Cârlig), Tudor Ciuhodaru, Batîr-Marin Denisa, Letitia Doina Duceac, Cozmin Mihai, Melania Florina Munteanu, Svetlana Trifunschi, Alexandru Oancea and Daniela Liliana Damir
Polymers 2025, 17(15), 2094; https://doi.org/10.3390/polym17152094 - 30 Jul 2025
Viewed by 274
Abstract
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial [...] Read more.
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial for musculoskeletal tissue regeneration. This is due to their high water content (70–99%), ECM-like structure, injectability, and controllable degradation rates. Recent preclinical studies indicate that they can enhance regeneration by modulating the release of bioactive compounds, growth factors, and stem cells. Composite hydrogels that combine natural and synthetic polymers, like chitosan and collagen, have compressive moduli that are advantageous for tendon–bone healing. Some of these hydrogels can even hold up to 0.8 MPa of tensile strength. In osteoarthritis models, functionalized systems such as microspheres responsive to matrix metalloproteinase-13 have demonstrated disease modulation and targeted drug delivery, while intelligent in situ hydrogels have exhibited a 43% increase in neovascularization and a 50% enhancement in myotube production. Hydrogel-based therapies have been shown to restore contractile force by as much as 80%, increase myofiber density by 65%, and boost ALP activity in bone defects by 2.1 times in volumetric muscle loss (VML) models. Adding TGF-β3 or MSCs to hydrogel systems improved GAG content by about 60%, collagen II expression by 35–50%, and O’Driscoll scores by 35–50% in cartilage regeneration. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

23 pages, 5505 KiB  
Article
Quercetin Reduces Antinociceptive but Not the Anti-Inflammatory Effects of Indomethacin, Ketorolac, and Celecoxib in Rats with Gout-like Pain
by José Aviles-Herrera, Guadalupe Esther Ángeles-López, Myrna Déciga-Campos, María Eva González-Trujano, Gabriel Fernando Moreno-Pérez, Ricardo Reyes-Chilpa, Irma Romero, Amalia Alejo-Martínez and Rosa Ventura-Martínez
Molecules 2025, 30(15), 3196; https://doi.org/10.3390/molecules30153196 - 30 Jul 2025
Viewed by 274
Abstract
The objective of this study was to determine the pharmacological interaction of some common NSAIDs in the presence of quercetin (QUER). Indomethacin (IND), ketorolac (KET), or celecoxib (CEL) were assessed alone and in combination with QUER using experimental gout-arthritic pain and the carrageenan-induced [...] Read more.
The objective of this study was to determine the pharmacological interaction of some common NSAIDs in the presence of quercetin (QUER). Indomethacin (IND), ketorolac (KET), or celecoxib (CEL) were assessed alone and in combination with QUER using experimental gout-arthritic pain and the carrageenan-induced edema test in rats to evaluate their antinociceptive and anti-inflammatory effects, respectively. The antinociceptive effect of each NSAID was also analyzed after the repeated administration of QUER for 10 days. Molecular docking analysis on COX-1/COX-2 with each drug was explored to analyze the pharmacological interaction. QUER produced minimal antinociceptive or anti-inflammatory effects on experimental gout-arthritic pain or on the carrageenan-induced edema in rats. Additionally, QUER reduced the antinociceptive effect of NSAIDs, mainly those COX-1 inhibitors (IND and KET), when they were combined. However, QUER did not modify the anti-inflammatory effect of these COX-1 inhibitors and slightly improved the anti-inflammatory effect of the COX-2 inhibitor (CEL). According to the docking analysis, COX-1 and COX-2 are likely implicated in these pharmacological interactions. In conclusion, QUER, a known bioactive natural product, may alter the antinociceptive efficacy of NSAIDs commonly used to relieve gout-like pain and suggests not using them together to prevent a negative therapeutic interaction in this effect. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

19 pages, 2509 KiB  
Article
Semi-Synthesis, Anti-Leukemia Activity, and Docking Study of Derivatives from 3α,24-Dihydroxylup-20(29)-en-28-Oic Acid
by Mario J. Noh-Burgos, Sergio García-Sánchez, Fernando J. Tun-Rosado, Antonieta Chávez-González, Sergio R. Peraza-Sánchez and Rosa E. Moo-Puc
Molecules 2025, 30(15), 3193; https://doi.org/10.3390/molecules30153193 - 30 Jul 2025
Viewed by 407
Abstract
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among [...] Read more.
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among the five derivatives obtained, 3α,24-dihydroxy-30-oxolup-20(29)-en-28-oic acid (T1c) exhibited the highest activity, with an IC50 value of 12.90 ± 0.1 µM against THP-1 cells. T1c significantly reduced cell viability in both acute lymphoblastic leukemia (CCRF-CEM, REH, JURKAT, and MOLT-4) and acute myeloid leukemia (THP-1) cell lines, inducing apoptosis after 48 h of treatment, while showing minimal cytotoxicity toward normal mononuclear cells (MNCs). In silico molecular docking studies were conducted against three key protein targets: BCL-2 (B-cell lymphoma 2), EGFR (epidermal growth factor receptor, tyrosine kinase domain), and FLT3 (FMS-like tyrosine kinase 3). The lowest binding energies (kcal/mol) observed were as follows: T1–BCL-2: −10.12, EGFR: −12.75, FLT3: −14.05; T1c–BCL-2: −10.23, EGFR: −14.50, FLT3: −14.07; T2–BCL-2: −11.59, EGFR: −15.00, FLT3: −14.03. These findings highlight T1c as a promising candidate in the search for anti-leukemic drugs which deserves further study. Full article
(This article belongs to the Special Issue Synthesis and Derivatization of Heterocyclic Compounds)
Show Figures

