Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (259)

Search Parameters:
Keywords = natural gas security

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 962 KB  
Article
Renewable Energy Sources and Improved Energy Management as a Path to Energy Transformation: A Case Study of a Vodka Distillery in Poland
by Małgorzata Anita Bryszewska, Robert Staszków, Łukasz Ściubak, Jarosław Domański and Piotr Dziugan
Sustainability 2025, 17(17), 7652; https://doi.org/10.3390/su17177652 (registering DOI) - 25 Aug 2025
Abstract
The increasing awareness of the need for sustainable solutions to secure future energy supplies has spurred the search for innovative approaches. Energo-Efekt Sp. z o.o. has prepared a project for the green transformation of the energy system at a producer of spirits through [...] Read more.
The increasing awareness of the need for sustainable solutions to secure future energy supplies has spurred the search for innovative approaches. Energo-Efekt Sp. z o.o. has prepared a project for the green transformation of the energy system at a producer of spirits through the rectification of raw alcohol. An installation was conceptualised to develop the system to convert energy from biomass fuels into electricity and heat. The innovation of the installation is the use of an expander—a Heliex system which is the twin-screw turbine generator converting energy in the form of wet steam into electrical power integrated with pressure-reducing valve. This system captures all or part of the available steam flow and reduces the steam pressure, not only delivering steam at the same, lower pressure but also generating rotary energy that can be used to produce electricity with the power output range of 160 to 600 kWe. Currently, the company utilises natural gas as a fuel source and acquires electricity from the external grid. Implementing the system could reduce the carbon footprint associated with the production of vodka at the plant by 97%, to 102 t CO2 annually. This reduction would account for approximately 21% of the total carbon footprint of the entire alcohol production process. The system could also be applied to other low-power systems that produce < 250 kW, making it a viable option for use in distributed energy networks, and can be used as a model solution for other distillery plants. The transformation project dedicated to Polmos Żyrardów involves a comprehensive change in both the energy source and its management. The fossil fuels used until now are being replaced with a renewable energy source in the form of biomass. The steam and electricity cogeneration system meets the rectification process’s energy demand and can supply the central heating node. Heat recovery exchangers recuperate heat from the boiler room exhaust gases and the rectification cooling process. Potentially, all of these changes lead to the company’s energy self-sufficiency and reduce its overall environmental impact with almost zero CO2 emissions. Full article
Show Figures

Figure 1

45 pages, 2014 KB  
Article
Innovative Business Models Towards Sustainable Energy Development: Assessing Benefits, Risks, and Optimal Approaches of Blockchain Exploitation in the Energy Transition
by Aikaterini Papapostolou, Ioanna Andreoulaki, Filippos Anagnostopoulos, Sokratis Divolis, Harris Niavis, Sokratis Vavilis and Vangelis Marinakis
Energies 2025, 18(15), 4191; https://doi.org/10.3390/en18154191 - 7 Aug 2025
Viewed by 517
Abstract
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy [...] Read more.
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy production, and demand flexibility is of vital importance. Blockchain has the potential to change energy services towards this direction. To optimally exploit blockchain, innovative business models need to be designed, identifying the opportunities emerging from unmet needs, while also considering potential risks so as to take action to overcome them. In this context, the scope of this paper is to examine the opportunities and the risks that emerge from the adoption of blockchain in four innovative business models, while also identifying mitigation strategies to support and accelerate the energy transition, thus proposing optimal approaches of exploitation of blockchain in energy services. The business models concern Energy Performance Contracting with P4P guarantees, improved self-consumption in energy cooperatives, energy efficiency and flexibility services for natural gas boilers, and smart energy management for EV chargers and HVAC appliances. Firstly, the value proposition of the business models is analysed and results in a comprehensive SWOT analysis. Based on the findings of the analysis and consultations with relevant market actors, in combination with the examination of the relevant literature, risks are identified and evaluated through a qualitative assessment approach. Subsequently, specific mitigation strategies are proposed to address the detected risks. This research demonstrates that blockchain integration into these business models can significantly improve energy efficiency, reduce operational costs, enhance security, and support a more decentralised energy system, providing actionable insights for stakeholders to implement blockchain solutions effectively. Furthermore, according to the results, technological and legal risks are the most significant, followed by political, economic, and social risks, while environmental risks of blockchain integration are not as important. Strategies to address risks relevant to blockchain exploitation include ensuring policy alignment, emphasising economic feasibility, facilitating social inclusion, prioritising security and interoperability, consulting with legal experts, and using consensus algorithms with low energy consumption. The findings offer clear guidance for energy service providers, policymakers, and technology developers, assisting in the design, deployment, and risk mitigation of blockchain-enabled business models to accelerate sustainable energy development. Full article
Show Figures

