Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,134)

Search Parameters:
Keywords = nanomaterials for delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 6350 KB  
Review
Nanoparticle Applications in Plant Biotechnology: A Comprehensive Review
by Viktor Husak, Milos Faltus, Alois Bilavcik, Stanislav Narozhnyi and Olena Bobrova
Plants 2026, 15(3), 364; https://doi.org/10.3390/plants15030364 (registering DOI) - 24 Jan 2026
Abstract
Nanotechnology is becoming a key tool in plant biotechnology, enabling nanoparticles (NPs) to deliver biomolecules with high precision and to enhance plant and tissue resilience under stress. However, the literature remains fragmented across genetic delivery, in vitro regeneration, stress mitigation, and germplasm cryopreservation, [...] Read more.
Nanotechnology is becoming a key tool in plant biotechnology, enabling nanoparticles (NPs) to deliver biomolecules with high precision and to enhance plant and tissue resilience under stress. However, the literature remains fragmented across genetic delivery, in vitro regeneration, stress mitigation, and germplasm cryopreservation, and it still lacks standardized, comparable protocols and robust long-term safety assessments—particularly for NP use in cryogenic workflows. This review critically integrates recent advances in NP-enabled (i) genetic engineering and transformation, (ii) tissue culture and regeneration, (iii) nanofertilization and abiotic stress mitigation, and (iv) cryopreservation of plant germplasm. Across these areas, the most consistent findings indicate that NPs can facilitate targeted transport of DNA, RNA, proteins, and regulatory complexes; modulate oxidative and osmotic stress responses; and improve regeneration performance in recalcitrant species. In cryopreservation, selected nanomaterials act as multifunctional cryoprotective adjuvants by suppressing oxidative injury, stabilizing cellular membranes, and improving post-thaw viability and regrowth of sensitive tissues. At the same time, NP outcomes are highly context-dependent, with efficacy governed by dose, size, and surface chemistry; formulation; plant genotype; and interactions with culture media or vitrification solutions. Evidence of potential phytotoxicity, persistence, and biosafety risks highlights the need for harmonized reporting, mechanistic studies on NP–cell interfaces, and evaluation of environmental fate. Expected outcomes of this review include a consolidated framework linking NP properties to biological endpoints, identification of design principles for application-specific NP selection, and a set of research priorities to accelerate the safe and reproducible translation of nanotechnology into sustainable plant biotechnology and long-term germplasm preservation. Full article
Show Figures

Figure 1

37 pages, 6663 KB  
Review
Smart Biosensing Nanomaterials for Alzheimer’s Disease: Advances in Design and Drug Delivery Strategies to Overcome the Blood–Brain Barrier
by Manickam Rajkumar, Furong Tian, Bilal Javed, Bhupendra G. Prajapati, Paramasivam Deepak, Koyeli Girigoswami and Natchimuthu Karmegam
Biosensors 2026, 16(1), 66; https://doi.org/10.3390/bios16010066 - 21 Jan 2026
Viewed by 57
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by persistent memory impairment and complex molecular and cellular pathological changes in the brain. Current treatments, including acetylcholinesterase inhibitors and memantine, only help with symptoms for a short time and do not stop the [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by persistent memory impairment and complex molecular and cellular pathological changes in the brain. Current treatments, including acetylcholinesterase inhibitors and memantine, only help with symptoms for a short time and do not stop the disease from getting worse. This is mainly because these drugs do not reach the brain well and are quickly removed from the body. The blood–brain barrier (BBB) restricts the entry of most drugs into the central nervous system; therefore, new methods of drug delivery are needed. Nanotechnology-based drug delivery systems (NTDDS) are widely studied as a potential approach to address existing therapeutic limitations. Smart biosensing nanoparticles composed of polymers, lipids, and metals can be engineered to enhance drug stability, improve drug availability, and target specific brain regions. These smart nanoparticles can cross the BBB via receptor-mediated transcytosis and other transport routes, making them a promising option for treating AD. Additionally, multifunctional nanocarriers enable controlled drug release and offer theranostic capabilities, supporting real-time tracking of AD treatment responses to facilitate more precise and personalized interventions. Despite these advantages, challenges related to long-term safety, manufacturing scalability, and regulatory approval remain. This review discusses current AD therapies, drug-delivery strategies, recent advances in nanoparticle platforms, and prospects for translating nanomedicine into effective, disease-modifying treatments for AD. Full article
(This article belongs to the Special Issue Advanced Microfluidic Devices and MEMS in Biosensing Applications)
Show Figures

