Strain Monitoring of Vertical Axis Wind Turbine Tower Using Fiber Bragg Gratings
Abstract
1. Introduction
2. Materials and Methods
2.1. Studied Machine
2.2. Sensors
2.3. Installation
2.3.1. Outside Test
2.3.2. Inside Test
3. Results and Discussion
3.1. Outside Test
3.2. Inside Test
3.3. Frequency Analysis
3.3.1. Power Spectral Density
3.3.2. Spectrogram
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bianchi, F.D.; De Battista, H.; Mantz, R.J. Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Ciang, C.C.; Lee, J.R.; Bang, H.J. Structural health monitoring for a wind turbine system: A review of damage detection methods. Meas. Sci. Technol. 2008, 19, 122001. [Google Scholar] [CrossRef]
- Weijtjens, W.; Verbelen, T.; Capello, E.; Devriendt, C. Vibration based structural health monitoring of the substructures of five offshore wind turbines. Procedia Eng. 2017, 199, 2294–2299. [Google Scholar] [CrossRef]
- Andersen, P.B.; Henriksen, L.; Gaunaa, M.; Bak, C.; Buhl, T. Deformable trailing edge flaps for modern megawatt wind turbine controllers using strain gauge sensors. Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. 2010, 13, 193–206. [Google Scholar] [CrossRef]
- LeBlanc, B.; Ferreira, C. Estimation of blade loads for a variable pitch Vertical Axis Wind Turbine with strain gage measurements. Wind Energy 2022, 25, 1030–1045. [Google Scholar] [CrossRef]
- Träsch, M.; Rosado-Hau, N.; Matoug, C.; Arhant, M.; Perier, V.; Augier, B.; Répécaud, M. Blade strain analysis from field measurements on a vertical axis wind turbine. J. Renew. Sustain. Energy 2023, 15, 053301. [Google Scholar] [CrossRef]
- Orlando, A.; Pagnini, L.; Repetto, M.P. Structural response and fatigue assessment of a small vertical axis wind turbine under stationary and non-stationary excitation. Renew. Energy 2021, 170, 251–266. [Google Scholar] [CrossRef]
- Othonos, A.; Kalli, K.; Kohnke, G.E. Fiber Bragg gratings: Fundamentals and applications in telecommunications and sensing. Phys. Today 2000, 53, 61–62. [Google Scholar] [CrossRef]
- Kinet, D.; Mégret, P.; Goossen, K.W.; Qiu, L.; Heider, D.; Caucheteur, C. Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions. Sensors 2014, 14, 7394. [Google Scholar] [CrossRef]
- Krebber, K.; Habel, W.; Gutmann, T.; Schram, C. Fiber Bragg grating sensors for monitoring of wind turbine blades. SPIE 2005, 5855, 1036. [Google Scholar] [CrossRef]
- Wen, B.; Tian, X.; Jiang, Z.; Li, Z.; Dong, X.; Peng, Z. Monitoring blade loads for a floating wind turbine in wave basin model tests using Fiber Bragg Grating sensors: A feasibility study. Mar. Struct. 2020, 71, 102729. [Google Scholar] [CrossRef]
- Mieloszyk, M.; Ostachowicz, W. An application of Structural Health Monitoring system based on FBG sensors to offshore wind turbine support structure model. Mar. Struct. 2017, 51, 65–86. [Google Scholar] [CrossRef]
- Zhou, H.F.; Dou, H.Y.; Qin, L.Z.; Chen, Y.; Ni, Y.Q.; Ko, J.M. A review of full-scale structural testing of wind turbine blades. Renew. Sustain. Energy Rev. 2014, 33, 177–187. [Google Scholar] [CrossRef]
- Kim, H.I.; Han, J.H.; Bang, H.J. Real-time deformed shape estimation of a wind turbine blade using distributed fiber Bragg grating sensors. Wind Energy 2014, 17, 1455–1467. [Google Scholar] [CrossRef]