Figure 1

20 pages, 5871 KB  
Article
Carbon Management and Storage for Oltenia: Tackling Romania’s Decarbonization Goals
by Liviu Dumitrache, Silvian Suditu, Gheorghe Branoiu, Daniela Neagu and Marian Dacian Alecu
Sustainability 2025, 17(15), 6793; https://doi.org/10.3390/su17156793 - 25 Jul 2025
Viewed by 628
Abstract
This paper presents a numerical simulation study evaluating carbon dioxide capture and storage (CCS) feasibility for the Turceni Power Plant in Oltenia, Romania, using the nearby depleted Bibești-Bulbuceni gas reservoir. A comprehensive reservoir model was developed using Petrel software, integrating geological and reservoir [...] Read more.
This paper presents a numerical simulation study evaluating carbon dioxide capture and storage (CCS) feasibility for the Turceni Power Plant in Oltenia, Romania, using the nearby depleted Bibești-Bulbuceni gas reservoir. A comprehensive reservoir model was developed using Petrel software, integrating geological and reservoir engineering data for the formations of the Bibești-Bulbuceni structure, which is part of the western Moesian Platform. The static model incorporated realistic petrophysical inputs for the Meotian reservoirs. Dynamic simulations were performed using Eclipse compositional simulator with Peng–Robinson equation of state for a CH4-CO2 system. The model was initialized with natural gas initially in place at 149 bar reservoir pressure, then produced through depletion to 20.85 bar final pressure, achieving 80% recovery factor. CO2 injection simulations modeled a phased 19-well injection program over 25 years, with individual well constraints of 100 bar bottom-hole pressure and 200,000 Sm3/day injection rates. Results demonstrate successful injection of a 60 Mt CO2, with final reservoir pressure reaching 101 bar. The modeling framework validates the technical feasibility of transforming Turceni’s power generation into a net-zero process through CCS implementation. Key limitations include simplified geochemical interactions and relying on historical data with associated uncertainties. This study provides quantitative evidence for CCS viability in depleted hydrocarbon reservoirs, supporting industrial decarbonization strategies. The strategy not only aligns with the EU’s climate-neutral policy but also enhances local energy security by repurposing existing geological resources. The findings highlight the potential of CCS to bridge the gap between current energy systems and a sustainable, climate-neutral future. Full article
Show Figures

Figure 1

18 pages, 2813 KB  
Article
Spatiotemporal Differentiation and Driving Factors Analysis of the EU Natural Gas Market Based on Geodetector
by Xin Ren, Qishen Chen, Kun Wang, Yanfei Zhang, Guodong Zheng, Chenghong Shang and Dan Song
Sustainability 2025, 17(15), 6742; https://doi.org/10.3390/su17156742 - 24 Jul 2025
Viewed by 386
Abstract
In 2022, the Russia–Ukraine conflict has severely impacted the EU’s energy supply chain, and the EU’s natural gas import pattern has begun to reconstruct, and exploring the spatiotemporal differentiation of EU natural gas trade and its driving factors is the basis for improving [...] Read more.
In 2022, the Russia–Ukraine conflict has severely impacted the EU’s energy supply chain, and the EU’s natural gas import pattern has begun to reconstruct, and exploring the spatiotemporal differentiation of EU natural gas trade and its driving factors is the basis for improving the resilience of its supply chain and ensuring the stable supply of energy resources. This paper summarizes the law of the change of its import volume by using the complex network method, constructs a multi-dimensional index system such as demand, economy, and security, and uses the geographic detector model to mine the driving factors affecting the spatiotemporal evolution of natural gas imports in EU countries and propose different sustainable development paths. The results show that from 2000 to 2023, Europe’s natural gas imports generally show an upward trend, and the import structure has undergone great changes, from pipeline gas dominance to LNG diversification. After the conflict between Russia and Ukraine, the number of import source countries has increased, the market network has become looser, France has become the core hub of the EU natural gas market, the importance of Russia has declined rapidly, and the status of countries in the United States, North Africa, and the Middle East has increased rapidly; natural gas consumption is the leading factor in the spatiotemporal differentiation of EU natural gas imports, and the influence of import distance and geopolitical risk is gradually expanding, and the proportion of energy consumption is significantly higher than that of other factors in the interaction with other factors. Combined with the driving factors, three different evolutionary directions of natural gas imports in EU countries are identified, and energy security paths such as improving supply chain control capabilities, ensuring export stability, and using location advantages to become hub nodes are proposed for different development trends. Full article
(This article belongs to the Topic Energy Economics and Sustainable Development)
Show Figures