Figure 1

30 pages, 6458 KB  
Review
Carbon Dots and Biomimetic Membrane Systems: Mechanistic Interactions and Hybrid Nano-Lipid Platforms
by Nisreen Nusair and Mithun Bhowmick
Nanomaterials 2026, 16(2), 140; https://doi.org/10.3390/nano16020140 - 20 Jan 2026
Viewed by 113
Abstract
Carbon dots (CDs) have emerged as a distinct class of fluorescent nanomaterials distinguished by their tunable physicochemical properties, ultrasmall size, exceptional photoluminescence, versatile surface chemistry, high biocompatibility, and chemical stability, positioning them as promising candidates for biomedical applications ranging from sensing and imaging [...] Read more.
Carbon dots (CDs) have emerged as a distinct class of fluorescent nanomaterials distinguished by their tunable physicochemical properties, ultrasmall size, exceptional photoluminescence, versatile surface chemistry, high biocompatibility, and chemical stability, positioning them as promising candidates for biomedical applications ranging from sensing and imaging to drug delivery and theranostics. As CDs increasingly transition toward biological and clinical use, a fundamental understanding of their interactions with biological membranes becomes essential, as cellular membranes govern nanoparticle uptake, intracellular transport, and therapeutic performance. Model membrane systems, such as phospholipid vesicles and liposomes, offer controllable platforms to elucidate CD-membrane interactions by isolating key physicochemical variables otherwise obscured in complex biological environments. Recent studies demonstrate that CD surface chemistry, charge, heteroatom doping, size, and hydrophobicity, together with membrane composition, packing density, and phase behavior, dictate nanoparticle adsorption, insertion, diffusion, and membrane perturbation. In addition, CD-liposome hybrid systems have gained momentum as multifunctional nanoplatforms that couple the fluorescence and traceability of CDs with the encapsulation capacity and biocompatibility of lipid vesicles, enabling imaging-guided drug delivery and responsive theranostic systems. This review consolidates current insights into the mechanistic principles governing CD interactions with model membranes and highlights advances in CD-liposome hybrid nanostructures. By bridging fundamental nanoscale interactions with translational nanomedicine strategies, this work provides a framework for the rational design of next-generation CD-based biointerfaces with optimized structural, optical, and biological performance. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

27 pages, 1311 KB  
Review
Peptide-Functionalized Iron Oxide Nanoparticles for Cancer Therapy: Targeting Strategies, Mechanisms, and Translational Opportunities
by Andrey N. Kuskov, Lydia-Nefeli Thrapsanioti, Ekaterina Kukovyakina, Anne Yagolovich, Elizaveta Vlaskina, Petros Tzanakakis, Aikaterini Berdiaki and Dragana Nikitovic
Molecules 2026, 31(2), 236; https://doi.org/10.3390/molecules31020236 - 10 Jan 2026
Viewed by 400
Abstract
Therapeutic peptides have emerged as promising tools in oncology due to their high specificity, favorable safety profile, and capacity to target molecular hallmarks of cancer. Their clinical translation, however, remains limited by poor stability, rapid proteolytic degradation, and inefficient biodistribution. Iron oxide nanoparticles [...] Read more.
Therapeutic peptides have emerged as promising tools in oncology due to their high specificity, favorable safety profile, and capacity to target molecular hallmarks of cancer. Their clinical translation, however, remains limited by poor stability, rapid proteolytic degradation, and inefficient biodistribution. Iron oxide nanoparticles (IONPs) offer a compelling solution to these challenges. Owing to their biocompatibility, magnetic properties, and ability to serve as both drug carriers and imaging agents, IONPs have become a versatile platform for precision nanomedicine. The integration of peptides with IONPs has generated a new class of hybrid systems that combine the biological accuracy of peptide ligands with the multifunctionality of magnetic nanomaterials. Peptide functionalization enables selective tumor targeting and deeper tissue penetration, while the IONP core supports controlled delivery, MRI-based tracking, and activation of therapeutic mechanisms such as magnetic hyperthermia. These hybrids also influence the tumor microenvironment (TME), facilitating stromal remodeling and improved drug accessibility. Importantly, the iron-driven redox chemistry inherent to IONPs can trigger regulated cell death pathways, including ferroptosis and autophagy, inhibiting opportunities to overcome resistance in aggressive or refractory tumors. As advances in peptide engineering, nanotechnology, and artificial intelligence accelerate design and optimization, peptide–IONP conjugates are poised for translational progress. Their combined targeting precision, imaging capability, and therapeutic versatility position them as promising candidates for next-generation cancer theranostics. Full article
Show Figures

