Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,928)

Search Parameters:
Keywords = natural plants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 523 KiB  
Article
Mutation Rates and Fitness Genes in Staphylococcus aureus Treated with the Medicinal Plant Synadenium glaucescens
by Zaituni Msengwa, Martin Saxtorph Bojer, Frank Rwegoshora, James Mwesongo, Magesa Mafuru, Faith Philemon Mabiki, Beda John Mwang’onde, Madundo Mkumbukwa Mtambo, Lughano Jeremy Kusiluka, Henrik Christensen, Robinson Hammerthon Mdegela and John Elmerdahl Olsen
Appl. Sci. 2025, 15(15), 8753; https://doi.org/10.3390/app15158753 (registering DOI) - 7 Aug 2025
Abstract
Extracts, fractions and the pure compound epifriedelanol of the medicinal plant Synadenium glaucescens have antibacterial properties. Herbal products are generally considered less prone to resistance development than conventional antimicrobials, as they contain multiple compounds, which makes bacteria less likely to develop resistance. However, [...] Read more.
Extracts, fractions and the pure compound epifriedelanol of the medicinal plant Synadenium glaucescens have antibacterial properties. Herbal products are generally considered less prone to resistance development than conventional antimicrobials, as they contain multiple compounds, which makes bacteria less likely to develop resistance. However, data supporting this notion are lacking. This study evaluated the development of resistance in Staphylococcus aureus subjected to extract, fractions and epifriedelanol of S. glaucescens. It also identified S. aureus fitness genes contributing to intrinsic resistance to extract of S. glaucescens. Fluctuation and gradient concentration assays were used to determine mutation rates and growth adaptation, respectively, which were lower following exposure to growth in crude extract than the pure compound epifriedelanol. By subjecting 1920 single gene mutants from the Nebraska Transposon Mutant Library to growth in the presence of extract of S. glaucescens, 12 genes were identified as important for natural resistance in S. aureus JE2; however, only mutation in the hemB gene decreased the minimum inhibitory concentration by greater than 4-fold (64-fold). In conclusion, purifying active antimicrobial compounds from S. glaucescens and using them as antibacterial substances as an alternative to crude extract increased the risk of resistance development. Further, the gene hemBappears to have a significant role in the natural resistance to the extracts obtained from S. glaucescens in this study. Full article
20 pages, 3766 KiB  
Review
Challenges, Unmet Needs, and Future Directions for Nanocrystals in Dermal Drug Delivery
by Muzn Alkhaldi and Cornelia M. Keck
Molecules 2025, 30(15), 3308; https://doi.org/10.3390/molecules30153308 - 7 Aug 2025
Abstract
Nanocrystals, defined as crystalline particles with dimensions in the nanometer range (<1000 nm), exhibit unique properties that enhance the efficacy of poorly soluble active compounds. This review explores the fundamental aspects of nanocrystals, including their characteristics and various preparation methods, while addressing critical [...] Read more.
Nanocrystals, defined as crystalline particles with dimensions in the nanometer range (<1000 nm), exhibit unique properties that enhance the efficacy of poorly soluble active compounds. This review explores the fundamental aspects of nanocrystals, including their characteristics and various preparation methods, while addressing critical factors that influence their stability and incorporation into final products. A key focus of the review is the advantages offered by nanocrystals in dermal applications. It also highlights their ability to enhance passive diffusion into the skin and facilitate penetration via particle-assisted dermal penetration. Additionally, the review discusses their capacity to penetrate into hair follicles, enabling targeted drug delivery, and their synergistic potential when combined with microneedles, which further enhance the dermal absorption of active compounds. The review also addresses several commercial products that successfully employ nanocrystal technology, showcasing its practical applications. Summary: Nanocrystals with their special properties are an emerging trend for dermal applications, particularly the development of plantCrystals—natural nanocrystals sourced from plant materials—which represent a promising path for future research and formulation strategies. These advancements could lead to more sustainable and effective dermal products. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