Figure 1

30 pages, 1042 KB  
Article
A Privacy-Preserving Polymorphic Heterogeneous Security Architecture for Cloud–Edge Collaboration Industrial Control Systems
by Yukun Niu, Xiaopeng Han, Chuan He, Yunfan Wang, Zhigang Cao and Ding Zhou
Appl. Sci. 2025, 15(14), 8032; https://doi.org/10.3390/app15148032 - 18 Jul 2025
Viewed by 327
Abstract
Cloud–edge collaboration industrial control systems (ICSs) face critical security and privacy challenges that existing dynamic heterogeneous redundancy (DHR) architectures inadequately address due to two fundamental limitations: event-triggered scheduling approaches that amplify common-mode escape impacts in resource-constrained environments, and insufficient privacy-preserving arbitration mechanisms for [...] Read more.
Cloud–edge collaboration industrial control systems (ICSs) face critical security and privacy challenges that existing dynamic heterogeneous redundancy (DHR) architectures inadequately address due to two fundamental limitations: event-triggered scheduling approaches that amplify common-mode escape impacts in resource-constrained environments, and insufficient privacy-preserving arbitration mechanisms for sensitive industrial data processing. In contrast to existing work that treats scheduling and privacy as separate concerns, this paper proposes a unified polymorphic heterogeneous security architecture that integrates hybrid event–time triggered scheduling with adaptive privacy-preserving arbitration, specifically designed to address the unique challenges of cloud–edge collaboration ICSs where both security resilience and privacy preservation are paramount requirements. The architecture introduces three key innovations: (1) a hybrid event–time triggered scheduling algorithm with credibility assessment and heterogeneity metrics to mitigate common-mode escape scenarios, (2) an adaptive privacy budget allocation mechanism that balances privacy protection effectiveness with system availability based on attack activity levels, and (3) a unified framework that organically integrates privacy-preserving arbitration with heterogeneous redundancy management. Comprehensive evaluations using natural gas pipeline pressure control and smart grid voltage control systems demonstrate superior performance: the proposed method achieves 100% system availability compared to 62.57% for static redundancy and 86.53% for moving target defense, maintains 99.98% availability even under common-mode attacks (102 probability), and consistently outperforms moving target defense methods integrated with state-of-the-art detection mechanisms (99.7790% and 99.6735% average availability when false data deviations from true values are 5% and 3%, respectively) across different attack detection scenarios, validating its effectiveness in defending against availability attacks and privacy leakage threats in cloud–edge collaboration environments. Full article
Show Figures

Figure 1

24 pages, 4391 KB  
Article
Research on Energy Security in the EU from a Trade Perspective: A Historical Analysis from 1991 to 2021
by Quanxiao Li and Zhouying Song
Energies 2025, 18(14), 3801; https://doi.org/10.3390/en18143801 - 17 Jul 2025
Viewed by 347
Abstract
Energy security is a global and strategic issue that is vital to national economic and social development. The conflict between Russia and Ukraine has profoundly changed the world’s energy trade structure and brought great challenges to global energy security, especially to the European [...] Read more.
Energy security is a global and strategic issue that is vital to national economic and social development. The conflict between Russia and Ukraine has profoundly changed the world’s energy trade structure and brought great challenges to global energy security, especially to the European Union (EU). Under this background, this study tries to construct a conceptual framework for energy security from trade and selects the EU as a case to analyze its energy security evolution at both the regional and national scales. The findings of this paper are as follows. (1) In the context of energy transition, oil and gas remain pivotal components due to their longstanding historical presence. However, they are also the most susceptible elements within the EU’s energy system. (2) The level of oil security within the EU is higher than that of natural gas. The level of oil security in member countries varies considerably, with significant geographic disparities. Aside from the exception of the Netherlands and Denmark, the majority of member countries exhibit a consistently low level of natural gas security. (3) From 1991 to 2021, the EU’s energy security pattern underwent significant changes, exhibiting a general downward trend due to the increased utilization of natural gas. In light of the aforementioned research outcomes, this paper seeks to offer policy recommendations for the enhancement of the EU’s energy security. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