Graphical abstract

22 pages, 1479 KB  
Review
Application of Graphene Oxide Nanomaterials in Crop Plants and Forest Plants
by Yi-Xuan Niu, Xin-Yu Yao, Jun Hyok Won, Zi-Kai Shen, Chao Liu, Weilun Yin, Xinli Xia and Hou-Ling Wang
Forests 2026, 17(1), 94; https://doi.org/10.3390/f17010094 - 10 Jan 2026
Viewed by 169
Abstract
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, [...] Read more.
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, and root or soil exposure, while comparing annual crops with woody forest plants. Mechanistic progress points to a shared physicochemical basis: surface oxygen groups and sheet geometry reshape water and ion microenvironments at the soil–seed and soil–rhizosphere interfaces, and many reported shifts in antioxidant enzymes and hormone pathways likely represent downstream stress responses. In crops, low-to-moderate doses most consistently improve germination, root architecture, and tolerance to salinity or drought stress, whereas high doses or prolonged root exposure can cause root surface coating, oxidative injury, and photosynthetic inhibition. In forest plants, evidence remains limited and often relies on seedlings or tissue culture. For forest plants with long life cycles, processes such as soil persistence, aging, and multi-seasonal carry-over become key factors, especially in nurseries and restoration substrates. The available data indicate predominant root retention with generally limited root-to-shoot translocation, so residues in edible and medicinal organs remain insufficiently quantified under realistic-use patterns. This review provides a scenario-based framework for crop- and forestry-specific safe-dose windows and proposes standardized endpoints for long-term fate and ecological risk assessment. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

26 pages, 780 KB  
Review
Next-Generation Biomaterials: Advanced Coatings and Smart Interfaces for Implant Technology: A Narrative Review
by Arun K. Movva, Michael O. Sohn, Connor P. McCloskey, Joshua M. Tennyson, Kishen Mitra, Samuel B. Adams and Albert T. Anastasio
Coatings 2026, 16(1), 87; https://doi.org/10.3390/coatings16010087 - 10 Jan 2026
Viewed by 304
Abstract
Contemporary advances in bioengineering and materials science have substantially improved the viability of medical implants. The demand for optimized implant technologies has led to the development of advanced coatings that enhance biocompatibility, antimicrobial activity, and durability. Implant manufacturers and surgeons must anticipate both [...] Read more.
Contemporary advances in bioengineering and materials science have substantially improved the viability of medical implants. The demand for optimized implant technologies has led to the development of advanced coatings that enhance biocompatibility, antimicrobial activity, and durability. Implant manufacturers and surgeons must anticipate both biological and mechanical challenges when implementing devices for patient use. Key areas of concern include infection, corrosion, wear, immune response, and implant rejection; regulatory and economic considerations must also be addressed. Materials science developments are optimizing the integration of established materials such as biometrics, composites, and nanomaterials, while also advancing fabrication-based innovations including plasma functionalization, anodization, and self-assembled monolayers. Emerging smart and stimuli-responsive surface technologies enable controlled drug delivery and real-time implant status communication. These innovations enhance osseointegration, antimicrobial performance, and overall device functionality across orthopedic, dental, and cardiovascular applications. As implant design continues to shift toward personalized, responsive systems, advanced coating technologies are poised to deliver significantly improved long-term clinical outcomes for patients. Full article
(This article belongs to the Special Issue Advanced Coatings and Materials for Biomedical Applications)
Show Figures

