Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = natural porphyrins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1244 KiB  
Article
HPLC-ESI-HRMS/MS-Based Metabolite Profiling and Bioactivity Assessment of Catharanthus roseus
by Soniya Joshi, Chen Huo, Rabin Budhathoki, Anita Gurung, Salyan Bhattarai, Khaga Raj Sharma, Ki Hyun Kim and Niranjan Parajuli
Plants 2025, 14(15), 2395; https://doi.org/10.3390/plants14152395 - 2 Aug 2025
Viewed by 976
Abstract
A comprehensive metabolic profiling of Catharanthus roseus (L.) G. Don was performed using tandem mass spectrometry, along with an evaluation of the biological activities of its various solvent extracts. Among these, the methanolic leaf extract exhibited mild radical scavenging activity, low to moderate [...] Read more.
A comprehensive metabolic profiling of Catharanthus roseus (L.) G. Don was performed using tandem mass spectrometry, along with an evaluation of the biological activities of its various solvent extracts. Among these, the methanolic leaf extract exhibited mild radical scavenging activity, low to moderate antimicrobial activity, and limited cytotoxicity in both the brine shrimp lethality assay and MTT assay against HeLa and A549 cell lines. High-performance liquid chromatography–electrospray ionization–high-resolution tandem mass spectrometry (HPLC-ESI-HRMS/MS) analysis led to the annotation of 34 metabolites, primarily alkaloids. These included 23 indole alkaloids, two fatty acids, two pentacyclic triterpenoids, one amino acid, four porphyrin derivatives, one glyceride, and one chlorin derivative. Notably, two metabolites—2,3-dihydroxypropyl 9,12,15-octadecatrienoate and (10S)-hydroxypheophorbide A—were identified for the first time in C. roseus. Furthermore, Global Natural Products Social Molecular Networking (GNPS) analysis revealed 18 additional metabolites, including epoxypheophorbide A, 11,12-dehydroursolic acid lactone, and 20-isocatharanthine. These findings highlight the diverse secondary metabolite profile of C. roseus and support its potential as a source of bioactive compounds for therapeutic development. Full article
Show Figures

Graphical abstract

14 pages, 2670 KiB  
Communication
The Potential of MN4-GPs (M = Mn, Fe, Co, Ni, Cu, Mo) as Adsorbents for the Efficient Separation of CH4 from CO2 and H2S
by Shiqian Wei, Xinyu Tian, Zhen Rao, Chunxia Wang, Rui Tang, Ying He, Yu Luo, Qiang Fan, Weifeng Fan and Yu Hu
Materials 2025, 18(12), 2907; https://doi.org/10.3390/ma18122907 - 19 Jun 2025
Viewed by 347
Abstract
Carbon dioxide (CO2) and hydrogen sulfide (H2S) as harmful gases are always associated with methane (CH4) in natural gas, biogas, and landfill gas. Given that chemisorption and physisorption are the key gas separation technologies in industry, selecting [...] Read more.
Carbon dioxide (CO2) and hydrogen sulfide (H2S) as harmful gases are always associated with methane (CH4) in natural gas, biogas, and landfill gas. Given that chemisorption and physisorption are the key gas separation technologies in industry, selecting appropriate adsorbents is crucial to eliminate these harmful gases. The adsorption of CH4, CO2, and H2S has been studied based on the density functional theory (DFT) in this work to evaluate the feasibility of transition metal (M = Mn, Fe, Co, Ni, Cu, Mo) porphyrin-like moieties embedded in graphene sheets (MN4-GPs) as adsorbents. It was found that the interactions between gas molecules and MN4-GPs (M = Mn, Fe, Co, Ni, Cu, Mo) are different. The weaker interactions between CH4 and MN4-GPs (M = Co, Ni, Cu, Mo) than those between CO2 and MN4-GPs or between H2S and MN4-GPs are beneficial to the separation of CH4 from CO2 and H2S. The maximum difference in the interactions between gas molecules and MoN4-GPs means that MoN4-GPs have the greatest potential to become adsorbents. The different interfacial interactions are related to the amount of charge transfer, which could promote the formation of bonds between gas molecules and MN4-GPs to effectively enhance the interfacial interactions. Full article
Show Figures

