Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (482)

Search Parameters:
Keywords = natural frequency and amplitude

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8612 KiB  
Article
Experimental Investigation of the Seismic Behavior of a Multi-Story Steel Modular Building Using Shaking Table Tests
by Xinxin Zhang, Yucong Nie, Kehao Qian, Xinyu Xie, Mengyang Zhao, Zhan Zhao and Xiang Yuan Zheng
Buildings 2025, 15(15), 2661; https://doi.org/10.3390/buildings15152661 - 28 Jul 2025
Viewed by 226
Abstract
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative [...] Read more.
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative to conduct in-depth research on their seismic behavior. In this study, a seven-story modular steel building is investigated using shaking table tests. Three seismic waves (artificial ground motion, Tohoku wave, and Tianjin wave) are selected and scaled to four intensity levels (PGA = 0.035 g, 0.1 g, 0.22 g, 0.31 g). It is found that no residual deformation of the structure is observed after tests, and its stiffness degradation ratio is 7.65%. The largest strains observed during the tests are 540 × 10−6 in beams, 1538 × 10−6 in columns, and 669 × 10−6 in joint regions, all remaining below a threshold value of 1690 × 10−6. Amplitudes and frequency characteristics of the acceleration responses are significantly affected by the characteristics of the seismic waves. However, the acceleration responses at higher floors are predominantly governed by the structure’s low-order modes (first-mode and second-mode), with the corresponding spectra containing only a single peak. When the predominant frequency of the input ground motion is close to the fundamental natural frequency of the modular steel structure, the acceleration responses will be significantly amplified. Overall, the structure demonstrates favorable seismic resistance. Full article
Show Figures

Figure 1

9 pages, 2733 KiB  
Data Descriptor
Investigating Mid-Latitude Lower Ionospheric Responses to Energetic Electron Precipitation: A Case Study
by Aleksandra Kolarski, Vladimir A. Srećković, Zoran R. Mijić and Filip Arnaut
Data 2025, 10(8), 121; https://doi.org/10.3390/data10080121 - 26 Jul 2025
Viewed by 184
Abstract
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to [...] Read more.
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to the localized, transient nature of Energetic Electron Precipitation (EEP) events and the path-dependence of VLF responses, research relies on event-specific case studies to model reflection height and sharpness via numerical simulations. Findings show LIEs are typically under 1000 × 500 km, with varying internal structure. Accumulated case studies and corresponding data across diverse conditions contribute to a broader understanding of ionospheric dynamics and space weather effects. These findings enhance regional modeling, support aerosol–electricity climate research, and underscore the value of VLF-based ionospheric monitoring and collaboration in Europe. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

33 pages, 41854 KiB  
Article
Application of Signal Processing Techniques to the Vibration Analysis of a 3-DoF Structure Under Multiple Excitation Scenarios
by Leidy Esperanza Pamplona Berón, Marco Claudio De Simone and Domenico Guida
Appl. Sci. 2025, 15(15), 8241; https://doi.org/10.3390/app15158241 - 24 Jul 2025
Viewed by 168
Abstract
Structural Health Monitoring (SHM) techniques are crucial for evaluating the condition of structures, enabling early maintenance interventions, and monitoring factors that could compromise structural integrity. Modal analysis studies the dynamic response of structures when subjected to vibrations, evaluating natural frequencies and vibration modes. [...] Read more.
Structural Health Monitoring (SHM) techniques are crucial for evaluating the condition of structures, enabling early maintenance interventions, and monitoring factors that could compromise structural integrity. Modal analysis studies the dynamic response of structures when subjected to vibrations, evaluating natural frequencies and vibration modes. This study focuses on detecting and comparing the natural frequencies of a 3-DoF structure under various excitation scenarios, including ambient vibration (in healthy and damaged conditions), two types of transient excitation, and three harmonic excitation variations. Signal processing techniques, specifically Power Spectral Density (PSD) and Continuous Wavelet Transform (CWT), were employed. Each method provides valuable insights into frequency and time-frequency domain analysis. Under ambient vibration excitation, the damaged condition exhibits spectral differences in amplitude and frequency compared to the undamaged state. For the transient excitations, the scalogram images reveal localized energetic differences in frequency components over time, whereas PSD alone cannot observe these behaviors. For the harmonic excitations, PSD provides higher spectral resolution, while CWT adds insight into temporal energy evolution near resonance bands. This study discusses how these analyses provide sensitive features for damage detection applications, as well as the influence of different excitation types on the natural frequencies of the structure. Full article
(This article belongs to the Special Issue State-of-the-Art Structural Health Monitoring Application)
Show Figures

