A Closed-Form Solution for Harvesting Energy from the High-Order Sandwich Beam Subjected to Dynamic Loading
Abstract
1. Introduction
2. Equation of Motion for Unsymmetric Sandwich Beam Based on a Refined Shear Deformation Theory
2.1. Governing Equations
2.2. Analytical Solution for Dynamic Response
2.3. Energy Harvesting from the Piezoelectric Layer
3. Results
3.1. Numerical Example for Validation
3.1.1. Comparison of Natural Vibration Frequencies
3.1.2. Comparison of Vibration Behavior
3.2. Energy Harvesting Analysis Based on Beam Vibration
4. Conclusions
- An analytical method is used to determine the natural vibration frequencies and obtain exact solutions for the dynamic response of the beam subjected to arbitrary impact loads.
- Calculating the energy harvested from a piezoelectric layer attached to the bottom of the beam using an analytical approach, specifically determining the voltage and the harvested electrical power.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erturk, A.; Inman, D.J. Piezoelectric Energy Harvesting: Modelling and Application; Wiley: Chicester, UK, 2011. [Google Scholar]
- Biglari, H.; Teymouri, H.; Shokouhi, A. Dynamic Response of Sandwich Beam with Flexible Porous Core Under Moving Mass. Mech. Compos. Mater. 2024, 60, 163–182. [Google Scholar] [CrossRef]
- Quan, H.V.; Canh, T.M.; Van Phuc, L. Vehicle Model Dynamic Analysis under Random Excitation of Uneven Pavement as Measured by the International Roughness Index. Transp. Commun. Sci. J. 2023, 74, 866–880. [Google Scholar]
- Chen, J.; Yuan, K.; Zhu, L.; Zhao, X. Dynamic Modelling and Stability Analysis of Aero-Engine Rotor System Considering Aerodynamics. Aerosp. Sci. Technol. 2024, 151, 109294. [Google Scholar] [CrossRef]
- Geiger, F.; Bathel, H.; Spors, S.; Bader, R.; Kluess, D. Monitoring of Hip Joint Forces and Physical Activity after Total Hip Replacement by an Integrated Piezoelectric Element. Technologies 2024, 12, 51. [Google Scholar] [CrossRef]
- Kanchan, M.; Santhya, M.; Bhat, R.; Naik, N. Application of Modeling and Control Approaches of Piezoelectric Actuators: A Review. Technologies 2023, 11, 155. [Google Scholar] [CrossRef]
- Yang, K.; Liu, Z.; Yang, Y.; Zhou, G.; Su, C.; Feng, H. Mechanical Properties Test and Failure Analysis of Composite Foam Sandwich Structure in Ramp-Down Zone. Mech. Compos. Mater. 2024, 60, 1027–1040. [Google Scholar] [CrossRef]
- Ninh, V.T.A. Fundamental Frequencies of Bidirectional Functionally Graded Sandwich Beams Partially Supported by Foundation Using Different Beam Theories. Transp. Commun. Sci. J. 2021, 72, 452–467. [Google Scholar]
- Lien, P.T.B. Free Vibration of Porous Functionally Graded Sandwich Beams on Elastic Foundation Based Ontrigonometric Shear Deformation Theory. Transp. Commun. Sci. J. 2023, 74, 946–961. [Google Scholar]
- Hien, T.D.; Hung, N.D.; Hiep, N.T.; Van Tan, G.; Van Thuan, N. Finite Element Analysis of a Continuous Sandwich Beam resting on Elastic Support and Subjected to Two Degree of Freedom Sprung Vehicles. Eng. Technol. Appl. Sci. Res. 2023, 13, 10310–10315. [Google Scholar] [CrossRef]
- Tran, T.T.; Nguyen, N.H.; Van Do, T.; Van Minh, P.; Duc, N.D. Bending and Thermal Buckling of Unsymmetric Functionally Graded Sandwich Beams in High-Temperature Environment Based on a New Third-Order Shear Deformation Theory. J. Sandw. Struct. Mater. 2021, 23, 906–930. [Google Scholar] [CrossRef]