Figure 1

37 pages, 5930 KiB  
Article
The Effectiveness of a Topical Rosehip Oil Treatment on Facial Skin Characteristics: A Pilot Study on Wrinkles, UV Spots Reduction, Erythema Mitigation, and Age-Related Signs
by Diana Patricia Oargă (Porumb), Mihaiela Cornea-Cipcigan, Silvia Amalia Nemeș and Mirela Irina Cordea
Cosmetics 2025, 12(3), 125; https://doi.org/10.3390/cosmetics12030125 - 16 Jun 2025
Viewed by 3176
Abstract
Skin aging is a complex process influenced by several factors, including UV exposure, environmental stressors, and lifestyle choices. The demand for effective, natural skincare products has driven research into plant-based oils rich in bioactive compounds. Rosehip oil has garnered attention for its high [...] Read more.
Skin aging is a complex process influenced by several factors, including UV exposure, environmental stressors, and lifestyle choices. The demand for effective, natural skincare products has driven research into plant-based oils rich in bioactive compounds. Rosehip oil has garnered attention for its high content of carotenoids, phenolics, and antioxidants, which are known for their anti-aging, photoprotective, and skin-rejuvenating properties. Despite the growing interest in rosehip oil, limited studies have investigated its efficacy on human skin using advanced imaging technologies. This study aims to fill this gap by evaluating the efficacy of cold-pressed Rosa canina seed oil on facial skin characteristics, specifically wrinkles, ultraviolet (UV) spot reduction, and erythema mitigation, using imaging technologies (the VISIA analysis system). Seed oil pressed from R. canina collected from the Băișoara area of Cluj County has been selected for this study due to its high carotenoid, phenolic, and antioxidant contents. The oil has also been analyzed for the content of individual carotenoids (i.e., lutein, lycopene, β Carotene, and zeaxanthin) using HPLC-DAD (High-Performance Liquid Chromatography—Diode Array Detector), along with lutein and zeaxanthin esters and diesters. After the preliminary screening of multiple Rosa species for carotenoid, phenolic, and antioxidant contents, the R. canina sample with the highest therapeutic potential was selected. A cohort of 27 volunteers (aged 30–65) underwent a five-week treatment protocol, wherein three drops of the selected rosehip oil were topically applied to the face daily. The VISIA imaging was conducted before and after the treatment to evaluate changes in skin parameters, including the wrinkle depth, UV-induced spots, porphyrins, and texture. Regarding the bioactivities, rosehip oil showed a significant total carotenoids content (28.398 μg/mL), with the highest levels in the case of the β-carotene (4.49 μg/mL), lutein (4.33 μg/mL), and zexanthin (10.88 μg/mL) contents. Results indicated a significant reduction in mean wrinkle scores across several age groups, with notable improvements in individuals with deeper baseline wrinkles. UV spots also showed visible declines, suggesting ideal photoprotective and anti-pigmentary effects attributable to the oil’s high vitamin A and carotenoid content. Porphyrin levels, often correlated with bacterial activity, decreased in most subjects, hinting at an additional antimicrobial or microbiome-modulatory property. However, skin responses varied, possibly due to individual differences in skin sensitivity, environmental factors, or compliance with sun protection. Overall, the topical application of R. canina oil appeared to improve the facial skin quality, reduce the appearance of age-related markers, and support skin health. These findings reinforce the potential use of rosehip oil in anti-aging skincare formulations. Further long-term, large-scale studies are warranted to refine dosing regimens, investigate mechanisms of action, and explore synergistic effects with other bioactive compounds. Full article
(This article belongs to the Special Issue Skin Anti-Aging Strategies)
Show Figures