25 pages, 5063 KB  
Review
Recycled Aggregates for Sustainable Construction: Strengthening Strategies and Emerging Frontiers
by Ying Peng, Shenruowen Cai, Yutao Huang and Xue-Fei Chen
Materials 2025, 18(13), 3013; https://doi.org/10.3390/ma18133013 - 25 Jun 2025
Viewed by 529
Abstract
The transformative trajectory of urban development in the contemporary era has engendered a substantial escalation in construction waste generation, particularly in China, where it constitutes approximately 40% of the total solid waste stream. Traditional landfill disposal methodologies pose formidable ecological challenges, encompassing soil [...] Read more.
The transformative trajectory of urban development in the contemporary era has engendered a substantial escalation in construction waste generation, particularly in China, where it constitutes approximately 40% of the total solid waste stream. Traditional landfill disposal methodologies pose formidable ecological challenges, encompassing soil contamination, groundwater pollution, and significant greenhouse gas emissions. Furthermore, the unsustainable exploitation of natural sandstone resources undermines energy security and disrupts ecological balance. In response to these pressing issues, an array of scholars and researchers have embarked on an exploratory endeavor to devise innovative strategies for the valorization of construction waste. Among these strategies, the conversion of waste into recycled aggregates has emerged as a particularly promising pathway. However, the practical deployment of recycled aggregates within the construction industry is impeded by their inherent physico-mechanical properties, such as heightened water absorption capacity and diminished compressive strength. To surmount these obstacles, a multitude of enhancement techniques, spanning physical, chemical, and thermal treatments, have been devised and refined. This paper undertakes a comprehensive examination of the historical evolution, recycling methodologies, and enhancement strategies pertinent to recycled aggregates. It critically evaluates the efficacy, cost–benefit analyses, and environmental ramifications of these techniques, while elucidating the microstructural and physicochemical disparities between recycled and natural aggregates. Furthermore, it identifies pivotal research gaps and prospective avenues for future inquiry, underscoring the imperative for collaborative endeavors aimed at developing cost-effective and environmentally benign enhancement techniques that adhere to the stringent standards of contemporary construction practices, thereby addressing the intertwined challenges of waste management and resource scarcity. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

29 pages, 2057 KB  
Article
Analysis of Hydrological and Meteorological Conditions in the Southern Baltic Sea for the Purpose of Using LNG as Bunkering Fuel
by Ewelina Orysiak, Jakub Figas, Maciej Prygiel, Maksymilian Ziółek and Bartosz Ryłko
Appl. Sci. 2025, 15(13), 7118; https://doi.org/10.3390/app15137118 - 24 Jun 2025
Viewed by 490
Abstract
The southern Baltic Sea is characterized by highly variable weather conditions, particularly in autumn and winter, when storms, strong westerly winds, and temporary sea ice formation disrupt maritime operations. This study presents a climatographic overview and evaluates key hydrometeorological factors that influence the [...] Read more.
The southern Baltic Sea is characterized by highly variable weather conditions, particularly in autumn and winter, when storms, strong westerly winds, and temporary sea ice formation disrupt maritime operations. This study presents a climatographic overview and evaluates key hydrometeorological factors that influence the safe and efficient use of liquefied natural gas (LNG) as bunkering fuel in the region. The analysis draws on long-term meteorological and hydrological datasets (1971–2020), including satellite observations and in situ measurements. It identifies operational constraints, such as wind speed, wave height, visibility, and ice cover, and assesses their impact on LNG logistics and terminal functionality. Thresholds for safe operations are evaluated in accordance with IMO and ISO safety standards. An ice severity forecast for 2011–2030 was developed using the ECHAM5 global climate model under the A1B emission scenario, indicating potential seasonal risks to LNG operations. While baseline safety criteria are generally met, environmental variability in the region may still cause temporary disruptions. Findings underscore the need for resilient port infrastructure, including anti-icing systems, heated transfer equipment, and real-time environmental monitoring, to ensure operational continuity. Integrating weather forecasting into LNG logistics supports uninterrupted deliveries and contributes to EU goals for energy diversification and emissions reduction. The study concludes that strategic investments in LNG infrastructure—tailored to regional climatic conditions—can enhance energy security in the southern Baltic, provided environmental risks are systematically accounted for in operational planning. Full article
Show Figures