Graphical abstract

24 pages, 5906 KiB  
Article
In Silico Mining of the Streptome Database for Hunting Putative Candidates to Allosterically Inhibit the Dengue Virus (Serotype 2) RdRp
by Alaa H. M. Abdelrahman, Gamal A. H. Mekhemer, Peter A. Sidhom, Tarad Abalkhail, Shahzeb Khan and Mahmoud A. A. Ibrahim
Pharmaceuticals 2025, 18(8), 1135; https://doi.org/10.3390/ph18081135 - 30 Jul 2025
Viewed by 399
Abstract
Background/Objectives: In the last few decades, the dengue virus, a prevalent flavivirus, has demonstrated various epidemiological, economic, and health impacts around the world. Dengue virus serotype 2 (DENV2) plays a vital role in dengue-associated mortality. The RNA-dependent RNA polymerase (RdRp) of DENV2 is [...] Read more.
Background/Objectives: In the last few decades, the dengue virus, a prevalent flavivirus, has demonstrated various epidemiological, economic, and health impacts around the world. Dengue virus serotype 2 (DENV2) plays a vital role in dengue-associated mortality. The RNA-dependent RNA polymerase (RdRp) of DENV2 is a charming druggable target owing to its crucial function in viral reproduction. In recent years, streptomycetes natural products (NPs) have attracted considerable attention as a potential source of antiviral drugs. Methods: Seeking prospective inhibitors that inhibit the DENV2 RdRp allosteric site, in silico mining of the Streptome database was executed. AutoDock4.2.6 software performance in predicting docking poses of the inspected inhibitors was initially conducted according to existing experimental data. Upon the assessed docking parameters, the Streptome database was virtually screened against DENV2 RdRp allosteric site. The streptomycetes NPs with docking scores less than the positive control (68T; calc. −35.6 kJ.mol−1) were advanced for molecular dynamics simulations (MDS), and their binding affinities were computed by employing the MM/GBSA approach. Results: SDB9818 and SDB4806 unveiled superior inhibitor activities against DENV2 RdRp upon MM/GBSA//300 ns MDS than 68T with ΔGbinding values of −246.4, −242.3, and −150.6 kJ.mol−1, respectively. A great consistency was found in both the energetic and structural analyses of the identified inhibitors within the DENV2 RdRp allosteric site. Furthermore, the physicochemical characteristics of the identified inhibitors demonstrated good oral bioavailability. Eventually, quantum mechanical computations were carried out to evaluate the chemical reactivity of the identified inhibitors. Conclusions: As determined by in silico computations, the identified streptomycetes NPs may act as DENV2 RdRp allosteric inhibitors and mandate further experimental assays. Full article
Show Figures

Graphical abstract

7 pages, 1296 KiB  
Editorial
Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies
by Rajeev K. Singla and Anupam Bishayee
Cancers 2025, 17(15), 2507; https://doi.org/10.3390/cancers17152507 - 30 Jul 2025
Viewed by 432
Abstract
Cancer represents a major public health, societal, and economic challenges in the 21st century [...] Full article
Show Figures

Figure 1

54 pages, 3105 KiB  
Review
Insight into the in Silico Structural, Physicochemical, Pharmacokinetic and Toxicological Properties of Antibacterially Active Viniferins and Viniferin-Based Compounds as Derivatives of Resveratrol Containing a (2,3-Dihydro)benzo[b]furan Privileged Scaffold
by Dominika Nádaská and Ivan Malík
Appl. Sci. 2025, 15(15), 8350; https://doi.org/10.3390/app15158350 - 27 Jul 2025
Viewed by 670
Abstract
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel [...] Read more.
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel natural products, including plant secondary metabolites. These molecules serve as inspiration and a suitable structural platform in the design and development of novel semi-synthetic and synthetic derivatives. All considered compounds have to be adequately evaluated in silico, in vitro, and in vivo using relevant approaches. The current review paper briefly focuses on the chemical and metabolic properties of resveratrol (1), as well as its oligomeric structures, viniferins, and viniferin-based molecules. The core scaffolds of these compounds contain so-called privileged structures, which are also present in many clinically approved drugs, indicating that those natural, properly substituted semi-synthetic, and synthetic molecules can provide a notably broad spectrum of beneficial pharmacological activities, including very impressive antimicrobial efficiency. Except for spectral verification of their structures, these compounds suffer from the determination or prediction of other structural and physicochemical characteristics. Therefore, the structure–activity relationships for specific dihydrodimeric and dimeric viniferins, their bioisosteres, and derivatives with notable efficacy in vitro, especially against chosen Gram-positive bacterial strains, are summarized. In addition, a set of descriptors related to their structural, physicochemical, pharmacokinetic, and toxicological properties is generated using various computational tools. The obtained values are compared to those of clinically approved drugs. The particular relationships between these in silico parameters are also explored. Full article
Show Figures

Figure 1

Back to TopTop