Figure 1

22 pages, 3601 KiB  
Article
Fast Removal of Naphthol Blue Black B Dye from Water Using Polyethyleneimine Functionalized Zinc, Iron, and Manganese Porphyrinic Complexes: Structural Characterization, Kinetic, and Isotherms Studies
by Sahar Y. Rajeh, Aljazi Abdullah Alrashidi, Raoudha Soury and Mahjoub Jabli
Polymers 2025, 17(11), 1494; https://doi.org/10.3390/polym17111494 - 28 May 2025
Viewed by 369
Abstract
In the present work, meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato)zinc(II): ([Zn(TMP)] (1), meso-tetrakis-(tetraphenyl)porphyrin iron(III))chloride): [Fe(TPP)Cl] (2), and meso-tetrakis(phenyl)porphyrin manganese(III) chloride): [Mn(TPP)Cl] (3) were synthesized. Then, the three prepared porphyrinic complexes (13) were functionalized with branched polyethyleneimine (PEI). The prepared complexes were thoroughly analyzed [...] Read more.
In the present work, meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato)zinc(II): ([Zn(TMP)] (1), meso-tetrakis-(tetraphenyl)porphyrin iron(III))chloride): [Fe(TPP)Cl] (2), and meso-tetrakis(phenyl)porphyrin manganese(III) chloride): [Mn(TPP)Cl] (3) were synthesized. Then, the three prepared porphyrinic complexes (13) were functionalized with branched polyethyleneimine (PEI). The prepared complexes were thoroughly analyzed using several analytical techniques, including 1H NMR, FT-IR, UV-vis, XRD, XRF, TGA-DTA, SEM, and EDX. The presence of sharp main peaks at 2θ between 10° and 80°, in XRD analysis, for all studied compounds suggested the crystalline nature of the porphyrinic complexes. The morphological properties of the porphyrininc complexes were significantly affected by the chemical modification with polyethyleneimine. EDX result confirmed the complexation of zinc, iron, and manganese metals with the porphyrinic core. The increase in carbon and nitrogen contents after the addition of polyethyleneimine to the complexes (13) was noticeable. After thermal decomposition, the total mass loss was equal to 92.97%, 66.77%, and 26.78% for complexes (1), (2), and (3), respectively. However, for the complex (1)-PEI, complex (2)-PEI, and complex (3)-PEI, the total mass losses were 83.12%, 81.88%, and 35.78%, respectively. The synthetic compounds were additionally utilized for the adsorption of Naphthol blue black B from water. At optimum adsorption conditions (T = 20 °C, time = 60 min, pH = 5), the highest adsorption capacities were 154 mg/g, 139 mg/g, and 119 mg/g for complex (3)-PEI, complex (2)-PEI, and complex (1)-PEI, respectively. The adsorption mechanism followed the pseudo second order, the Freundlich, and the Temkin models. The results indicated that the adsorption process is reliant on chemical interactions. It was also governed by intraparticular diffusion and other kinetic phenomena. Full article
Show Figures

Figure 1

27 pages, 4612 KiB  
Review
Recent Progress in Heteroatom-Containing Metalloporphyrin-Based Catalysts for CO2 Reduction
by Zhuo Li, Qianqian Wei, Zhixin Ren and Jing Xie
Molecules 2025, 30(11), 2287; https://doi.org/10.3390/molecules30112287 - 23 May 2025
Viewed by 715
Abstract
Metalloporphyrins, owing to their structural resemblance to natural enzyme active sites and highly tunable coordination environments, have emerged as promising catalysts for converting CO2 into value-added chemicals and fuels. Considerable efforts have been made to modify metalloporphyrins to improve their catalytic capability [...] Read more.
Metalloporphyrins, owing to their structural resemblance to natural enzyme active sites and highly tunable coordination environments, have emerged as promising catalysts for converting CO2 into value-added chemicals and fuels. Considerable efforts have been made to modify metalloporphyrins to improve their catalytic capability for CO2 reduction. One approach involves modifying the metal coordination environment (known as the first coordination sphere) to generate heteroatom-containing metalloporphyrins, particularly N-confused and O/S-substituted variants. While heteroatom-containing metalloporphyrins were first synthesized in 1989, their use in CO2 reduction catalysis was not reported until after 2020. Herein, we review the recent progress in the design, catalytic performance, and mechanistic studies of N-confused and O/S-substituted metalloporphyrins towards CO2 reduction. This review encompasses both experimental and theoretical computational work, as well as the use of porphyrins as catalysts in photocatalysis and electrocatalysis. Finally, based on the current research advances, we present critical recommendations and future research directions, with a focus on theoretical studies, in the hope of facilitating the rational design of novel catalysts for sustainable energy conversion and environmental remediation. Full article
(This article belongs to the Special Issue Innovative Chemical Pathways for CO2 Conversion)
Show Figures