Figure 1

39 pages, 3073 KB  
Review
The Future of Green Chemistry: Evolution and Recent Trends in Deep Eutectic Solvents Research
by Veronika Jančíková and Michal Jablonský
Appl. Sci. 2026, 16(2), 654; https://doi.org/10.3390/app16020654 - 8 Jan 2026
Viewed by 535
Abstract
Deep eutectic solvents are a sustainable and chemically tunable class of solvents formed by strong hydrogen bonding between a hydrogen bond acceptor and a hydrogen bond donor. Their extreme versatility has established deep eutectic solvents in ten key applied areas, including the green [...] Read more.
Deep eutectic solvents are a sustainable and chemically tunable class of solvents formed by strong hydrogen bonding between a hydrogen bond acceptor and a hydrogen bond donor. Their extreme versatility has established deep eutectic solvents in ten key applied areas, including the green extraction of bioactive compounds, CO2 capture, electrochemistry, and the catalytic media. Research is shifting towards highly innovative frontier trends, such as the role of deep eutectic solvents in dynamic covalent chemistry and as templates for advanced photocatalytic nanomaterials. Other innovative directions include artificial organelles for bioremediation, thermoacoustic deep eutectic solvents for smart drug delivery, and their use as multifunctional interfaces for 2D materials. The future of deep eutectic solvents lies in process engineering and scale-up, supported by computational chemistry, confirming their position as a central pillar of the circular economy. This trajectory marks the transition of deep eutectic solvents from laboratory curiosities to a scalable industrial reality. Full article
(This article belongs to the Special Issue Technical Advances in Biomass Conversion)
Show Figures

Figure 1

32 pages, 1605 KB  
Review
Nanomedicine-Driven Therapeutic Strategies for Rheumatoid Arthritis-Associated Depression: Mechanisms and Pharmacological Progress
by Jiaxiang Hu, Mingqin Shi, Miao Tian, Baiqing Xie, Yi Tan, Dongxu Zhou, Tengfei Qian and Dongdong Qin
Pharmaceuticals 2026, 19(1), 94; https://doi.org/10.3390/ph19010094 - 4 Jan 2026
Viewed by 385
Abstract
Rheumatoid arthritis (RA) is frequently accompanied by depression, a comorbidity arising from the interplay of chronic systemic inflammation, neuroimmune activation, oxidative stress, and dysregulation of the gut–brain axis. Increasing evidence suggests that nanomedicine offers unique opportunities for the integrated management of RA-associated depression [...] Read more.
Rheumatoid arthritis (RA) is frequently accompanied by depression, a comorbidity arising from the interplay of chronic systemic inflammation, neuroimmune activation, oxidative stress, and dysregulation of the gut–brain axis. Increasing evidence suggests that nanomedicine offers unique opportunities for the integrated management of RA-associated depression by enabling precise modulation of both peripheral inflammation and central nervous system (CNS) pathology. This review outlines the biological mechanisms linking RA and depression—including cytokine cascades, mitochondrial dysfunction, reactive oxygen species (ROS) accumulation, and microbial metabolite imbalance—and highlights recent progress in nanocarrier platforms capable of dual-site intervention. Liposomes, polymeric nanoparticles (NPs), exosomes, inorganic nanozymes, and emerging carbon-based nanomaterials have demonstrated the ability to target inflamed synovium, reprogram macrophage phenotypes, traverse the blood–brain barrier (BBB), suppress microglial overactivation, enhance neuroplasticity, and restore gut microbial homeostasis. Furthermore, stimulus-responsive nanoplatforms activated by ROS, pH, enzymes, or hypoxia provide spatiotemporally controlled drug release, thereby improving therapeutic precision. Finally, we discuss integrative designs such as dual-targeting nanomedicines, co-delivery systems, and microbiota-modulating nano-interventions, which offer promising strategies for the comprehensive treatment of RA-associated depression. This review aims to provide mechanistic insights and design principles to guide the development of next-generation nanomedicine for coordinated systemic-central modulation in RA comorbidity. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Drug Delivery)
Show Figures