Figure 1

21 pages, 1037 KB  
Systematic Review
Evaluating the Sustainability of the Natural Gas-Based Methanol-to-Gasoline Industry: A Global Systematic Review
by Hussein Al-Yafei, Saleh Aseel and Ali Ansaruddin Kunju
Sustainability 2025, 17(12), 5355; https://doi.org/10.3390/su17125355 - 10 Jun 2025
Cited by 1 | Viewed by 1206
Abstract
The sustainability of the natural gas-to-methanol (NGTM) and methanol-to-gasoline (MTG) processes are assessed in this systematic review as a potential substitute in the global energy transition. Methanol offers itself as a versatile and less carbon-intensive substitute for conventional gasoline in light of growing [...] Read more.
The sustainability of the natural gas-to-methanol (NGTM) and methanol-to-gasoline (MTG) processes are assessed in this systematic review as a potential substitute in the global energy transition. Methanol offers itself as a versatile and less carbon-intensive substitute for conventional gasoline in light of growing environmental concerns and the demand for cleaner fuels. This review’s rationale is to assess MTG’s ability to lessen environmental impact while preserving compatibility with current fuel infrastructure. The goal is to examine methanol and gasoline’s effects on the environment, society, and economy throughout their life cycles. This review used a two-phase systematic literature review methodology, filtering and evaluating studies that were indexed by Scopus using bibliometric and thematic analysis. A total of 25 documents were reviewed, in which 22 documents analyzed part of this study, and 68% employed LCA or techno-economic analysis, with the U.S. contributing 35% of the overall publications. A comparative analysis of the reviewed literature indicates that methanol-based fuels offer significantly lower greenhouse gas (GHG) emissions and life cycle environmental impacts than gasoline, particularly when combined with carbon capture and renewable feedstocks. This review also highlights benefits, such as improved safety and energy security, while acknowledging challenges, including high production costs, infrastructure adaptation, and toxicity concerns. Several drawbacks are high manufacturing costs, the necessity to adjust infrastructure, and toxicity issues. The report suggests investing in renewable methanol production, AI-driven process optimization, and robust legislative frameworks for integrating green fuels. The life cycle sustainability assessment (LCSA) of NGTM and MTG systems should be investigated in future studies, particularly in light of different feedstock and regional circumstances. The findings emphasize NGTM and MTG’s strategic role in aligning with several UN Sustainable Development Goals (SDGs) and add to the worldwide conversation on sustainable fuels. A strong transition necessitates multi-stakeholder cooperation, innovation, and supporting policies to fully realize the sustainability promise of cleaner fuels like methanol. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

24 pages, 1096 KB  
Review
Edible Coatings to Prolong the Shelf Life and Improve the Quality of Subtropical Fresh/Fresh-Cut Fruits: A Review
by Farid Moradinezhad, Atman Adiba, Azam Ranjbar and Maryam Dorostkar
Horticulturae 2025, 11(6), 577; https://doi.org/10.3390/horticulturae11060577 - 23 May 2025
Viewed by 3422
Abstract
Despite the growth of fruit production, the challenge of postharvest fruit loss particularly in tropical and subtropical fruits due to spoilage, decay, and natural deterioration remains a critical issue, impacting the global food supply chain by reducing both the quantity and quality of [...] Read more.
Despite the growth of fruit production, the challenge of postharvest fruit loss particularly in tropical and subtropical fruits due to spoilage, decay, and natural deterioration remains a critical issue, impacting the global food supply chain by reducing both the quantity and quality of fruits postharvest. Edible coatings have emerged as a sustainable solution to extending the shelf life of fruits and decreasing postharvest losses. The precise composition and application of these coatings are crucial in determining their effectiveness in preventing microbial growth and preserving the sensory attributes of fruits. Furthermore, the integration of nanotechnology into edible coatings has the potential to enhance their functionalities, including improved barrier properties, the controlled release of active substances, and increased antimicrobial capabilities. Recent advancements highlighting the impact of edible coatings are underscored in this review, showcasing how they help in prolonging shelf life, preserving quality, and minimizing postharvest losses of subtropical fresh fruits worldwide. The utilization of edible coatings presents challenges in terms of production, storage, and large-scale application, all while ensuring consumer acceptance, food safety, nutritional value, and extended shelf life. Edible coatings based on polysaccharides and proteins encounter difficulties due to inadequate water and gas barrier properties, necessitating the incorporation of plasticizers, emulsifiers, and other additives to enhance their mechanical and thermal durability. Moreover, high levels of biopolymers and active components like essential oils and plant extracts could potentially impact the taste of the produce, directly influencing consumer satisfaction. Therefore, ongoing research and innovation in this field show great potential for reducing postharvest losses and strengthening food security. This paper presents a comprehensive overview of the latest advancements in the application of edible coatings and their influence on extending the postharvest longevity of main subtropical fruits, emphasizing the importance of maintaining the quality of fresh and fresh-cut subtropical fruits, prolonging their shelf life, and protecting them from deterioration through innovative techniques. Full article
Show Figures