Graphical abstract

16 pages, 2704 KiB  
Article
Unveiling the Reaction Pathway of Oxidative Aldehyde Deformylation by a MOF-Based Cytochrome P450 Mimic
by Zehua Luo, Wentian Zhou, Junying Chen and Yingwei Li
Catalysts 2025, 15(5), 436; https://doi.org/10.3390/catal15050436 - 29 Apr 2025
Viewed by 771
Abstract
Understanding the reaction pathway of aldehyde deformylation catalyzed by natural enzymes has shown significance in developing synthetic methodologies and new catalysts in organic, biochemical, and medicinal chemistry. However, unlike other well-rationalized chemical processes catalyzed by cytochrome P450 (Cyt P450) superfamilies, the detailed mechanism [...] Read more.
Understanding the reaction pathway of aldehyde deformylation catalyzed by natural enzymes has shown significance in developing synthetic methodologies and new catalysts in organic, biochemical, and medicinal chemistry. However, unlike other well-rationalized chemical processes catalyzed by cytochrome P450 (Cyt P450) superfamilies, the detailed mechanism of the P450-catalyzed aldehyde deformylation is still controversial. Challenges lie in establishing synthetic models to decipher the reaction pathways, which normally are homogeneous systems for precisely mimicking the structure of the active sites in P450s. Herein, we report a heterogeneous Cyt P450 aromatase mimic based on a porphyrinic metal–organic framework (MOF) PCN-224. Through post-metalation of iron(II) triflate with the porphyrin unit, a five-coordinated FeII(Porp) compound could be afforded and isolated inside the resulting PCN-224(Fe) to mimic the heme active site in P450. This MOF-based P450 mimic could efficiently catalyze the oxidative deformylation of aldehydes to the corresponding ketones under room temperature using O2 as the sole oxidant and triethylamine as the electron source, analogous to the NADPH reductase. The catalyst could be completely recovered after the catalytic reaction without undergoing structural decomposition or compromising its reactivity, representing it as one of the most valid mimics of P450 aromatase from both the structural and functional aspects. A mechanistic study reveals a strong correlation between the catalytic activity and the Cα-H bond dissociation energy of the aldehyde substrates, which, in conjunction with various trapping experiments, confirms an unconventional mechanism initiated by hydrogen atom abstraction. Full article
(This article belongs to the Special Issue Recent Advances in Metal-Organic Framework Catalysts)
Show Figures

Figure 1

13 pages, 6356 KiB  
Article
Detection of Ascorbic Acid in Tears with an Extended-Gate Field-Effect Transistor-Based Electronic Tongue Made of Electropolymerized Porphyrinoids on Laser-Induced Graphene Electrodes
by Kishore Pushparaj, Lorena Di Zazzo, Valerio Allegra, Rosamaria Capuano, Alexandro Catini, Gabriele Magna, Roberto Paolesse and Corrado Di Natale
Chemosensors 2025, 13(3), 108; https://doi.org/10.3390/chemosensors13030108 - 15 Mar 2025
Viewed by 1105
Abstract
Porphyrinoids are suitable sensitive materials for potentiometric electronic tongues. In this paper, we take advantage of these properties to develop an electronic tongue using an extended-gate field-effect transistor as a signal transducer. The sensitive films were made of different porphyrins and corroles electropolymerized [...] Read more.
Porphyrinoids are suitable sensitive materials for potentiometric electronic tongues. In this paper, we take advantage of these properties to develop an electronic tongue using an extended-gate field-effect transistor as a signal transducer. The sensitive films were made of different porphyrins and corroles electropolymerized in situ onto laser-induced graphene electrodes. The electronic tongue was duly characterized with respect to ascorbic acid, a common natural antioxidant. The sensors were shown to be sensitive and selective with respect to common interferents, such as dopamine and uric acid. Finally, the sensors were tested to detect ascorbic acid in artificial tears. Full article
Show Figures