Figure 1

20 pages, 1461 KiB  
Article
Vulnerability-Based Economic Loss Rate Assessment of a Frame Structure Under Stochastic Sequence Ground Motions
by Zheng Zhang, Yunmu Jiang and Zixin Liu
Buildings 2025, 15(15), 2584; https://doi.org/10.3390/buildings15152584 - 22 Jul 2025
Viewed by 221
Abstract
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear [...] Read more.
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear correlations, these methods are typically black box in nature, data-dependent, and difficult to generalize across tectonic settings. More importantly, they tend to focus solely on marginal or joint parameter correlations, which implicitly treat mainshocks and aftershocks as independent stochastic processes, thereby overlooking their inherent spectral interaction. To address these limitations, this study proposes an explicit and parameterized modeling framework based on the evolutionary power spectral density (EPSD) of random ground motions. Using the magnitude difference between a mainshock and an aftershock as the control variable, we derive attenuation relationships for the amplitude, frequency content, and duration. A coherence function model is further developed from real seismic records, treating the mainshock–aftershock pair as a vector-valued stochastic process and thus enabling a more accurate representation of their spectral dependence. Coherence analysis shows that the function remains relatively stable between 0.3 and 0.6 across the 0–30 Rad/s frequency range. Validation results indicate that the simulated response spectra align closely with recorded spectra, achieving R2 values exceeding 0.90 and 0.91. To demonstrate the model’s applicability, a case study is conducted on a representative frame structure to evaluate seismic vulnerability and economic loss. As the mainshock PGA increases from 0.2 g to 1.2 g, the structure progresses from slight damage to complete collapse, with loss rates saturating near 1.0 g. These findings underscore the engineering importance of incorporating mainshock–aftershock spectral interaction in seismic damage and risk modeling, offering a transparent and transferable tool for future seismic resilience assessments. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

19 pages, 7377 KiB  
Article
An SWE-FEM Model with Application to Resonant Periods and Tide Components in the Western Mediterranean Sea Region
by Kostas Belibassakis and Vincent Rey
J. Mar. Sci. Eng. 2025, 13(7), 1286; https://doi.org/10.3390/jmse13071286 - 30 Jun 2025
Viewed by 485
Abstract
A FEM model of Shallow Wave Equations (SWE-FEM) is studied, taking into account the variable bathymetry of semi-enclosed sea basins. The model, with a spatially varying Coriolis term, is implemented for the description of combined refraction–diffraction effects, from which the eigenperiods and eigenmodes [...] Read more.
A FEM model of Shallow Wave Equations (SWE-FEM) is studied, taking into account the variable bathymetry of semi-enclosed sea basins. The model, with a spatially varying Coriolis term, is implemented for the description of combined refraction–diffraction effects, from which the eigenperiods and eigenmodes of extended geographical sea areas are calculated by means of a low-order FEM scheme. The model is applied to the western Mediterranean basin, illustrating its versatility to easily include the effects of geographical characteristics like islands and other coastal features. The calculated resonant frequencies and modes depend on the domain size and characteristics as well as the location of the open sea boundary, and it is shown to provide results compatible with tide measurements at several stations in the coastal region of France. The calculation of the natural oscillation modes in the western Mediterranean basin, bounded by open boundaries at the Strait of Gibraltar and the Strait of Sicily, reveals a natural period of around 6 h corresponding to the quarter-diurnal tidal components, which are stationary and of roughly constant amplitude on the northern coast of the basin and on the west coast of Corsica (France). On the east coast of Corsica, on the other hand, these components are of very low amplitude and in phase opposition. The semi-diurnal tidal components observed on the same tide gauges north of the basin and west of Corsica are also quasi-stationary although they are not resonant. Resonant oscillations are also observed at lower periods, especially at a period of around 3 h at the Sète station. This period corresponds to a higher-order natural mode of the western Mediterranean basin, but this resonance seems to be essentially linked to the presence of the Gulf of Lion, whose shallowness and the width of the shelf at this point induce a resonance. Other oscillations are also observed at lower periods (T = 1.5 h at station Fos-sur-Mer, T = 45 min in the Toulon harbour station), due to more local forcing. Full article
(This article belongs to the Special Issue New Developments of Ocean Wind, Wave and Tidal Energy)
Show Figures