- Niezrecki, C.; Avitabile, P.; Chen, J.; Sherwood, J.; Lundstrom, T.; LeBlanc, B.; Hughes, S.; Desmond, M.; Beattie, A.; Rumsey, M.; et al. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing. Struct. Health Monit. 2014, 13, 629–643. [Google Scholar] [CrossRef]
- Kim, S.W.; Kang, W.R.; Jeong, M.S.; Lee, I.; Kwon, I.B. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line. Smart Mater. Struct. 2013, 22, 125004. [Google Scholar] [CrossRef]
- Weijtjens, W.; Verbelen, T.; De Sitter, G.; Devriendt, C. Foundation structural health monitoring of an offshore wind turbine—A full-scale case study. Struct. Health Monit. 2016, 15, 389–402. [Google Scholar] [CrossRef]
- Müller, N.; Kraemer, P.; Leduc, D.; Schoefs, F. FBG sensors and signal-based detection method for failure detection of an offshore wind turbine grouted connection. Int. J. Offshore Polar Eng. 2019, 29, 1–7. [Google Scholar] [CrossRef]
- Yang, T.; Tao, T.; Guo, X.; Yang, Y.; Liu, S. Preliminary test for 3D surface strain measurement in the tower and Foundation of Offshore Wind Turbines Using DOFS. Sensors 2023, 23, 6734. [Google Scholar] [CrossRef]
- Rubert, T.; Perry, M.; Fusiek, G.; McAlorum, J.; Niewczas, P.; Brotherston, A.; McCallum, D. Field demonstration of real-time wind turbine foundation strain monitoring. Sensors 2017, 18, 97. [Google Scholar] [CrossRef]
- Schroeder, K.; Ecke, W.; Apitz, J.; Lembke, E.; Lenschow, G. A Fibre Bragg Grating Sensor System Monitors Operational Load in a Wind Turbine Rotor Blade; Institute of Physics Publishing: Bristol, UK, 2006; Volume 17, pp. 1167–1172. [Google Scholar] [CrossRef]
- Othonos, A. Fiber Bragg gratings. Rev. Sci. Instrum. 1997, 68, 4309–4341. [Google Scholar] [CrossRef]
- Aceti, P.; Calervo, L.; Bettini, P.; Sala, G. Measurement and Decoupling of Hygrothermal-Mechanical Effects with Optical Fibers: Development of a New Fiber Bragg Grating Sensor. Sensors 2025, 25, 1037. [Google Scholar] [CrossRef] [PubMed]
Traditional Approaches | FBG Technology | |
---|---|---|
HAWT | [3,4] | [10,11,12,13,14,15,16,17,18,19,20,21] |
VAWT | [5,6,7] | This work |
Wind Force | 1st Tower Mode | Structure Unbalance | |
---|---|---|---|
Frequency [] | 1.1 | ||
Amplitude (trend) | Depends on wind speed | Depends on R (close to 22 rpm or not) and on elapsed time | Proportional to due to centrifugal effect |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Esbeen, B.; Manto, V.; Kinet, D.; Guyot, C.; Caucheteur, C. Strain Monitoring of Vertical Axis Wind Turbine Tower Using Fiber Bragg Gratings. Sensors 2025, 25, 3921. https://doi.org/10.3390/s25133921
Van Esbeen B, Manto V, Kinet D, Guyot C, Caucheteur C. Strain Monitoring of Vertical Axis Wind Turbine Tower Using Fiber Bragg Gratings. Sensors. 2025; 25(13):3921. https://doi.org/10.3390/s25133921
Chicago/Turabian StyleVan Esbeen, Bastien, Valentin Manto, Damien Kinet, Corentin Guyot, and Christophe Caucheteur. 2025. "Strain Monitoring of Vertical Axis Wind Turbine Tower Using Fiber Bragg Gratings" Sensors 25, no. 13: 3921. https://doi.org/10.3390/s25133921
APA StyleVan Esbeen, B., Manto, V., Kinet, D., Guyot, C., & Caucheteur, C. (2025). Strain Monitoring of Vertical Axis Wind Turbine Tower Using Fiber Bragg Gratings. Sensors, 25(13), 3921. https://doi.org/10.3390/s25133921