Graphical abstract

22 pages, 1744 KB  
Review
From Circulation to Regeneration: Blood Cell Membrane-Coated Nanoparticles as Drug Delivery Platform for Immune-Regenerative Therapy
by Yun-A Kim, Min Hee Lee, Hee Su Sohn and Han Young Kim
Pharmaceutics 2026, 18(1), 66; https://doi.org/10.3390/pharmaceutics18010066 - 4 Jan 2026
Viewed by 585
Abstract
Cell membrane-coated nanoparticles represent a biomimetic drug delivery approach that integrates biological membrane functions with synthetic nanomaterials. Among the various membrane sources, those derived from blood cells such as red blood cells, platelets, and leukocytes offer distinctive advantages, including immune evasion, prolonged systemic [...] Read more.
Cell membrane-coated nanoparticles represent a biomimetic drug delivery approach that integrates biological membrane functions with synthetic nanomaterials. Among the various membrane sources, those derived from blood cells such as red blood cells, platelets, and leukocytes offer distinctive advantages, including immune evasion, prolonged systemic circulation, and selective tissue targeting. These properties collectively enable efficient and biocompatible delivery of therapeutic agents to diseased tissues, minimizing off-target effects and systemic toxicity. This review focuses on blood cell membrane-derived nanocarriers as drug delivery and immune-regenerative platforms, in which membrane-mediated immunomodulation synergizes with therapeutic payloads to address inflammatory or degenerative pathology. We discuss recent advances in blood cell membrane coating technologies, including membrane isolation, nanoparticle core selection, fabrication techniques, and the development of hybrid and engineered membrane systems that enhance therapeutic efficacy through integrated immune regulation and localized drug action. To illustrate these advances, we also compile membrane type-specific nanocarrier systems, summarizing their core nanoparticle designs, coating strategies, therapeutic cargoes, and associated disease models. Challenges related to biological source variability, scalability, safety, and regulatory standardization remain important considerations for clinical translation. In this review we systematically address these issues and discuss emerging solutions and design strategies aimed at advancing blood cell membrane-based nanocarriers toward clinically viable immune-regenerative therapies. Full article
(This article belongs to the Special Issue Cell-Mediated Delivery Systems)
Show Figures

Figure 1

29 pages, 1989 KB  
Review
Marine Macroalgal Polysaccharides in Nanomedicine: Blue Biotechnology Contributions in Advanced Therapeutics
by Renu Geetha Bai, Surya Sudheer, Amal D. Premarathna and Rando Tuvikene
Molecules 2026, 31(1), 175; https://doi.org/10.3390/molecules31010175 - 2 Jan 2026
Viewed by 578
Abstract
Marine macroalgae represent a versatile and sustainable platform within blue biotechnology, offering structurally diverse polysaccharides that are making significant contributions to next-generation therapeutical applications. Algae are rich sources of high-value biomolecules, including polysaccharides, vitamins, minerals, proteins, antioxidants, pigments and fibers. Algal biomolecules are [...] Read more.
Marine macroalgae represent a versatile and sustainable platform within blue biotechnology, offering structurally diverse polysaccharides that are making significant contributions to next-generation therapeutical applications. Algae are rich sources of high-value biomolecules, including polysaccharides, vitamins, minerals, proteins, antioxidants, pigments and fibers. Algal biomolecules are widely explored in modern pharmaceuticals due to their range of physiochemical and biological properties. Recently, algal polysaccharides have gained increasing attention in nanomedicine due to their biocompatibility, biodegradability and tunable bioactivity. The nanomedical applications of algal polysaccharides pertain to their anti-coagulant, antiviral, anti-inflammatory, antimicrobial and anti-cancer properties. In this review, we discuss some major macroalgal polysaccharides, such as agar, agarose, funoran, porphyran, carrageenan, alginate and fucoidan, as well as their structure, uses, and applications in nanomedical systems. Both sulfated and non-sulfated polysaccharides demonstrate significant therapeutic properties when engineered into their nanotherapeutic forms. Previous studies show antimicrobial potential of 80–90% antiviral activity > 70%, significant anticoagulant activity, and excellent anticancer responses (up to 80% reductions in cancer cell viability have been reported in nanoformulated versions of polysaccharides). This review discusses structure–function relationships, bioactivities, nanomaterial synthesis and nanomedical applications (e.g., drug delivery, tissue engineering, biosensing, bioimaging, and nanotheranostics). Overall, this review reflects the potential of algal polysaccharides as building blocks in sustainable biomedical engineering in the future healthcare industry. Full article
Show Figures