- Huan, D.T.; Huong, L.Q.; Khiem, N.T. Modal Analysis of Cracked Beam with a Piezoelectric Layer. Vietnam J. Mech. 2021, 43, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, T. A Semi-Analytical Model for Energy Harvesting of Flexural Wave Propagation on Thin Plates by Piezoelectric Composite Beam Resonators. Mech. Syst. Signal Process. 2021, 147, 107137. [Google Scholar] [CrossRef]
- Song, J.; Sun, G.; Zeng, X.; Li, X.; Bai, Q.; Zheng, X. Piezoelectric Energy Harvester with Double Cantilever Beam Undergoing Coupled Bending-Torsion Vibrations by Width-Splitting Method. Sci. Rep. 2022, 12, 583. [Google Scholar] [CrossRef]
- Tonan, M.; Pasetto, A.; Doria, A. Vibration Energy Harvesting from Plates by Means of Piezoelectric Dynamic Vibration Absorbers. Appl. Sci. 2024, 14, 402. [Google Scholar] [CrossRef]
- Frýba, L. Vibration of Solids and Structures Under Moving Loads; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 1. [Google Scholar]
- Du, W.; Xiang, Z.; Qiu, X. Stochastic Analysis of an Acoustic Black Hole Piezoelectric Energy Harvester Under Gaussian White Noise Excitation. Appl. Math. Model. 2024, 131, 22–32. [Google Scholar] [CrossRef]
- Zhang, H.; Qin, W.; Zhou, Z.; Zhu, P.; Du, W. Piezomagnetoelastic Energy Harvesting from Bridge Vibrations Using Bi-Stable Characteristics. Energy 2023, 263, 125859. [Google Scholar] [CrossRef]
- Mousavi, M.; Ziaei-Rad, S.; Karimi, A.H. Piezoelectric-Based Energy Harvesting from Bridge Vibrations Subjected to Moving Successive Vehicles by Functionally Graded Cantilever Beams—Theoretical and Experimental Investigations. Mech. Syst. Signal Process. 2023, 188, 110015. [Google Scholar] [CrossRef]
- Hassan, E.; Kouritem, S.A.; Amer, F.Z.; Mubarak, R.I. Acoustic Energy Harvesting Using an Array of Piezoelectric Cantilever Plates for Railways and Highways Environmental Noise. Ain Shams Eng. J. 2023, 15, 102461. [Google Scholar] [CrossRef]
- Adoukatl, C.; Ntamack, G.E.; Azrar, L. High Order Analysis of a Nonlinear Piezoelectric Energy Harvesting of a Piezo Patched Cantilever Beam Under Parametric and Direct Excitations. Mech. Adv. Mater. Struct. 2023, 30, 4835–4861. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, C.; Lai, L.; Dong, X.; Li, Y. Design, Manufacture and Test of Piezoelectric Cantilever-Beam Energy Harvesters with Hollow Structures. Micromachines 2021, 12, 1090. [Google Scholar] [CrossRef]
- Lu, Z.-Q.; Jie, C.; Hu, D.; Li-Qun, C. Two-Span Piezoelectric Beam Energy Harvesting. Int. J. Mech. Sci. 2020, 175, 105532. [Google Scholar] [CrossRef]
- Amini, Y.; Heshmati, M.; Fatehi, P.; Habibi, S. Piezoelectric Energy Harvesting from Vibrations of a Beam Subjected to Multi-moving Loads. Appl. Math. Model. 2017, 49, 1–16. [Google Scholar] [CrossRef]
- Paknejad, A.; Rahimi, G.; Farrokhabadi, A.; Khatibi, M.M. Analytical Solution of Piezoelectric Energy Harvester Patch for Various Thin Multilayer Composite Beams. Compos. Struct. 2016, 154, 694–706. [Google Scholar] [CrossRef]
- Erturk, A. Piezoelectric Energy Harvesting for Civil Infrastructure System Applications: Moving Loads and Surface Strain Fluctuations. J. Intell. Mater. Syst. Struct. 2011, 22, 1959–1973. [Google Scholar] [CrossRef]
- Ali, S.F.; Friswell, M.I.; Adhikari, S. Analysis of Energy Harvesters for Highway Bridges. J. Intell. Mater. Syst. Struct. 2011, 22, 1929–1938. [Google Scholar] [CrossRef]