Figure 1

20 pages, 5204 KiB  
Article
Autofluorescence of Red Blood Cells Infected with P. falciparum as a Preliminary Analysis of Spectral Sweeps to Predict Infection
by Miguel A. Garrido-Tamayo, Alejandro Rincón Santamaría, Fredy E. Hoyos, Tamara González Vega and David Laroze
Biosensors 2025, 15(2), 123; https://doi.org/10.3390/bios15020123 - 19 Feb 2025
Viewed by 850
Abstract
Malaria, an infectious disease caused by parasites of the genus Plasmodium—including the most lethal species, Plasmodium falciparum—alters the physicochemical properties of host red blood cells, including their intrinsic autofluorescence after infecting them. This exploratory study aims to investigate the possibility of [...] Read more.
Malaria, an infectious disease caused by parasites of the genus Plasmodium—including the most lethal species, Plasmodium falciparum—alters the physicochemical properties of host red blood cells, including their intrinsic autofluorescence after infecting them. This exploratory study aims to investigate the possibility of using autofluorescence as a method for detecting infection in red blood cells. The autofluorescence spectra of uninfected and in vitro infected red blood cells with Plasmodium falciparum were monitored and compared across an excitation wavelength range of 255 to 630 nm. Principal Component Analysis revealed that only two wavelengths (315 and 320 nm), previously undocumented, were able to accurately differentiate infected from uninfected red blood cells, showing an increase in autofluorescence in the ultraviolet and blue regions. This phenomenon is hypothetically associated with the presence of natural fluorophores such as tryptophan, FAD, NADH, porphyrins, and lipopigments. To classify the samples, Linear Discriminant Analysis (LDA) was employed, and Wilks’ Lambda test confirmed that the discriminant function was significant, enabling correct classification of samples in more than 91% of cases. Overall, our results support the potential use of autofluorescence as an effective approach for detecting malaria parasite infection in red blood cells, with the possibility of implementation in portable devices for rapid field diagnostics. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

19 pages, 2227 KiB  
Review
Anticancer Activity of Ether Derivatives of Chrysin
by Arkadiusz Sokal, Patryk Mruczek, Mateusz Niedoba, Agnieszka Dewalska, Klaudia Stocerz and Monika Kadela-Tomanek
Molecules 2025, 30(4), 960; https://doi.org/10.3390/molecules30040960 - 19 Feb 2025
Viewed by 1233
Abstract
Chrysin, a naturally occurring flavonoid, exhibits a broad spectrum of biological activities, including showing anticancer properties. However, its clinical application is limited by poor bioavailability and low solubility. The introduction of an amine, amide, ester, or alkoxy group to a flavone skeleton influences [...] Read more.
Chrysin, a naturally occurring flavonoid, exhibits a broad spectrum of biological activities, including showing anticancer properties. However, its clinical application is limited by poor bioavailability and low solubility. The introduction of an amine, amide, ester, or alkoxy group to a flavone skeleton influences the biological activity. This review also discusses hybrid compounds, such as the chrysin–porphyrin hybrid, which are characterized by higher biological activity and better bioavailability properties than single molecules. This review concentrates on the anticancer activity of chrysin and its derivatives against the most popular cancers, such as breast, lung, prostate, and gastrointestinal tumors. Full article
Show Figures

Figure 1

23 pages, 3606 KiB  
Article
Indium Imidazo[4,5,-b]porphyrins as Photocatalysts for Oxidation of Sulfides
by Inna A. Abdulaeva, Mikhail A. Filatov, Azhar Kechiche and Alla Bessmertnykh-Lemeune
Molecules 2025, 30(4), 864; https://doi.org/10.3390/molecules30040864 - 13 Feb 2025
Cited by 2 | Viewed by 902
Abstract
Over the past two decades, the application of photocatalytic reactions in organic synthesis has increased remarkably. Porphyrins, renowned for their exceptional photophysical properties, photostability, and prevalence in natural catalytic processes, are attracting significant attention as promising photocatalysts for reactions proceeding through energy transfer [...] Read more.
Over the past two decades, the application of photocatalytic reactions in organic synthesis has increased remarkably. Porphyrins, renowned for their exceptional photophysical properties, photostability, and prevalence in natural catalytic processes, are attracting significant attention as promising photocatalysts for reactions proceeding through energy transfer and one-electron transfer. In this work, we synthesized the indium(III) complex of 2-[4-(diethoxyphosphoryl)phenyl]-1H-imidazo[4,5-b]-5,10,15,20-tetramesitylporphyrin (InTMPIP) and explored its application as a photocatalyst for the oxidation of sulfides by dioxygen or air. Complex InTMPIP was found to generate singlet oxygen with quantum yield of 0.92 (toluene) and enables efficient photooxidation of sulfides to sulfoxides by dioxygen in “green” acetonitrile/water (4:1 v/v) or methanol/chloroform (2:1 v/v) solvent mixtures with almost quantitative yield. Furthermore, InTMPIP was grafted onto hydrated mesoporous titania and materials InTMPIP/TiO2-1 and InTMPIP/TiO2-2 with different In/Ti ratios were obtained and investigated. The composition and structure of the materials were studied using a combination of elemental analysis, various spectroscopic methods, gas adsorption measurements, and SEM imaging. Finally, the photocatalytic efficiency of InTMPIP/TiO2-2 was explored in aerobic photooxidation of sulfides. The heterogenized complex enables selective synthesis of sulfoxides under “green” conditions; however, it is prone to leaching into the solution when irradiated with both blue and red LEDs. Full article
(This article belongs to the Special Issue Catalysts: New Materials for Green Chemistry)
Show Figures