Figure 1

27 pages, 7037 KiB  
Article
Research on Three-Axis Vibration Characteristics and Vehicle Axle Shape Identification of Cement Pavement Under Heavy Vehicle Loads Based on EMD–Energy Decoupling Method
by Pengpeng Li, Linbing Wang, Songli Yang and Zhoujing Ye
Sensors 2025, 25(13), 4066; https://doi.org/10.3390/s25134066 - 30 Jun 2025
Viewed by 349
Abstract
The structural integrity of cement concrete pavements, paramount for ensuring traffic safety and operational efficiency, faces mounting challenges from the escalating burden of heavy-duty vehicular traffic. Precise characterisation of pavement dynamic responses under such conditions proves indispensable for implementing effective structural health monitoring [...] Read more.
The structural integrity of cement concrete pavements, paramount for ensuring traffic safety and operational efficiency, faces mounting challenges from the escalating burden of heavy-duty vehicular traffic. Precise characterisation of pavement dynamic responses under such conditions proves indispensable for implementing effective structural health monitoring and early warning system deployment. This investigation examines the triaxial dynamic response characteristics of cement concrete pavement subjected to low-speed, heavy-duty vehicular excitations, employing data acquired through in situ field measurements. A monitoring system incorporating embedded triaxial MEMS accelerometers was developed to capture vibration signals directly within the pavement structure. Raw data underwent preprocessing utilising a smoothing wavelet transform technique to attenuate noise, followed by empirical mode decomposition (EMD) and short-time energy (STE) analysis to scrutinise the time–frequency and energetic properties of triaxial vibration signals. The findings demonstrate that heavy, slow-moving vehicles generate substantial triaxial vibrations, with the vertical (Z-axis) response exhibiting the greatest amplitude and encompassing higher dominant frequency components compared to the horizontal (X and Y) axes. EMD successfully decomposed the complex signals into discrete intrinsic mode functions (IMFs), identifying high-frequency components (IMF1–IMF3) associated with transient vehicular impacts, mid-frequency components (IMF4–IMF6) presumably linked to structural and vehicle dynamics, and low-frequency components (IMF7–IMF9) representing system trends or ambient noise. The STE analysis of the selected IMFs elucidated the transient nature of axle loading, revealing pronounced, localised energy peaks. These findings furnish a comprehensive understanding of the dynamic behaviour of cement concrete pavements under heavy vehicle loads and establish a robust methodological framework for pavement performance assessment and refined axle load identification. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