Figure 1

24 pages, 1797 KB  
Article
Structural Obstacles to Energy Transition in Türkiye and Holistic Solution Proposals: A Political, Economic and Social Dimensional Analysis
by Muhammed Ernur Akiner
Energies 2025, 18(10), 2591; https://doi.org/10.3390/en18102591 - 16 May 2025
Viewed by 809
Abstract
This study aims to analyze the multi-dimensional structural obstacles in Türkiye’s energy transition process and offer solutions for a sustainable, fair, and holistic transition. The study simultaneously evaluated energy policies’ economic, environmental, and social impacts; quantitative data, qualitative interviews, spatial analysis, and scenario [...] Read more.
This study aims to analyze the multi-dimensional structural obstacles in Türkiye’s energy transition process and offer solutions for a sustainable, fair, and holistic transition. The study simultaneously evaluated energy policies’ economic, environmental, and social impacts; quantitative data, qualitative interviews, spatial analysis, and scenario modeling techniques were used together. Türkiye’s 2023 energy panorama was examined and compared to the European Union averages. Structural differences in fundamental indicators such as energy intensity, supply security, pricing, and renewable resource use were revealed. According to EPDK, TÜİK, and TEİAŞ, Türkiye’s renewable energy share (42%) fell behind the EU average (63%), energy intensity was high (6.8 MJ per US dollar of GDP), and dependence on fossil fuels (coal 30%, natural gas 25%) threatened energy security. The findings show that the main obstacles to energy transition are insufficient financing, lack of political will, technological incompatibilities, and institutional coordination problems. In this context, the study proposes short-term to long-term transition policies. A multi-layered solution framework was presented, from energy cooperatives to carbon pricing, from net-zero laws to regional development plans. These policies can increase the renewable energy rate to 65% by 2035 and reduce carbon emissions by 50%. The study is one of the first systematic analyses to address energy transition in Türkiye with a holistic approach and is a strategic reference for policymakers. Full article
Show Figures

Figure 1

26 pages, 12545 KB  
Article
Experimental Study on the Influence of Low Temperature on the Gas Permeability of Granite
by Wei Chen, Peng Wang and Yue Liang
Appl. Sci. 2025, 15(10), 5447; https://doi.org/10.3390/app15105447 - 13 May 2025
Viewed by 424
Abstract
Granite is widely regarded as an ideal material for the construction of underground liquefied natural gas (LNG) storage reservoirs due to its high mechanical strength and broad geological availability. However, the ultra-low storage temperature of LNG (−162 °C) poses potential risks in altering [...] Read more.
Granite is widely regarded as an ideal material for the construction of underground liquefied natural gas (LNG) storage reservoirs due to its high mechanical strength and broad geological availability. However, the ultra-low storage temperature of LNG (−162 °C) poses potential risks in altering the permeability of granite, which may compromise the long-term safety and integrity of the reservoir. To investigate the permeability characteristics and microstructural degradation of granite under low-temperature conditions, both coarse-grained and fine-grained granite samples were subjected to a series of experiments, including one-dimensional (1D) gas permeability tests (conducted before and after freeze–thaw cycles ranging from −20 °C to −120 °C), nuclear magnetic resonance (NMR) tests, and two-dimensional (2D) gas permeability tests performed under real-time low-temperature conditions. Experimental results indicated that the gas permeability of granite under real-time low-temperature conditions exhibited a linear increase as the temperature decreased. In contrast, the gas permeability after freeze–thaw cycling followed a nonlinear trend: it increased initially, plateaued, and then increased again as the freezing temperature continued to drop. A further analysis of pore structure evolution and permeability changes revealed distinct degradation mechanisms depending on grain size. In coarse-grained granite, freeze–thaw damage was primarily characterized by the initiation and propagation of new microcracks, which originated as micropores and expanded into mesopores. In fine-grained granite, the damage primarily resulted from the progressive widening of existing fissures, with micropores gradually evolving into mesopores over successive cycles. The study’s findings provide a useful theoretical foundation for the secure subterranean storage of LNG. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