24 pages, 3629 KiB  
Article
Chlorography or Chlorotyping from the Decomposition of Chlorophyll and Natural Pigments in Leaves and Flowers as a Natural Alternative for Photographic Development
by Andrea D. Larrea Solórzano, Iván P. Álvarez Lizano, Pablo R. Morales Fiallos, Carolina E. Maldonado Cherrez and Carlos S. Suárez Naranjo
J. Zool. Bot. Gard. 2025, 6(3), 41; https://doi.org/10.3390/jzbg6030041 - 7 Aug 2025
Abstract
This study explores the use of chlorography as a natural photographic developing technique that utilizes the decomposition of chlorophyll and other plant pigments through the action of sunlight. The developed images corresponded to previous research on changes in the iconography of the indigenous [...] Read more.
This study explores the use of chlorography as a natural photographic developing technique that utilizes the decomposition of chlorophyll and other plant pigments through the action of sunlight. The developed images corresponded to previous research on changes in the iconography of the indigenous Salasaka people. In this context, this experimental project on natural photography is oriented toward the conservation of the ancestral knowledge of this community and the understanding of the native flora of Ecuador. We investigated the application of the contact image transfer technique with positive transparencies on leaves and flowers of 30 different species that grow in the Ecuadorian highlands, including leaves of vascular plants, as well as rose petals. The results showed that the clarity and contrast of chlorography depended on the plant species and exposure time. It was observed that fruit-bearing species produced more visible images than the leaves of other plants and rose petals, with species from the Passifloraceae family proving particularly effective. We interpreted these findings within the framework of plant photophysical mechanisms, proposing an inverse relationship between development efficiency and species’ non-photochemical quenching (NPQ) capacity. Furthermore, we interpreted the findings in relation to the photobleaching of pigments and compared chlorography with other natural photographic processes such as anthotypes. Key factors influencing the process were identified, such as the type of leaf, the intensity and duration of light, and the hydration of the plant material. It is concluded that chlorography is a viable, non-toxic, and environmentally friendly photographic alternative with potential applications in art, education, and research, although it presents challenges in terms of image permanence and reproducibility. Full article
Show Figures

Figure 1

18 pages, 2972 KiB  
Article
Flavonoids from Cercidiphyllum japonicum Exhibit Bioactive Potential Against Skin Aging and Inflammation in Human Dermal Fibroblasts
by Minseo Kang, Sanghyun Lee, Dae Sik Jang, Sullim Lee and Daeyoung Kim
Curr. Issues Mol. Biol. 2025, 47(8), 631; https://doi.org/10.3390/cimb47080631 - 7 Aug 2025
Abstract
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a [...] Read more.
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a tumor necrosis factor-alpha (TNF-α)-stimulated normal human dermal fibroblast (NHDF) model. The aerial parts of C. japonicum were extracted and analyzed by high-performance liquid chromatography (HPLC), leading to the identification of four major compounds: maltol, chlorogenic acid, ellagic acid, and quercitrin. Each compound was evaluated for its antioxidant and anti-aging activities in TNF-α-stimulated NHDFs. Among them, ellagic acid exhibited the most potent biological activity and was selected for further mechanistic analysis. Ellagic acid significantly suppressed intracellular reactive oxygen species (ROS) generation and matrix metalloproteinase-1 (MMP-1) secretion (both p < 0.001), while markedly increasing type I procollagen production (p < 0.01). Mechanistic studies demonstrated that ellagic acid inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinases (MAPKs), downregulated cyclooxygenase-2 (COX-2), and upregulated heme oxygenase-1 (HO-1), a key antioxidant enzyme. Additionally, ellagic acid attenuated the mRNA expression of inflammatory cytokines, including interleukin-6 (IL-6) and interleukin-8 (IL-8), indicating its broad modulatory effects on oxidative and inflammatory pathways. Collectively, these findings suggest that ellagic acid is a promising plant-derived bioactive compound with strong antioxidant and anti-inflammatory properties, offering potential as a therapeutic agent for the prevention and treatment of skin aging. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