12 pages, 7858 KiB  
Article
Strain Monitoring of Vertical Axis Wind Turbine Tower Using Fiber Bragg Gratings
by Bastien Van Esbeen, Valentin Manto, Damien Kinet, Corentin Guyot and Christophe Caucheteur
Sensors 2025, 25(13), 3921; https://doi.org/10.3390/s25133921 - 24 Jun 2025
Viewed by 371
Abstract
This article presents the findings of an experimental study conducted on a vertical axis wind turbine (VAWT) tower instrumented with cascaded fiber Bragg grating (FBG) sensors to detect bending deformations. Structural health monitoring (SHM) is an essential need in the industry to reduce [...] Read more.
This article presents the findings of an experimental study conducted on a vertical axis wind turbine (VAWT) tower instrumented with cascaded fiber Bragg grating (FBG) sensors to detect bending deformations. Structural health monitoring (SHM) is an essential need in the industry to reduce costs and maintenance time, and to prevent machine failures. First, FBG strain sensors were glued vertically along the tower to investigate the sensors behavior as a function of their height. The maximum signal-to-noise ratio is obtained when FBGs are placed at the tower base. Then, four packages were installed inside the tower, at the base, according to four cardinal directions. Each package contains an FBG strain sensor, and an extra temperature FBG for discrimination. The use of easy-to-deploy packages is a must for industrial installations. Afterwards, by using power spectral density (PSD) on the strain signals, three sources of tower oscillations are discovered: wind force, structure unbalance, and 1st tower mode resonance, each with its intrinsic frequency. Wind force and structure unbalance cause mechanical stresses at a frequency proportional to the wind turbine rotational speed, while the 1st tower mode frequency depends only on the machine geometry, regardless of the rotational speed. This study also analyzes the deformation amplitude for different rotational rates within the VAWT operational range (10–35 rpm). The resonance amplitude depends on the proximity of the rotational rate to the resonant frequency (22 rpm) and the duration at that rate. For structure unbalance, the oscillation amplitude increases with the rotational rate, due to the centrifugal effect. It is supposed that wind force deformation amplitude naturally depends on wind speed, which is unpredictable at a given precise time. The results of our experimental observations are very valuable for both the wind turbine manufacturer and owner. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 1997 KiB  
Article
A Closed-Form Solution for Harvesting Energy from the High-Order Sandwich Beam Subjected to Dynamic Loading
by Sy-Dan Dao, Dang-Diem Nguyen, Ngoc-Lam Nguyen and Duc-Kien Thai
Buildings 2025, 15(12), 2135; https://doi.org/10.3390/buildings15122135 - 19 Jun 2025
Viewed by 247
Abstract
This study presents a closed-form solution for the dynamic response of a sandwich beam subjected to arbitrary impact loading, with a particular focus on energy harvesting from an attached piezoelectric layer. A thin piezoelectric patch is bonded to the bottom surface of the [...] Read more.
This study presents a closed-form solution for the dynamic response of a sandwich beam subjected to arbitrary impact loading, with a particular focus on energy harvesting from an attached piezoelectric layer. A thin piezoelectric patch is bonded to the bottom surface of the beam to convert mechanical vibrations into electrical energy. The governing equations of motion are derived using Hamilton’s principle, considering a non-symmetric sandwich cross-section and incorporating higher-order shear deformation effects. The state–space method is employed to obtain the exact dynamic response of the beam under impact excitation. The differential equations governing the output voltage and harvested power are solved analytically based on the derived response. The natural frequencies and dynamic responses are validated against classical beam theory, highlighting the significance of shear deformation. Numerical examples are provided to evaluate the generated voltage and energy harvesting efficiency. The results demonstrate the strong potential for energy harvesting from sandwich beam vibrations and elucidate the influence of impact loading conditions, distributed load amplitude, and the geometric dimensions of the beam on the harvested output. Full article
(This article belongs to the Special Issue The Latest Research on Building Materials and Structures)
Show Figures

Figure 1

17 pages, 2221 KiB  
Article
Active/Reactive Power Separation Mechanisms for Different Signal-Modulated Power Devices Based on Time-Varying Amplitude/Frequency Rotating Vectors in Dynamic Processes
by Hui Yang, Yang Yi, Shun Li and Yunpeng Zhou
Processes 2025, 13(6), 1907; https://doi.org/10.3390/pr13061907 - 16 Jun 2025
Viewed by 316
Abstract
The dynamic behavior of large-scale systems containing diverse devices is a crucial focus for system operators, particularly in power systems where grid-connected devices generate AC electrical signals through various modulated methods. One of the main objectives of power systems is to transmit power. [...] Read more.
The dynamic behavior of large-scale systems containing diverse devices is a crucial focus for system operators, particularly in power systems where grid-connected devices generate AC electrical signals through various modulated methods. One of the main objectives of power systems is to transmit power. To this end, time-varying amplitude/frequency rotating vectors are used to describe different AC voltage and current signals, and then the active/reactive power separation mechanisms and characteristics for different signal-modulated power devices are explored. These mechanisms and characteristics are analyzed and verified through time-domain simulations. The theoretical contribution of this paper is that it thoroughly clarifies the misconception in current power theories by demonstrating that active power and reactive power naturally arise as inherent physical quantities rather than being solely mathematically defined. In terms of practicality, this paper can provide physically grounded insights for the power calculation methods and offer guidance for the design of power measurement in actual power system dynamic processes. Through the analysis presented in this study, the analysis, measurement, and control of the active/reactive components in renewable energy equipment based on the instantaneous reactive power calculation method or the traditional sinusoidal steady-state power calculation method do not need to be updated. Full article
Show Figures