24 pages, 2595 KB  
Article
Synergizing Gas and Electric Systems Using Power-to-Hydrogen: Integrated Solutions for Clean and Sustainable Energy Networks
by Rawan Y. Abdallah, Mostafa F. Shaaban, Ahmed H. Osman, Abdelfatah Ali, Khaled Obaideen and Lutfi Albasha
Smart Cities 2025, 8(3), 81; https://doi.org/10.3390/smartcities8030081 - 6 May 2025
Viewed by 1059
Abstract
The rapid growth in natural gas consumption by gas-fired generators and the emergence of power-to-hydrogen (P2H) technology have increased the interdependency of natural gas and power systems, presenting new challenges to energy system operators due to the heterogeneous uncertainties associated with power loads, [...] Read more.
The rapid growth in natural gas consumption by gas-fired generators and the emergence of power-to-hydrogen (P2H) technology have increased the interdependency of natural gas and power systems, presenting new challenges to energy system operators due to the heterogeneous uncertainties associated with power loads, renewable energy sources (RESs), and gas loads. These uncertainties can easily spread from one infrastructure to another, increasing the risk of cascading outages. Given the erratic nature of RESs, P2H technology provides a valuable solution for large-scale energy storage systems, crucial for the transition to economic, clean, and secure energy systems. This paper proposes a new approach for the co-optimized operation of gas and electric power systems, aiming to reduce combined operating costs by 10–15% without jeopardizing gas and energy supplies to customers. A mixed integer non-linear programming (MINLP) model is developed for the optimal day-ahead operation of these integrated systems, with a case study involving the IEEE 24-bus power system and a 20-node natural gas system. Simulation results demonstrate the model’s effectiveness in minimizing total costs by up to 20% and significantly reducing renewable energy curtailment by over 50%. The proposed approach supports UN Sustainable Development Goals by ensuring sustainable energy (SDG 7), fostering innovation and resilient infrastructure (SDG 9), enhancing energy efficiency for resilient cities (SDG 11), promoting responsible consumption (SDG 12), contributing to climate action (SDG 13), and strengthening partnerships (SDG 17). It promotes clean energy, technological innovation, resilient infrastructure, efficient resource use, and climate action, supporting the transition to sustainable energy systems. Full article
(This article belongs to the Section Smart Grids)
Show Figures