31 pages, 984 KiB  
Review
Anti-Obesity Mechanisms of Plant and Fungal Polysaccharides: The Impact of Structural Diversity
by Guihong Fang, Baolian Li, Li Zhu, Liqian Chen, Juan Xiao and Juncheng Chen
Biomolecules 2025, 15(8), 1140; https://doi.org/10.3390/biom15081140 - 7 Aug 2025
Abstract
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified [...] Read more.
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified efforts to develop plant and fungal polysaccharide therapeutic alternatives. These polysaccharide macromolecules have emerged as promising candidates because of their diverse biological activities and often act as natural prebiotics, exerting beneficial effects through multiple pathways. Plant and fungal polysaccharides can reduce blood glucose levels, alleviate inflammation and oxidative stress, modulate metabolic signaling pathways, inhibit nutrient absorption, and reshape gut microbial composition. These effects have been shown in cellular and animal models and are associated with mechanisms underlying obesity and related metabolic disorders. This review discusses the complexity of obesity and multifaceted role of plant and fungal polysaccharides in alleviating its symptoms and complications. Current knowledge on the anti-obesity properties of plant and fungal polysaccharides is also summarized. We highlight their regulatory effects, potential intervention pathways, and structure–function relationships, thereby providing novel insights into polysaccharide-based strategies for obesity management. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

27 pages, 15414 KiB  
Article
Epimedium-Derived Exosome-Loaded GelMA Hydrogel Enhances MC3T3-E1 Osteogenesis via PI3K/Akt Pathway
by Weijian Hu, Xin Xie and Jiabin Xu
Cells 2025, 14(15), 1214; https://doi.org/10.3390/cells14151214 - 7 Aug 2025
Abstract
Healing large bone defects remains challenging. Gelatin scaffolds are biocompatible and biodegradable, but lack osteoinductive activity. Plant-derived exosomes carry miRNAs, growth factors, and proteins that modulate osteogenesis, but free exosomes suffer from poor stability, limited targeting, and low bioavailability in vivo. We developed [...] Read more.
Healing large bone defects remains challenging. Gelatin scaffolds are biocompatible and biodegradable, but lack osteoinductive activity. Plant-derived exosomes carry miRNAs, growth factors, and proteins that modulate osteogenesis, but free exosomes suffer from poor stability, limited targeting, and low bioavailability in vivo. We developed a 3D GelMA hydrogel loaded with Epimedium-derived exosomes (“GelMA@Exo”) to improve exosome retention, stability, and sustained release. Its effects on MC3T3-E1 preosteoblasts—including proliferation, osteogenic differentiation, migration, and senescence—were evaluated via in vitro assays. Angiogenic potential was assessed using HUVECs. Underlying mechanisms were examined at transcriptomic and protein levels to elucidate GelMA@Exo’s therapeutic osteogenesis actions. GelMA@Exo exhibited sustained exosome release, enhancing exosome retention and cellular uptake. In vitro, GelMA@Exo markedly boosted MC3T3-E1 proliferation, migration, and mineralized nodule formation, while reducing senescence markers and promoting angiogenesis in HUVECs. Mechanistically, GelMA@Exo upregulated key osteogenic markers (RUNX2, TGF-β1, Osterix, COL1A1, ALPL) and activated the PI3K/Akt pathway. Transcriptomic data confirmed global upregulation of osteogenesis-related genes and bone-regeneration pathways. This study presents a GelMA hydrogel functionalized with plant-derived exosomes, which synergistically provides osteoinductive stimuli and structural support. The GelMA@Exo platform offers a versatile strategy for localized delivery of natural bioactive molecules and a promising approach for bone tissue engineering. Our findings provide strong experimental evidence for the translational potential of plant-derived exosomes in regenerative medicine. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Figure 1

