Nanomedicine-Driven Therapeutic Strategies for Rheumatoid Arthritis-Associated Depression: Mechanisms and Pharmacological Progress
Abstract
1. Introduction
2. Pathophysiological Mechanisms of RA-Associated Depression
2.1. Inflammatory Response
2.2. Oxidative Stress and Mitochondrial Dysfunction
2.3. Gut Microbiota Dysbiosis
3. NPs in RA-Associated Depression
3.1. Organic NPs in RA-Associated Depression
3.1.1. Liposomal Platforms
3.1.2. Polymer Nanoparticle Platforms
3.1.3. Exosome Platforms
3.2. Inorganic NPs in RA-Associated Depression
3.2.1. Metallic NPs
3.2.2. Metal Oxide NPs
3.3. Bionic NPs
3.4. Gene and RNA Nanotherapeutics
3.5. Other Nanoparticle Platforms
4. Targeting Ligands for Drug-Delivery Systems in RA-Associated Depression
4.1. Targeting the RA Synovium and Inflammatory Microenvironment
4.2. Targeting the BBB
5. Feasibility and Challenges of Dual-Targeting Nanocarriers for RA-Associated Depression
5.1. Challenges in Designing Dual-Targeted Nanocarrier Platforms
5.2. Strategies for Co-Loading and Hierarchical Drug Release
5.3. Bionic and Membrane-Coated NPs for Dual-Targeting Strategies
5.4. Molecular Foundations of Potential Synergistic Therapeutic Outcomes
6. Challenges, Clinical Translation, and Future Perspectives
6.1. Long-Term Biosafety, Immune Responses, and Limitations
6.2. Barriers to Clinical Translation
6.3. Future Directions and Clinical Prospects
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brock, J.; Basu, N.; Schlachetzki, J.C.M.; Schett, G.; McInnes, I.B.; Cavanagh, J. Immune Mechanisms of Depression in Rheumatoid Arthritis. Nat. Rev. Rheumatol. 2023, 19, 790–804. [Google Scholar] [CrossRef]
- Kennedy, S.H. Core Symptoms of Major Depressive Disorder: Relevance to Diagnosis and Treatment. Dialogues Clin. Neurosci. 2008, 10, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Fraenkel, L.; Bathon, J.M.; England, B.R.; St. Clair, E.W.; Arayssi, T.; Carandang, K.; Deane, K.D.; Genovese, M.; Huston, K.K.; Kerr, G.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 1108–1123. [Google Scholar] [CrossRef]
- Khoroshun, K.; Bantel, C.; Hoffmann, F.; Jobski, K. Methotrexate-Related Drug Reactions on Kidneys and Liver in Rheumatoid Arthritis: An Analysis of Spontaneous Reports in EudraVigilance. Arthritis Res. Ther. 2025, 27, 80. [Google Scholar] [CrossRef]
- Palmowski, A.; Nielsen, S.M.; Boyadzhieva, Z.; Schneider, A.; Pankow, A.; Hartman, L.; Da Silva, J.A.P.; Kirwan, J.; Wassenberg, S.; Dejaco, C.; et al. Safety and Efficacy Associated with Long-Term Low-Dose Glucocorticoids in Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Rheumatology 2023, 62, 2652–2660. [Google Scholar] [CrossRef] [PubMed]
- Kovich, H.; Kim, W.; Quaste, A.M. Pharmacologic Treatment of Depression. Am. Fam. Physician 2023, 107, 173–181. [Google Scholar]
- Khushboo; Siddiqi, N.J.; de Lourdes Pereira, M.; Sharma, B. Neuroanatomical, Biochemical, and Functional Modifications in Brain Induced by Treatment with Antidepressants. Mol. Neurobiol. 2022, 59, 3564–3584. [Google Scholar] [CrossRef]