Figure 1

26 pages, 3262 KiB  
Article
Dynamical Analysis of a Soliton Neuron Model: Bifurcations, Quasi-Periodic Behaviour, Chaotic Patterns, and Wave Solutions
by Adel Elmandouh
Mathematics 2025, 13(12), 1912; https://doi.org/10.3390/math13121912 - 7 Jun 2025
Viewed by 370
Abstract
This research explores the dynamic characteristics of the soliton neuron model, a mathematical approach used to describe various complicated processes in neuroscience, including the unclear mechanisms of numerous anesthetics. An appropriate wave transformation converts the neuron model into a two-dimensional dynamical system, which [...] Read more.
This research explores the dynamic characteristics of the soliton neuron model, a mathematical approach used to describe various complicated processes in neuroscience, including the unclear mechanisms of numerous anesthetics. An appropriate wave transformation converts the neuron model into a two-dimensional dynamical system, which takes the form of a conservative Hamiltonian system with a single degree of freedom. This study utilizes qualitative methods from planar integrable systems theory to analyze and interpret phase portraits. The conditions under which periodic, super-periodic, and solitary wave solutions exist are clearly defined and organized into theorems. These solutions are obtained analytically, with several examples depicted through 2D- and 3D-dimensional graphical illustrations. The research also examines how key physical parameters, such as frequency and sound velocity, affect the nature of these solutions, specifically on the width and the amplitude of those solutions. In addition, by inserting a generalized periodic external force, the model exhibits quasi-periodic and chaotic dynamics. These complicated dynamics are visualized using 2D and 3D phase portraits and time series plots. To further assess chaotic behavior, Lyapunov exponents are calculated. Numerical results indicate that the system’s overall behavior is strongly impacted by changes in the external force’s frequency and amplitude. Full article
Show Figures

Figure 1

16 pages, 8659 KiB  
Article
Dielectric Wireless Passive Temperature Sensor
by Taimur Aftab, Shah Hussain, Leonhard M. Reindl and Stefan Johann Rupitsch
J. Sens. Actuator Netw. 2025, 14(3), 60; https://doi.org/10.3390/jsan14030060 - 6 Jun 2025
Viewed by 2803
Abstract
Resonators are passive components that respond to an excitation signal by oscillating at their natural frequency with an exponentially decreasing amplitude. When combined with antennas, resonators enable purely passive chipless sensors that can be read wirelessly. In this contribution, we investigate the properties [...] Read more.
Resonators are passive components that respond to an excitation signal by oscillating at their natural frequency with an exponentially decreasing amplitude. When combined with antennas, resonators enable purely passive chipless sensors that can be read wirelessly. In this contribution, we investigate the properties of dielectric resonators, which combine the following functionalities: They store the readout signal for a sufficiently long time and couple to free space electromagnetic waves to act as antennas. Their mode spectrum, along with their resonant frequencies, quality factor, and coupling to electromagnetic waves, is investigated using a commercial finite element program. The fundamental mode exhibits a too-low overall Q factor. However, some higher modes feature overall Q factors of several thousand, which allows them to act as transponders operating without integrated circuits, batteries, or antennas. To experimentally verify the simulations, isolated dielectric resonators exhibiting modes with similarly high radiation-induced and dissipative quality factors were placed on a low-loss, low permittivity ceramic holder, allowing their far-field radiation properties to be measured. The radiation patterns investigated in the laboratory and outdoors agree well with the simulations. The resulting radiation patterns show a directivity of approximately 7.5 dBi at 2.5 GHz. The sensor was then heated in a ceramic furnace with the readout antenna located outside at room temperature. Wireless temperature measurements up to 700 °C with a resolution of 0.5 °C from a distance of 1 m demonstrated the performance of dielectric resonators for practical applications. Full article
Show Figures