Graphical abstract

41 pages, 1227 KB  
Review
Lanthanide Nanotheranostics in Radiotherapy
by Shaofeng Han, Yurun Liu, Taoyang Cai, Yanru Liu and Shangjie Ge-Zhang
Int. J. Mol. Sci. 2026, 27(1), 426; https://doi.org/10.3390/ijms27010426 - 31 Dec 2025
Viewed by 531
Abstract
Radiotherapy, a cornerstone of cancer treatment, is critically limited by tumor radioresistance and off-target toxicity. Lanthanide-based nanomaterials (Ln-NPs) have recently emerged as a versatile and promising class of theranostic radiosensitizers to overcome these hurdles. This review comprehensively outlines the state-of-the-art in Ln-NP-enabled radiotherapy, [...] Read more.
Radiotherapy, a cornerstone of cancer treatment, is critically limited by tumor radioresistance and off-target toxicity. Lanthanide-based nanomaterials (Ln-NPs) have recently emerged as a versatile and promising class of theranostic radiosensitizers to overcome these hurdles. This review comprehensively outlines the state-of-the-art in Ln-NP-enabled radiotherapy, beginning with their fundamental physicochemical properties and synthesis and then delving into the multi-level mechanisms of radiosensitization, including high-Z element-mediated physical dose amplification, catalytic generation of reactive oxygen species (ROS), and disruption of DNA damage repair pathways. The unique capacity of certain Ln-NPs to serve as MRI contrast agents is highlighted as the foundation for image-guided, dose-painting radiotherapy. We critically summarize the preclinical and clinical progress of representative systems, benchmarking them against other high-Z nanomaterials. Finally, this work discusses the ongoing challenges, such as biocompatibility, targeted delivery, and regulatory hurdles, and envisages future directions, including combinatorial strategies with immunotherapy and the development of personalized nanotheranostic paradigms. Through this synthesis, this review aims to provide a clear roadmap for the continued development and clinical integration of lanthanide nanotheranostics in oncology. Full article
(This article belongs to the Special Issue New Advances in Radiopharmaceuticals and Radiotherapy)
Show Figures

Figure 1

27 pages, 4988 KB  
Review
Recent Advances in Functionalized Gold Nanoprobes for Photoacoustic Imaging Analysis of Diseases
by Zhiwan Huang, Hanying Ye, Haiting Cao, Yao Ma, Kecheng Lou, Yao He and Binbin Chu
Sensors 2026, 26(1), 203; https://doi.org/10.3390/s26010203 - 28 Dec 2025
Viewed by 581
Abstract
Photoacoustic imaging (PAI) integrates the high-contrast merits of optical imaging with the high-spatial-resolution advantages of acoustic imaging, enabling the acquisition of three-dimensional images with deep tissue penetration (up to several centimeters) for in vivo disease detection and diagnosis. Among various photoacoustic nanoagents, gold [...] Read more.
Photoacoustic imaging (PAI) integrates the high-contrast merits of optical imaging with the high-spatial-resolution advantages of acoustic imaging, enabling the acquisition of three-dimensional images with deep tissue penetration (up to several centimeters) for in vivo disease detection and diagnosis. Among various photoacoustic nanoagents, gold nanomaterials (GNMs) have been widely explored for the PAI-based imaging analysis and photothermal therapy of diseases, owing to their strong near-infrared (NIR) absorption, which can generate distinct photoacoustic signals in deep tissues. This review focuses on recent advances and achievements in the development of functionalized gold nanoprobes, including Janus gold nanoprobes, gold nanocomposite probes (such as functionally coated GNMs and GNMs-loaded nanocarriers), and gold nanoaggregate probes (e.g., pre-assembly of GNMs and in situ aggregation of GNMs). The multifunctionalization of GNMs can enhance their PAI performance by shifting absorption to the NIR-I and NIR-II regions, while simultaneously imparting additional functionalities such as targeted delivery to disease sites and specific responsiveness to disease biomarkers. These features can render functionalized GNMs-based nanoprobes highly suitable for PAI-based analysis and the precise detection of various pathological conditions, including bacterial infections, tumors, kidney injury, and disorders affecting the ocular, gastrointestinal, cardiovascular, visceral, and lymphatic systems. Finally, this review provides a concise summary of biosafety evaluation and outlines the current challenges and future perspectives in optimizing the GNMs-based PAI methods, highlighting their potential to enhance the rapid and precise diagnosis of diseases in the future. Full article
(This article belongs to the Special Issue Photoacoustic and Photothermal Sensing and Imaging)
Show Figures