- Banks, W.A.; Rhea, E.M.; Reed, M.J.; Erickson, M.A. The Penetration of Therapeutics across the Blood-Brain Barrier: Classic Case Studies and Clinical Implications. Cell Rep. Med. 2024, 5, 101760. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Omorogbe, O.; Ajayi, A.M.; Ben-Azu, B.; Oghwere, E.E.; Adebesin, A.; Aderibigbe, A.O.; Okubena, O.; Umukoro, S. Jobelyn® Attenuates Inflammatory Responses and Neurobehavioural Deficits Associated with Complete Freund-Adjuvant-Induced Arthritis in Mice. Biomed. Pharmacother. 2018, 98, 585–593. [Google Scholar] [CrossRef]
- Emerson, D.; Merriman, E.; Yachi, P.P. Rheumatoid Arthritis Associated Cytokines and Therapeutics Modulate Immune Checkpoint Receptor Expression on T Cells. Front. Immunol. 2025, 16, 1534462. [Google Scholar] [CrossRef] [PubMed]
- Nerurkar, L.; Siebert, S.; McInnes, I.B.; Cavanagh, J. Rheumatoid Arthritis and Depression: An Inflammatory Perspective. Lancet Psychiatry 2019, 6, 164–173. [Google Scholar] [CrossRef]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef]
- Tsao, N.; Hsu, H.P.; Wu, C.M.; Liu, C.C.; Lei, H.Y. Tumour Necrosis Factor-Alpha Causes an Increase in Blood-Brain Barrier Permeability during Sepsis. J. Med. Microbiol. 2001, 50, 812–821. [Google Scholar] [CrossRef]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Mayhan, W.G. Cellular Mechanisms by Which Tumor Necrosis Factor-α Produces Disruption of the Blood–Brain Barrier. Brain Res. 2002, 927, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Hoogland, I.C.M.; Houbolt, C.; Van Westerloo, D.J.; Van Gool, W.A.; Van De Beek, D. Systemic Inflammation and Microglial Activation: Systematic Review of Animal Experiments. J. Neuroinflamm. 2015, 12, 114. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic Reactive Astrocytes Are Induced by Activated Microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- Sternberg, E.M. Neural Regulation of Innate Immunity: A Coordinated Nonspecific Host Response to Pathogens. Nat. Rev. Immunol. 2006, 6, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Yan, W.; Su, R.; Zhang, L.; Wang, X.; Li, Z.; Qin, D.; Peng, J. Research Progress on Rheumatoid Arthritis-Associated Depression. Front. Behav. Neurosci. 2022, 16, 992223. [Google Scholar] [CrossRef]
- Shi, M.; Li, X.; Zhou, H.; Li, Z.; Wei, Y.; Wang, Z.; She, Y.; Zou, X.; Xiao, X.; Zeng, J.; et al. Rheumatoid Arthritis-Associated Depression: Focusing on the Interactions between Mitochondria and Endoplasmic Reticulum. Front. Pharmacol. 2025, 16, 1549060. [Google Scholar] [CrossRef]
- Salim, S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. Ther. 2017, 360, 201–205. [Google Scholar] [CrossRef]
- Wright, H.L.; Moots, R.J.; Edwards, S.W. The Multifactorial Role of Neutrophils in Rheumatoid Arthritis. Nat. Rev. Rheumatol. 2014, 10, 593–601. [Google Scholar] [CrossRef]
- Phillips, D.C.; Dias, H.K.I.; Kitas, G.D.; Griffiths, H.R. Aberrant Reactive Oxygen and Nitrogen Species Generation in Rheumatoid Arthritis (RA): Causes and Consequences for Immune Function, Cell Survival, and Therapeutic Intervention. Antioxid. Redox Signal. 2010, 12, 743–785. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Campitiello, R.; Gotelli, E.; Soldano, S. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front. Immunol. 2022, 13, 867260. [Google Scholar] [CrossRef]
- Bhatt, S.; Nagappa, A.N.; Patil, C.R. Role of Oxidative Stress in Depression. Drug Discov. Today 2020, 25, 1270–1276. [Google Scholar] [CrossRef]