27 pages, 4387 KiB  
Article
Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests
by Janina Gospodarek, Elżbieta Boligłowa, Krzysztof Gondek, Krzysztof Smoroń and Iwona B. Paśmionka
Molecules 2025, 30(15), 3300; https://doi.org/10.3390/molecules30153300 - 6 Aug 2025
Abstract
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures [...] Read more.
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures of Thuja occidentalis L. essential oil and diatomite (EO + DE) compared to each substance separately in reducing economically important pests such as black bean aphid (BBA) Aphis fabae Scop., Colorado potato beetle (CPB) Leptinotarsa decemlineata Say., and pea leaf weevil (PLW) Sitona lineatus L. The effects on mortality (all pests) and foraging intensity (CPB and PLW) were tested. The improvement in effectiveness using a mixture of EO + DE versus single components against BBA was dose- and the developmental stage-dependent. The effect of enhancing CPB foraging inhibition through DE addition was obtained at a concentration of 0.2% EO (both females and males of CPB) and 0.5% EO (males) in no-choice experiments. In choice experiments, mixtures EO + DE with both 0.2% and 0.5% EO concentrations resulted in a significant reduction in CPB foraging. A significant strengthening effect of EO 0.5% through the addition of DE at a dose of 10% against PLW males was observed in the no-choice experiment, while, when the beetles had a choice, the synergistic effect of a mixture of EO 0.5% and DE 10% was also apparent in females. In conclusion, the use of DE mixtures with EO from T. occidentalis appears to be a promising strategy. The results support the idea of not using doses of EO higher than 0.5%. Full article
Show Figures

Figure 1

30 pages, 2190 KiB  
Review
Systematic Review of the State of Knowledge About Açaí-Do-Amazonas (Euterpe precatoria Mart., Arecaceae)
by Sabrina Yasmin Nunes da Rocha, Maria Julia Ferreira, Charles R. Clement and Ricardo Lopes
Plants 2025, 14(15), 2439; https://doi.org/10.3390/plants14152439 - 6 Aug 2025
Abstract
Euterpe precatoria Mart. is an increasingly important palm for subsistence and income generation in central and western Amazonia with growing demand for its fruit pulp, which is an alternative source of açaí juice for domestic and international markets. This study synthesizes current knowledge [...] Read more.
Euterpe precatoria Mart. is an increasingly important palm for subsistence and income generation in central and western Amazonia with growing demand for its fruit pulp, which is an alternative source of açaí juice for domestic and international markets. This study synthesizes current knowledge on its systematics, ecology, fruit production in natural populations, fruit quality, uses, population management, and related areas, identifying critical research gaps. A systematic literature survey was conducted across databases including Web of Science, Scopus, Scielo, CAPES, and Embrapa. Of 1568 studies referencing Euterpe, 273 focused on E. precatoria, with 90 addressing priority themes. Genetic diversity studies suggest the E. precatoria may represent a complex of species. Its population abundance varies across habitats: the highest variability occurs in terra firme, followed by baixios and várzeas. Várzeas exhibit greater productivity potential, with more bunches per plant and higher fruit weight than baixios; no production data exist for terra firme. Additionally, E. precatoria has higher anthocyanin content than E. oleracea, the primary commercial açaí species. Management of natural populations and cultivation practices are essential for sustainable production; however, studies in these fields are still limited. The information is crucial to inform strategies aiming to promote the sustainable production of the species. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