Figure 1

31 pages, 2836 KB  
Review
Nanotechnology for Metformin Release Systems: Nanostructures, Biopolymer Carriers, and Techniques—A Review
by Eneida Azaret Montaño-Grijalva, Francisco Rodríguez-Félix, José Agustín Tapia-Hernández, Enrique Márquez-Ríos, Carmen Lizette Del-Toro-Sánchez, Dora Evelia Rodríguez-Félix, Ricardo Nalda-Molina, Elizabeth Carvajal-Millan, Carlos Gregorio Barreras-Urbina, Itzel Yanira López-Peña and Cielo Estefanía Figueroa-Enríquez
Sci. Pharm. 2026, 94(1), 3; https://doi.org/10.3390/scipharm94010003 - 24 Dec 2025
Viewed by 355
Abstract
Currently, there are various approaches to the treatment of diabetes. Regarding type 2 diabetes (T2D), treatment focuses on blood glucose control. When changes in lifestyle do not achieve this glycemic control, the option is to start therapy with antidiabetic drugs such as metformin. [...] Read more.
Currently, there are various approaches to the treatment of diabetes. Regarding type 2 diabetes (T2D), treatment focuses on blood glucose control. When changes in lifestyle do not achieve this glycemic control, the option is to start therapy with antidiabetic drugs such as metformin. However, long-term metformin use causes disturbances that may affect treatment approaches. This review examines recent advances in nanotechnology that have developed new forms of drug administration that can improve the efficacy of the treatment, where nanomaterials, nanostructures, and nanoparticle design are involved, so that they provide controlled and gradual release. The use of biopolymers (as drug delivery systems) has ensured biocompatibility, biodegradability, and low toxicity. There are several methods for obtaining a drug delivery system, including electrospinning, electrospraying, nanoprecipitation, etc. These systems improve drug delivery and can be used orally, transdermally, or intravenously, among means of administration. This review describes the new forms of the administration of metformin in the treatment of T2D, based on the encapsulation of metformin in polymeric matrices such as proteins, polysaccharides, and lipids, among others. Full article
Show Figures