- Song, Y.; Cao, H.; Zuo, C.; Gu, Z.; Huang, Y.; Miao, J.; Fu, Y.; Guo, Y.; Jiang, Y.; Wang, F. Mitochondrial Dysfunction: A Fatal Blow in Depression. Biomed. Pharmacother. 2023, 167, 115652. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.S.A.; Oliver, P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef]
- Lisi, L.; Navarra, P.; Feinstein, D.L.; Dello Russo, C. The mTOR Kinase Inhibitor Rapamycin Decreases iNOS mRNA Stability in Astrocytes. J. Neuroinflamm. 2011, 8, 1. [Google Scholar] [CrossRef]
- Correia, A.S.; Cardoso, A.; Vale, N. Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin, Neurogenesis and Synaptic Plasticity. Antioxidants 2023, 12, 470. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-T.; Yin, H.; Hu, C.; Zeng, J.; Zhang, S.; Chen, S.; Zheng, W.; Li, M.; Jin, L.; Liu, Y.; et al. Tilapia Skin Peptides Ameliorate Cyclophosphamide-Induced Anxiety- and Depression-Like Behavior via Improving Oxidative Stress, Neuroinflammation, Neuron Apoptosis, and Neurogenesis in Mice. Front. Nutr. 2022, 9, 882175. [Google Scholar] [CrossRef]
- Zhu, X.; Sun-Waterhouse, D.; Tao, Q.; Li, W.; Shu, D.; Cui, C. The Enhanced Serotonin (5-HT) Synthesis and Anti-Oxidative Roles of Trp Oligopeptide in Combating Anxious Depression C57BL/6 Mice. J. Funct. Foods 2020, 67, 103859. [Google Scholar] [CrossRef]
- Ding, Q.; Li, D.; Zhang, X.; Xue, X.; Zhang, R.; Su, D.; James, T.D.; Li, P.; Wang, X.; Tang, B. Restoring the Redox and Norepinephrine Homeostasis in Mouse Brains Promotes an Antidepressant Response. J. Am. Chem. Soc. 2025, 147, 11239–11249. [Google Scholar] [CrossRef] [PubMed]
- Arora, V.; Chopra, K. Possible Involvement of Oxido-Nitrosative Stress Induced Neuro-Inflammatory Cascade and Monoaminergic Pathway: Underpinning the Correlation between Nociceptive and Depressive Behaviour in a Rodent Model. J. Affect. Disord. 2013, 151, 1041–1052. [Google Scholar] [CrossRef]
- Pańczyszyn-Trzewik, P.; Czechowska, E.; Stachowicz, K.; Sowa-Kućma, M. The Importance of α-Klotho in Depression and Cognitive Impairment and Its Connection to Glutamate Neurotransmission—An Up-to-Date Review. Int. J. Mol. Sci. 2023, 24, 15268. [Google Scholar] [CrossRef] [PubMed]
- Biniecka, M.; Fox, E.; Gao, W.; Ng, C.T.; Veale, D.J.; Fearon, U.; O’Sullivan, J. Hypoxia Induces Mitochondrial Mutagenesis and Dysfunction in Inflammatory Arthritis. Arthritis Rheum. 2011, 63, 2172–2182. [Google Scholar] [CrossRef]
- Khanna, S.; Padhan, P.; Jaiswal, K.S.; Jain, A.P.; Ghosh, A.; Tripathy, A.; Gowda, H.; Raghav, S.K.; Gupta, B. Altered Mitochondrial Proteome and Functional Dynamics in Patients with Rheumatoid Arthritis. Mitochondrion 2020, 54, 8–14. [Google Scholar] [CrossRef]
- Popov, L.-D. Mitochondrial Biogenesis: An Update. J. Cell. Mol. Med. 2020, 24, 4892–4899. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Matsushita, T.; Otani, K.; Oto, Y.; Takahashi, Y.; Kurosaka, D.; Kato, F. Sustained Microglial Activation in the Area Postrema of Collagen-Induced Arthritis Mice. Arthritis Res. Ther. 2021, 23, 273. [Google Scholar] [CrossRef]