Figure 1

29 pages, 9078 KiB  
Article
Reliability Design on the Output Shaft of Shearer Cutting Units Based on Correlated Failure Modes
by Jiayi Fan and Lijuan Zhao
Symmetry 2025, 17(6), 858; https://doi.org/10.3390/sym17060858 - 31 May 2025
Viewed by 355
Abstract
To improve the reliability of the shearer output shaft in coal seams with gangue, taking the MG400/951-WD shearer model as the research object, a test system for the physical and mechanical properties of coal seam samples containing gangue was established. Based on the [...] Read more.
To improve the reliability of the shearer output shaft in coal seams with gangue, taking the MG400/951-WD shearer model as the research object, a test system for the physical and mechanical properties of coal seam samples containing gangue was established. Based on the coal breaking theory, the impact load of the spiral drum in a coal seam with gangue was simulated. Combined with rigid-flexible coupling virtual prototype technology, a rigid-flexible coupling virtual prototype model of a shearer with an output shaft as the modal neutral file was established. The output shaft is a typical symmetrical part, and it is of great significance to analyze it by using dynamic theory and mechanical reliability theory. The shearer system modal, the stress distribution of output shaft, and vibration characteristics were obtained by dynamic simulation. Based on resonance failure criterion and combined with a neural network, the output shaft stress reliability, vibration reliability, amplitude reliability, and reliability sensitivity were analyzed under relevant failure modes. The state function of the output shaft reliability optimization design was established, and the structural evolution algorithm obtained the optimal design variables. The results show that the maximum stress of the output shaft is reduced by 14.06%, the natural frequency of the output shaft is increased, the amplitude of the output shaft is reduced by 31.13%, and the reliability of the output shaft is improved. The combination of rigid-flexible coupling virtual prototype technology, reliability sensitivity design theory considering correlated failure modes, and structural evolution algorithm provides a more reliable analysis method for the reliability analysis and design of mechanical equipment transmission mechanisms, which can enhance the reliability of the shearer’s cutting unit and improve safety in fully mechanized coal mining faces. The proposed methodology demonstrates broad applicability in the reliability analysis of critical components for mining machinery, exhibiting universal adaptability across various operational scenarios. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

15 pages, 1774 KiB  
Article
FreqSpatNet: Frequency and Spatial Dual-Domain Collaborative Learning for Low-Light Image Enhancement
by Yu Guan, Mingsi Liu, Xi’ai Chen, Xudong Wang and Xin Luan
Electronics 2025, 14(11), 2220; https://doi.org/10.3390/electronics14112220 - 29 May 2025
Viewed by 419
Abstract
Low-light images often contain noise due to the conditions under which they are taken. Fourier transform can reduce this noise in frequency while preserving the image detail embedded in the low-frequency components. Existing low-light image-enhancement methods based on CNN frameworks often fail to [...] Read more.
Low-light images often contain noise due to the conditions under which they are taken. Fourier transform can reduce this noise in frequency while preserving the image detail embedded in the low-frequency components. Existing low-light image-enhancement methods based on CNN frameworks often fail to extract global feature information and introduce excessive noise, resulting in detail loss. To solve the above problems, we propose a low-light image-enhancement framework and achieve detail restoration and denoising by using Fourier transform. In addition, we design a dual-domain enhancement strategy, which cooperatively utilizes global frequency-domain feature extraction to improve the overall brightness of the image and the amplitude modulation of the spatial-domain convolution operation to perform local detail refinement to improve the quality of the image by suppressing noise, enhancing the contrast, and preserving the texture at the same time. Extensive experiments on low-light datasets show that our results outperform mainstream methods, especially in maintaining natural color distributions and recovering fine-grained details under extreme lighting conditions. We adopted two evaluation indicators, PSNR and SSIM. Our method improved the PSNR by 4.37% compared to the Restormer method and by 1.76% compared to the DRBN method. Full article
Show Figures