Figure 1

18 pages, 920 KB  
Review
Application of Amorphous Nanomaterials in Dentistry: A Comprehensive Review
by Iris Xiaoxue Yin, John Yun Niu, Veena Wenqing Xu, Ollie Yiru Yu, Irene Shuping Zhao and Chun Hung Chu
J. Funct. Biomater. 2026, 17(1), 11; https://doi.org/10.3390/jfb17010011 - 23 Dec 2025
Viewed by 382
Abstract
Conventional dental materials with organised crystal structures exhibit limitations in corrosion resistance, bioactivity, and drug delivery capability. In contrast, amorphous nanomaterials offer potential advantages in overcoming these limitations due to their unique structural properties. They are characterised by a non-crystalline, disordered atomic structure [...] Read more.
Conventional dental materials with organised crystal structures exhibit limitations in corrosion resistance, bioactivity, and drug delivery capability. In contrast, amorphous nanomaterials offer potential advantages in overcoming these limitations due to their unique structural properties. They are characterised by a non-crystalline, disordered atomic structure and are similar to a solidified liquid at the nanoscale. Among the amorphous nanomaterials used in dentistry, there are five major categories: calcium-, silicon-, magnesium-, zirconia-, and polymer-based systems. This study reviewed these amorphous nanomaterials by investigating their synthesis, properties, applications, limitations, and future directions in dentistry. These amorphous nanomaterials are synthesised primarily through low-temperature methods, including sol–gel processes, rapid precipitation, and electrochemical etching, which prevent atomic arrangements into crystalline structures. The resulting disordered atomic configuration confers exceptional properties, including enhanced solubility, superior drug-loading capacity, high surface reactivity, and controlled biodegradability. These characteristics enable diverse dental applications. Calcium-based amorphous nanomaterials, particularly amorphous calcium phosphate, demonstrate the ability to remineralise tooth enamel. Silicon-based amorphous nanomaterials function as carriers that can release antibacterial agents in response to stimuli. Magnesium-based amorphous nanomaterials are antibacterial and support natural bone regeneration. Zirconia-based amorphous nanomaterials strengthen the mechanical properties of restorative materials. Polymer-based amorphous nanomaterials enable controlled release of medications over extended periods. Despite the advances in these amorphous nanomaterials, there are limitations regarding material stability over time, precise control of degradation rates in the oral environment, and the development of reliable large-scale manufacturing processes. Researchers are creating smart materials that respond to specific oral conditions and developing hybrid systems that combine the strengths of different nanomaterials. In summary, amorphous nanomaterials hold great promise for advancing dental treatments through their unique properties and versatile applications. Clinically, these materials could improve the durability, bioactivity, and targeted drug delivery in dental restorations and therapies, leading to better patient outcomes. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

20 pages, 4219 KB  
Article
Antibacterial, Redox, Cytotoxic, and Ecotoxic Properties of New Sol–Gel Silica-Copper-Based Materials
by Iliana Ivanova, Lilia Yordanova, Lora Simeonova, Miroslav Metodiev, Elena Nenova, Deyan Monov, Yoanna Kostova, Albena Bachvarova-Nedelcheva, Iva Kirova and Elitsa Pavlova
Pharmaceuticals 2026, 19(1), 35; https://doi.org/10.3390/ph19010035 - 23 Dec 2025
Viewed by 317
Abstract
Objective: The objective of our study was to synthesize and characterize silica–copper nanomaterials and to evaluate their biological properties (antibacterial, redox, cytotoxic, and ecotoxic) for potential applications. Methods and Results: Si/Cu-based materials were prepared by a sol–gel method. They were characterized by XRD, [...] Read more.
Objective: The objective of our study was to synthesize and characterize silica–copper nanomaterials and to evaluate their biological properties (antibacterial, redox, cytotoxic, and ecotoxic) for potential applications. Methods and Results: Si/Cu-based materials were prepared by a sol–gel method. They were characterized by XRD, UV-Vis, and SEM-EDS. The antibacterial activity of the materials was evaluated against Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium), and yeasts (Candida albicans, Saccharomyces cerevisiae). The nanomaterial that was calcined at 500 °C exhibited greater antibacterial efficacy compared to the gel form. S. typhimurium demonstrated the highest susceptibility, whereas S. aureus and P. aeruginosa were the most resistant of the tested bacteria. Both yeasts exhibited comparable sensitivity (MBC = 1.0 mg/mL). The redox activity of both nanomaterials was tested at pH 7.4 (physiological) and 8.5 (optimal) by the activated chemiluminescent method. The nanocomposites significantly inhibited the free-radical and ROS generation. This presents them as redox regulators in living systems. The cytotoxic effects in normal BEAS-2B and tumor A549 human cell lines were assessed microscopically and by the cell viability neutral red uptake assay, CC50 being evaluated. The observed effects suggest moderate, similar cytotoxicity in both cell lines. The ecotoxicity study using Daphnia magna showed an LC50 of ~7–8 mg/L about Si/Cu/500. The LC50 for Si/Cu (gel) was lower than 0.25 mg/L, indicating an increase in toxicity with increased exposure time. Conclusions: Possible applications of the newly synthesized nanomaterials include antimicrobial coatings, drug delivery systems, antioxidant additives in various formulations, and water purification. Full article
Show Figures

Graphical abstract

Back to TopTop