Graphical abstract

34 pages, 9705 KiB  
Review
Iron Porphyrin-Based Composites for Electrocatalytic Oxygen Reduction Reactions
by Stennard Leetroy George, Linkai Zhao, Ziyi Wang, Zhaoli Xue and Long Zhao
Molecules 2024, 29(23), 5655; https://doi.org/10.3390/molecules29235655 - 29 Nov 2024
Cited by 4 | Viewed by 1996
Abstract
The oxygen reduction reaction (ORR) is one of the most critical reactions in energy conversion systems, and it facilitates the efficient conversion of chemical energy into electrical energy, which is necessary for modern technology. Developing efficient and cost-effective catalysts for ORRs is crucial [...] Read more.
The oxygen reduction reaction (ORR) is one of the most critical reactions in energy conversion systems, and it facilitates the efficient conversion of chemical energy into electrical energy, which is necessary for modern technology. Developing efficient and cost-effective catalysts for ORRs is crucial for advancing and effectively applying renewable energy technologies such as fuel cells, metal–air batteries, and electrochemical sensors. In recent years, iron porphyrin-based composites have emerged as ideal catalysts for facilitating effective ORRs due to their unique structural characteristics, abundance, advances in synthesis, and excellent catalytic properties, which mimic natural enzymatic systems. However, many articles have focused on reviewing porphyrin-based frameworks or metalloporphyrins in general, necessitating research specifically addressing iron porphyrin. This review discusses iron porphyrin as an effective catalyst in ORRs. It provides a comprehensive knowledge of the application of iron porphyrin-based composites for electrocatalytic ORRs, focusing on their properties, synthesis, structural integration with conductive supports, catalytic mechanism, and efficacy. This review also discusses the challenges of applying iron porphyrin-based composites and provides recommendations to address these challenges. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Graphical abstract

23 pages, 975 KiB  
Review
MnSOD Mimetics in Therapy: Exploring Their Role in Combating Oxidative Stress-Related Diseases
by Jovan Grujicic and Antiño R. Allen
Antioxidants 2024, 13(12), 1444; https://doi.org/10.3390/antiox13121444 - 23 Nov 2024
Cited by 4 | Viewed by 2267
Abstract
Reactive oxygen species (ROS) are double-edged swords in biological systems—they are essential for normal cellular functions but can cause damage when accumulated due to oxidative stress. Manganese superoxide dismutase (MnSOD), located in the mitochondrial matrix, is a key enzyme that neutralizes superoxide radicals [...] Read more.
Reactive oxygen species (ROS) are double-edged swords in biological systems—they are essential for normal cellular functions but can cause damage when accumulated due to oxidative stress. Manganese superoxide dismutase (MnSOD), located in the mitochondrial matrix, is a key enzyme that neutralizes superoxide radicals (O2•−), maintaining cellular redox balance and integrity. This review examines the development and therapeutic potential of MnSOD mimetics—synthetic compounds designed to replicate MnSOD’s antioxidant activity. We focus on five main types: Mn porphyrins, Mn salens, MitoQ10, nitroxides, and mangafodipir. These mimetics have shown promise in treating a range of oxidative stress-related conditions, including cardiovascular diseases, neurodegenerative disorders, cancer, and metabolic syndromes. By emulating natural antioxidant defenses, MnSOD mimetics offer innovative strategies to combat diseases linked to mitochondrial dysfunction and ROS accumulation. Future research should aim to optimize these compounds for better stability, bioavailability, and safety, paving the way for their translation into effective clinical therapies. Full article
(This article belongs to the Special Issue Oxidative-Stress in Human Diseases—3rd Edition)
Show Figures