Figure 1

22 pages, 697 KB  
Article
Determining Essential Indicators for Feasibility Assessment of Using Initiative Green Building Methods in Revitalization of Worn-Out Urban Fabrics
by Negar Ramezani, Jolanta Tamošaitienė, Hadi Sarvari and Mahboobeh Golestanizadeh
Sustainability 2025, 17(8), 3389; https://doi.org/10.3390/su17083389 - 10 Apr 2025
Viewed by 787
Abstract
Purpose—The reconstruction of worn-out urban fabrics poses a significant challenge in sustainable urban development, as such places, due to their decay and infrastructural inefficiencies, diminish residents’ quality of life and generate many environmental, social, and economic issues. Meanwhile, green building techniques have emerged [...] Read more.
Purpose—The reconstruction of worn-out urban fabrics poses a significant challenge in sustainable urban development, as such places, due to their decay and infrastructural inefficiencies, diminish residents’ quality of life and generate many environmental, social, and economic issues. Meanwhile, green building techniques have emerged as a novel option because they focus on environmental sustainability and resource efficiency. Nonetheless, effectively executing these strategies in worn-out urban fabrics necessitates a thorough feasibility evaluation to identify the associated obstacles and implementation prerequisites. The current study aimed to identify critical indicators for the feasibility of employing contemporary green building techniques in the repair of worn-out urban fabrics in Iran. The revitalization of worn-out urban fabrics is essential to enhancing the quality of life of urban inhabitants. Regarding this matter, the concept of green buildings, which emphasizes environmental sustainability, deserves significant attention. Meanwhile, feasibility assessments can help to successfully implement these changes in worn-out urban fabrics. Accordingly, the current study seeks to determine the essential indicators for the feasibility assessment of using initiative green building methods in the revitalization of worn-out urban fabric. Design/methodology/approach—In this vein, two rounds of the Delphi survey technique were carried out to identify and consolidate the indicators for the feasibility assessment of using initiative green building methods in the revitalization of the worn-out urban fabric in Iran. A research questionnaire was developed after reviewing the literature. It consists of four main dimensions (i.e., environmental, cultural–social, management–legal, and technical–technological) containing a total of 26 distinct indicators. The questionnaire was distributed among 123 experienced specialists. Eventually, the collected data were analyzed using the SPSS and Smart PLS programs. Findings—The results revealed that identified dimensions and indicators can be considered significant and essential indices in evaluating the use of initiative green building methods in the revitalization of worn-out urban fabric. Furthermore, the sequence of importance of the dimensions was environmental, followed by technical and technological, cultural and social, and managerial and legal. The environment, with an average rating of 3.33, ranked first; technical–technology, with an average rating of 2.45, ranked second; cultural–social, with an average rating of 2.15, ranked third; and management–legal, with an average rating of 2.07, ranked fourth. Furthermore, among the ranked indicators, the utilization of natural plants as a source of inspiration for living design in communal areas, aimed at toxin absorption and gas mitigation while achieving thermal equilibrium, received the highest average rating of 18.22, securing the first position. Conversely, the indicator assessing residents’ financial capacity, and the establishment of executive assurances and governmental support for the revitalization of the neighborhoods’ fabric garnered the lowest average rating of 10.98, placing it 26th and final. Originality/value—This research’s findings can significantly influence public policy and urban planning initiatives, aiding in the sustainable repair of worn-out urban fabrics in Iran by offering a systematic framework for evaluating the viability of innovative green building techniques. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

33 pages, 5766 KB  
Review
Multi-Energy Static Modeling Approaches: A Critical Overview
by Gianluigi Migliavacca
Energies 2025, 18(7), 1826; https://doi.org/10.3390/en18071826 - 4 Apr 2025
Viewed by 636
Abstract
In Europe and elsewhere in the world, current ambitious decarbonization targets push towards a gradual decommissioning of all fossil-fuel-based dispatchable electrical generation and, at the same time, foster a gradual increase in the penetration of Renewable Energy Sources (RES). Moreover, considerations tied to [...] Read more.
In Europe and elsewhere in the world, current ambitious decarbonization targets push towards a gradual decommissioning of all fossil-fuel-based dispatchable electrical generation and, at the same time, foster a gradual increase in the penetration of Renewable Energy Sources (RES). Moreover, considerations tied to decarbonization as well as to the security of supply, following recent geo-political events, call for a gradual replacement of gas appliances with electricity-based ones. As RES generation is characterized by a variable generation pattern and as the electric carrier is characterized by scarce intrinsic flexibility, and since storage capabilities through electrochemical batteries, as well as demand-side flexibility contributions, remain rather limited, it is quite natural to think of other energy carriers as possible service providers for the electricity system. Gas and heat networks and, in the future, hydrogen networks could provide storage services for the electricity system. This could allow increasing the amount of RES penetration to be managed safely by the electric system without incurring blackouts and avoiding non-economically motivated grid reinforcements to prevent the curtailment of RES generation peaks. What is explained above calls for a new approach, both in electricity network dispatch simulations and in grid-planning studies, which extends the simulation domain to other carriers (i.e., gas, heat, hydrogen) so that a global optimal solution is found. This simulation branch, called multi-energy or multi-carrier, has been gaining momentum in recent years. The present paper aims at describing the most important approaches to static ME modeling by comparing the pros and cons of all of them with a holistic approach. The style of this paper is that of a tutorial aimed at providing some guidance and a few bibliographic references to those who are interested in approaching this theme in the next years. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

Back to TopTop