17 pages, 1097 KiB  
Review
Natural Feed Additives in Sub-Saharan Africa: A Systematic Review of Efficiency and Sustainability in Ruminant Production
by Zonaxolo Ntsongota, Olusegun Oyebade Ikusika and Thando Conference Mpendulo
Ruminants 2025, 5(3), 36; https://doi.org/10.3390/ruminants5030036 - 6 Aug 2025
Abstract
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed [...] Read more.
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed shortages, and climate-related stresses, all of which limit productivity and sustainability. Considering these challenges, the adoption of natural feed additives has emerged as a promising strategy to enhance animal performance, optimise nutrient utilisation, and mitigate environmental impacts, including the reduction of enteric methane emissions. This review underscores the significant potential of natural feed additives such as plant extracts, essential oils, probiotics, and mineral-based supplements such as fossil shell flour as sustainable alternatives to conventional growth promoters in ruminant production systems across the region. All available documented evidence on the topic from 2000 to 2024 was collated and synthesised through standardised methods of systematic review protocol—PRISMA. Out of 319 research papers downloaded, six were included and analysed directly or indirectly in this study. The results show that the addition of feed additives to ruminant diets in all the studies reviewed significantly (p < 0.05) improved growth parameters such as average daily growth (ADG), feed intake, and feed conversion ratio (FCR) compared to the control group. However, no significant (p > 0.05) effect was found on cold carcass weight (CCW), meat percentage, fat percentage, bone percentage, or intramuscular fat (IMF%) compared to the control. The available evidence indicates that these additives can provide tangible benefits, including improved growth performance, better feed efficiency, enhanced immune responses, and superior meat quality, while also supporting environmental sustainability by reducing nitrogen excretion and decreasing dependence on antimicrobial agents. Full article
Show Figures

Figure 1

15 pages, 1458 KiB  
Article
Effect of Precipitation Change on Desert Steppe Aboveground Productivity
by Yonghong Luo, Jiming Cheng, Ziyu Cao, Haixiang Zhang, Pengcuo Danba, Jiazhi Wang, Ying Wang, Rong Zhang, Chao Zhang, Yingqun Feng and Shuhua Wei
Biology 2025, 14(8), 1010; https://doi.org/10.3390/biology14081010 - 6 Aug 2025
Abstract
Precipitation changes have significant impacts on biodiversity and ecosystem productivity. However, the effects of precipitation changes on species diversity have been the focus of most previous studies. Little is known about the contributions of different dimensions of biodiversity (species, functional, and phylogenetic diversity) [...] Read more.
Precipitation changes have significant impacts on biodiversity and ecosystem productivity. However, the effects of precipitation changes on species diversity have been the focus of most previous studies. Little is known about the contributions of different dimensions of biodiversity (species, functional, and phylogenetic diversity) in linking long-term precipitation changes to ecosystem functions. In this study, a randomized design was conducted in the desert steppes of Ningxia, which included three treatments: natural rainfall, precipitation reduced by 50%, and precipitation increased by 50%. After 4 years of treatment, the effects of precipitation changes on aboveground productivity and its underlying mechanisms were explored. The results showed that (1) reduced precipitation significantly decreased phylogenetic diversity and species diversity, but had no significant effect on functional diversity; (2) reduced precipitation significantly decreased aboveground productivity, while increased precipitation significantly enhanced aboveground productivity; and (3) changes in precipitation primarily regulated aboveground productivity by altering soil nitrogen availability and the size of dominant plant species. This study provides important theoretical and practical guidance for the protection and management of desert steppe vegetation under future climate change. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

14 pages, 1897 KiB  
Article
Type I Interferon-Enhancing Effect of Cardamom Seed Extract via Intracellular Nucleic Acid Sensor Regulation
by Abdullah Al Sufian Shuvo, Masahiro Kassai and Takeshi Kawahara
Foods 2025, 14(15), 2744; https://doi.org/10.3390/foods14152744 - 6 Aug 2025
Abstract
The induction of type I interferon (IFN) via intracellular nucleic acid sensors may be useful in preventing viral infections. However, little is known about the effect of natural plant materials on sensor responses. We previously found that cardamom (Elettaria cardamomum (L.) Maton) [...] Read more.
The induction of type I interferon (IFN) via intracellular nucleic acid sensors may be useful in preventing viral infections. However, little is known about the effect of natural plant materials on sensor responses. We previously found that cardamom (Elettaria cardamomum (L.) Maton) seed extract (CSWE) enhanced type I IFN expression and prevented influenza virus infection. In this study, we investigated the effect of CSWE on type I IFN responses using intracellular nucleic acid sensor molecules. Human lung epithelial A549 cells were treated with CSWE and transfected with poly(dA:dT) or poly(I:C) using lipofection. CSWE and 1,8-cineole, the major CSWE components, dose-dependently induced type I IFNs and IFN-stimulated genes in both poly(dA:dT)- and poly(I:C)-transfected A549 cells. The type I IFN-enhancing effect of CSWE was dependent on the stimulator of interferon genes (STING), whereas the effect of 1,8-cineole was independent of STING and mediated by the down-regulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase expression. Our study suggests that CSWE has the potential to act as a beneficial antiviral agent by enhancing homeostatic type I IFN production. Full article
Show Figures