Figure 1

28 pages, 3458 KiB  
Review
Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1
by Tasleem Arif, Anna Shteinfer-Kuzmine and Varda Shoshan-Barmatz
Biomolecules 2024, 14(10), 1304; https://doi.org/10.3390/biom14101304 - 15 Oct 2024
Cited by 2 | Viewed by 3690
Abstract
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as [...] Read more.
Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the “Warburg effect”, supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial–mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1’s critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1’s diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer. Full article
Show Figures

Figure 1

10 pages, 1029 KiB  
Article
Theoretical Investigation of Electric Polarizability in Porphyrin–Zinc and Porphyrin–Zinc–Thiazole Complexes Using Small Property-Oriented Basis Sets
by Arkadiusz Kuziemski, Krzysztof Z. Łączkowski and Angelika Baranowska-Łączkowska
Int. J. Mol. Sci. 2024, 25(20), 11044; https://doi.org/10.3390/ijms252011044 - 14 Oct 2024
Cited by 1 | Viewed by 955
Abstract
Porphyrin complexes are of great importance due to their possible applications as sensors, solar cells and photocatalysts, as well as their ability to bind additional ligands. A valuable source of knowledge on their nature is their electric properties, which can be evaluated employing [...] Read more.
Porphyrin complexes are of great importance due to their possible applications as sensors, solar cells and photocatalysts, as well as their ability to bind additional ligands. A valuable source of knowledge on their nature is their electric properties, which can be evaluated employing density functional theory (DFT) methods, supporting the experimental research. The present work aims at the application of small property-oriented basis sets in calculation of electric properties in transition metals, their oxides and test coordination complexes. Firstly, the existing polarized ZPol basis set for the first-row transition metals is modified in order to improve atomic polarizability results. For this purpose, optimization of the f-type polarization function exponent is carried out with respect to the value of average atomic polarizability of investigated metals. Next, both the original and the modified basis sets are employed in finite field CCSD(T) calculation of transition metal oxides’ dipole moments, as well as DFT calculation of polarizabilities in porphyrin–zinc and porphyrin–zinc–thiazole complexes. The obtained results show that the ZPol and ZPol-A basis sets can be successfully employed in the calculation of linear electric properties in large systems. The optimization procedure used in the present work can be employed for other source basis sets and elements, leading to new efficient polarized basis sets. Full article
(This article belongs to the Special Issue Molecular Modeling: Latest Advances and Applications)
Show Figures

Figure 1

16 pages, 5222 KiB  
Review
Application and Challenge of Metalloporphyrin Sensitizers in Noninvasive Dynamic Tumor Therapy
by Jiacheng Ouyang, Dan Li, Lizhen Zhu, Xiaoyuan Cai, Lanlan Liu, Hong Pan and Aiqing Ma
Molecules 2024, 29(20), 4828; https://doi.org/10.3390/molecules29204828 - 11 Oct 2024
Cited by 2 | Viewed by 1762
Abstract
Dynamic tumor therapies (mainly including photodynamic therapy (PDT) and sonodynamic therapy (SDT)) offer new approaches to cancer treatment. They are often characterized by their noninvasive nature, high selectivity, and low toxicity. Sensitizers are crucial for dynamic therapy. Developing efficient sensitizers with good biocompatibility [...] Read more.
Dynamic tumor therapies (mainly including photodynamic therapy (PDT) and sonodynamic therapy (SDT)) offer new approaches to cancer treatment. They are often characterized by their noninvasive nature, high selectivity, and low toxicity. Sensitizers are crucial for dynamic therapy. Developing efficient sensitizers with good biocompatibility and controllability is an important aim in dynamic therapy. Porphyrins and metalloporphyrins attract great attention due to their excellent photophysical properties and low cytotoxicity under non-light. Compared to porphyrins, metalloporphyrins show greater potential for dynamic therapy due to their enhanced photochemical and photophysical properties after metal ions coordinate with porphyrin rings. This paper reviews some metalloporphyrin-based sensitizers used in photo/sonodynamic therapy and combined therapy. In addition, the probable challenges and bottlenecks in clinical translation are also discussed. Full article
(This article belongs to the Special Issue Study on Synthesis and Photochemistry of Dyes)
Show Figures

Figure 1

Back to TopTop