Figure 1

28 pages, 9190 KiB  
Article
Development and Optimization of a Novel Semi-Submersible Floater for Floating Wind Turbines in the South China Sea
by Yiming Zhong, Wenze Liu, Wei Shi, Xin Li, Shuaishuai Wang and Constantine Michailides
J. Mar. Sci. Eng. 2025, 13(6), 1073; https://doi.org/10.3390/jmse13061073 - 28 May 2025
Viewed by 611
Abstract
To mitigate the issue of high-pitch natural frequency in V-shaped floating offshore wind turbines (FOWTs), a novel semi-submersible floater design, termed NewSemi, is proposed in this study. The structural performance of the NewSemi floater is compared with that of two existing 5 MW [...] Read more.
To mitigate the issue of high-pitch natural frequency in V-shaped floating offshore wind turbines (FOWTs), a novel semi-submersible floater design, termed NewSemi, is proposed in this study. The structural performance of the NewSemi floater is compared with that of two existing 5 MW FOWTs, namely, the V-shaped and Braceless. Frequency domain analysis demonstrates that the NewSemi floater exhibits the most favorable response amplitude operator (RAO) in the pitch direction, along with superior damping characteristics. The result reveals a 16.44% reduction in pitch natural frequency compared to the V-shaped floater. Time-domain analysis under extreme conditions reveals 14.6% and 65.2% reductions in mean surge and pitch motions compared to Braceless FOWT, demonstrating enhanced stability. In addition, compared with the V-shaped FOWT, it exhibits smaller standards and deviations in surge and pitch motion, with reductions of 11.3% and 31.9%, respectively. To accommodate the trend toward larger FOWTs, an optimization procedure for scaling up floater designs is developed in this study. Using a differential evolution algorithm, the optimization process adjusts column diameter and spacing while considering motion response and steel usage constraints. The NewSemi floater is successfully scaled from 5 MW to 10 MW, and the effects of this scaling on motion and structural dynamics are examined. Numerical analysis indicates that as turbine size increases, the motion response under extreme sea conditions decreases, while structural dynamic responses, including blade root torque, rotor thrust, tower-base-bending moment and axial force, significantly increase. The maximum values of blade root torque and tower-base-bending moment increase by 10.4 times and 3.95 times in different load cases, respectively, while the mooring forces remain stable. This study offers practical engineering guidance for the design and optimization of next-generation floating wind turbines, enhancing their performance and scalability in offshore wind energy applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 7142 KiB  
Article
Analysis of Vibration Characteristics of the Grading Belt in Wolfberry Sorting Machines
by Yang Yu, Zhiwei Su, Junhao Zhang, Jinglong Li and Wu Qin
Appl. Sci. 2025, 15(11), 6022; https://doi.org/10.3390/app15116022 - 27 May 2025
Viewed by 300
Abstract
The vibration of the belt drive system in fresh wolfberry sorting machines significantly impacts the sorting efficiency of wolfberries. To analyze the vibration changes induced by the belt drive, a simulation model was developed using multi-body dynamics software, Recur Dyn. The lateral vibration [...] Read more.
The vibration of the belt drive system in fresh wolfberry sorting machines significantly impacts the sorting efficiency of wolfberries. To analyze the vibration changes induced by the belt drive, a simulation model was developed using multi-body dynamics software, Recur Dyn. The lateral vibration characteristics of the grading device’s belt were examined under varying initial tensions, speeds, and deflection angles. Response surface methodology (RSM) was employed to determine the relative influence of these factors on the belt’s vibration characteristics. The analysis indicated the order of influence, from greatest to least, as initial tension, deflection angle, and speed. Aiming to minimize the vibration amplitude at the belt’s midpoint, the optimal parameter combination was determined. The operating conditions yielding the minimum amplitude were found to be an initial tension of 520 N/mm, a drive speed of 60 rpm, and a belt deflection angle of 5°. Concurrently, a transverse vibration modal analysis was conducted to study the system’s natural frequencies and corresponding mode shapes, aiding in the identification of potential resonance issues. Finally, under optimal operating conditions, guided by the results of the belt simulation test, a 10 mm fillet was introduced at the edge of the pulley, effectively mitigating wear and vibration. Specifically, when the effective length of the transmission mechanism is set to 2200 mm and the total length of the fixed device is configured as 1600 mm, the amplitude attenuation rate achieves its peak value. This study demonstrates that the integration of theoretical analysis with simulation techniques provides a robust approach for optimizing the structural design of the grading device. Full article
Show Figures

Figure 1

Back to TopTop