Figure 1

21 pages, 7718 KiB  
Article
Monitoring the Early Growth of Pinus and Eucalyptus Plantations Using a Planet NICFI-Based Canopy Height Model: A Case Study in Riqueza, Brazil
by Fabien H. Wagner, Fábio Marcelo Breunig, Rafaelo Balbinot, Emanuel Araújo Silva, Messias Carneiro Soares, Marco Antonio Kramm, Mayumi C. M. Hirye, Griffin Carter, Ricardo Dalagnol, Stephen C. Hagen and Sassan Saatchi
Remote Sens. 2025, 17(15), 2718; https://doi.org/10.3390/rs17152718 - 6 Aug 2025
Abstract
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address [...] Read more.
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address the challenge of scaling up canopy height monitoring by evaluating a recent deep learning model, trained on data from the Amazon and Atlantic Forests, developed to extract canopy height from RGB-NIR Planet NICFI imagery. The research questions are as follows: (i) How are canopy height estimates from the model affected by slope and orientation in natural forests, based on a large and well-balanced experimental design? (ii) How effectively does the model capture the growth trajectories of Pinus and Eucalyptus plantations over an eight-year period following planting? We find that the model closely tracks Pinus growth at the parcel scale, with predictions generally within one standard deviation of UAV-derived heights. For Eucalyptus, while growth is detected, the model consistently underestimates height, by more than 10 m in some cases, until late in the cycle when the canopy becomes less dense. In stable natural forests, the model reveals seasonal artifacts driven by topographic variables (slope × aspect × day of year), for which we propose strategies to reduce their influence. These results highlight the model’s potential as a cost-effective and scalable alternative to field-based and LiDAR methods, enabling broad-scale monitoring of forest regrowth and contributing to innovation in remote sensing for forest dynamics assessment. Full article
Show Figures

Figure 1

24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 - 6 Aug 2025
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

23 pages, 331 KiB  
Article
Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model
by Bartosz Jóźwik, Siba Prasada Panda, Aruna Kumar Dash, Pritish Kumar Sahu and Robert Szwed
Energies 2025, 18(15), 4167; https://doi.org/10.3390/en18154167 - 6 Aug 2025
Abstract
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more [...] Read more.
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more than one-third of global emissions. Using annual data from 1990 to 2021, we implement Long Short-Term Memory (LSTM) neural networks, which outperform traditional linear models in capturing nonlinearities and lagged effects. The dataset is split into training (1990–2013) and testing (2014–2021) intervals to ensure rigorous out-of-sample validation. Results reveal stark national differences. For India, coal, natural gas consumption, and economic growth are the strongest positive drivers of emissions, whereas renewable energy exerts a significant mitigating effect, and nuclear energy is negligible. In China, emissions are dominated by coal and petroleum use and by economic growth, while renewable and nuclear sources show weak, inconsistent impacts. We recommend retrofitting India’s coal- and gas-plants with carbon capture and storage, doubling clean-tech subsidies, and tripling annual solar-plus-storage auctions to displace fossil baseload. For China, priorities include ultra-supercritical upgrades with carbon capture, utilisation, and storage, green-bond-financed solar–wind buildouts, grid-scale storage deployments, and hydrogen-electric freight corridors. These data-driven pathways simultaneously cut flagship emitters, decouple GDP from carbon, provide replicable models for global net-zero research, and advance climate-resilient economic growth worldwide. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Back to TopTop