- Kadivar, M.; Mohebpour, S. Finite Element Dynamic Analysis of Unsymmetric Composite Laminated Beams with Shear Effect and Rotary Inertia Under the Action of Moving Loads. Finite Elem. Anal. Des. 1998, 29, 259–273. [Google Scholar] [CrossRef]
- Ta, H.-D.; Noh, H.-C. Analytical Solution for the Dynamic Response of Functionally Graded Rectangular Plates Resting on Elastic Foundation Using a Refined Plate Theory. Appl. Math. Model. 2015, 39, 6243–6257. [Google Scholar] [CrossRef]
- Reddy, J.N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Clough, R.W.; Penzien, J. Dynamics of Structures, 2nd ed.; Computers and Structures: Berkeley, CA, USA, 2010. [Google Scholar]
Material Properties | Face Layer | Core Layer |
---|---|---|
Elastic modulus (GPa) | 200 | 30 |
Mass density (kg/m3) | 7800 | 2400 |
h (cm) | Mode | Present | CPT | Error (%) |
---|---|---|---|---|
40 | Mode 1 | 84.51 | 85.00 | 0.58 |
Mode 2 | 331.17 | 338.68 | 2.22 | |
Mode 3 | 721.76 | 757.22 | 4.68 | |
50 | Mode 1 | 101.53 | 102.37 | 0.82 |
Mode 2 | 394.54 | 407.13 | 3.09 | |
Mode 3 | 849.59 | 907.35 | 6.37 | |
60 | Mode 1 | 117.98 | 119.29 | 1.10 |
Mode 2 | 454.12 | 473.30 | 4.05 | |
Mode 3 | 965.50 | 1050.90 | 8.13 | |
70 | Mode 1 | 133.97 | 135.88 | 1.40 |
Mode 2 | 510.36 | 537.68 | 5.08 | |
Mode 3 | 1071.01 | 1188.79 | 9.91 | |
80 | Mode 1 | 149.57 | 152.22 | 1.74 |
Mode 2 | 563.50 | 600.53 | 6.17 | |
Mode 3 | 1167.04 | 1321.49 | 11.69 |
Description | Parameter | Numerical Value |
---|---|---|
Plane stress piezoelectric stress constant | −16 (C/m2) | |
Permittivity component | 9.57 (nF/m) | |
Width of piezoceramic patch | 0.05 (m) | |
High of piezoceramic patch | 0.0002 (m) |
Energy Harvested (J) | |||||
---|---|---|---|---|---|
Loading Type | h (m) | h/L | Load Magnitude | ||
5 kN/m | 10 kN/m | 15 kN/m | |||
Sine loading | 0.4 | 1/20 | 0.0667 | 0.2667 | 0.6000 |
0.6 | 1/13.3 | 0.0129 | 0.0516 | 0.1161 | |
0.8 | 1/10 | 0.0048 | 0.0194 | 0.0436 | |
Step loading | 0.4 | 1/20 | 0.1020 | 0.4080 | 0.9180 |
0.6 | 1/13.3 | 0.0352 | 0.1407 | 0.3165 | |
0.8 | 1/10 | 0.0125 | 0.0499 | 0.1122 | |
Triangular loading | 0.4 | 1/20 | 0.0749 | 0.2997 | 0.6744 |
0.6 | 1/13.3 | 0.0212 | 0.0847 | 0.1905 | |
0.8 | 1/10 | 0.0085 | 0.0341 | 0.0766 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dao, S.-D.; Nguyen, D.-D.; Nguyen, N.-L.; Thai, D.-K. A Closed-Form Solution for Harvesting Energy from the High-Order Sandwich Beam Subjected to Dynamic Loading. Buildings 2025, 15, 2135. https://doi.org/10.3390/buildings15122135
Dao S-D, Nguyen D-D, Nguyen N-L, Thai D-K. A Closed-Form Solution for Harvesting Energy from the High-Order Sandwich Beam Subjected to Dynamic Loading. Buildings. 2025; 15(12):2135. https://doi.org/10.3390/buildings15122135
Chicago/Turabian StyleDao, Sy-Dan, Dang-Diem Nguyen, Ngoc-Lam Nguyen, and Duc-Kien Thai. 2025. "A Closed-Form Solution for Harvesting Energy from the High-Order Sandwich Beam Subjected to Dynamic Loading" Buildings 15, no. 12: 2135. https://doi.org/10.3390/buildings15122135
APA StyleDao, S.-D., Nguyen, D.-D., Nguyen, N.-L., & Thai, D.-K. (2025). A Closed-Form Solution for Harvesting Energy from the High-Order Sandwich Beam Subjected to Dynamic Loading. Buildings, 15(12), 2135. https://doi.org/10.3390/buildings15122135