- Truban, D.; Hou, X.; Caulfield, T.R.; Fiesel, F.C.; Springer, W. PINK1, Parkin, and Mitochondrial Quality Control: What Can We Learn about Parkinson’s Disease Pathobiology? J. Park. Dis. 2016, 7, 13–29. [Google Scholar] [CrossRef]
- Harris, J.; Deen, N.; Zamani, S.; Hasnat, M.A. Mitophagy and the Release of Inflammatory Cytokines. Mitochondrion 2018, 41, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ao, Y.; Li, Y.; Dai, B.; Li, J.; Duan, W.; Gao, W.; Zhao, Z.; Han, Z.; Guo, R. Morinda officinalis Oligosaccharides Mitigate Depression-like Behaviors in Hypertension Rats by Regulating Mfn2-Mediated Mitophagy. J. Neuroinflamm. 2023, 20, 31. [Google Scholar] [CrossRef]
- Vasarmidi, E.; Sarantoulaki, S.; Trachalaki, A.; Margaritopoulos, G.; Bibaki, E.; Spandidos, D.A.; Tzanakis, N.; Antoniou, K. Investigation of Key Autophagy-and Mitophagy-Related Proteins and Gene Expression in BALF Cells from Patients with IPF and RA-ILD. Mol. Med. Rep. 2018, 18, 3891–3897. [Google Scholar] [CrossRef]
- Willemsen, J.; Neuhoff, M.-T.; Hoyler, T.; Noir, E.; Tessier, C.; Sarret, S.; Thorsen, T.N.; Littlewood-Evans, A.; Zhang, J.; Hasan, M.; et al. TNF Leads to mtDNA Release and cGAS/STING-Dependent Interferon Responses That Support Inflammatory Arthritis. Cell Rep. 2021, 37, 109977. [Google Scholar] [CrossRef]
- Zhao, T.; Wei, Y.; Zhu, Y.; Xie, Z.; Hai, Q.; Li, Z.; Qin, D. Gut Microbiota and Rheumatoid Arthritis: From Pathogenesis to Novel Therapeutic Opportunities. Front. Immunol. 2022, 13, 1007165. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, J.; Zhang, W.; Doherty, M.; Zhang, Y.; Xie, H.; Li, W.; Wang, N.; Lei, G.; Zeng, C. Gut Dysbiosis in Rheumatic Diseases: A Systematic Review and Meta-Analysis of 92 Observational Studies. EBioMedicine 2022, 80, 104055. [Google Scholar] [CrossRef]
- Kinashi, Y.; Hase, K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front. Immunol. 2021, 12, 673708. [Google Scholar] [CrossRef]
- Chen, J.; Wright, K.; Davis, J.M.; Jeraldo, P.; Marietta, E.V.; Murray, J.; Nelson, H.; Matteson, E.L.; Taneja, V. An Expansion of Rare Lineage Intestinal Microbes Characterizes Rheumatoid Arthritis. Genome Med. 2016, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Sturgeon, C.; Fasano, A. Zonulin, a Regulator of Epithelial and Endothelial Barrier Functions, and Its Involvement in Chronic Inflammatory Diseases. Tissue Barriers 2016, 4, e1251384. [Google Scholar] [CrossRef] [PubMed]
- Tajik, N.; Frech, M.; Schulz, O.; Schälter, F.; Lucas, S.; Azizov, V.; Dürholz, K.; Steffen, F.; Omata, Y.; Rings, A.; et al. Targeting Zonulin and Intestinal Epithelial Barrier Function to Prevent Onset of Arthritis. Nat. Commun. 2020, 11, 1995. [Google Scholar] [CrossRef]
- Stevens, B.R.; Goel, R.; Seungbum, K.; Richards, E.M.; Holbert, R.C.; Pepine, C.J.; Raizada, M.K. Increased Human Intestinal Barrier Permeability Plasma Biomarkers Zonulin and FABP2 Correlated with Plasma LPS and Altered Gut Microbiome in Anxiety or Depression. Gut 2018, 67, 1555–1557. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, X.; Fei, W.; Ye, Y.; Zhao, M.; Zheng, C. The Role of Short-Chain Fatty Acids in Immunity, Inflammation and Metabolism. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–12. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, S.-A.; Kim, W.-U. Gut Microbiota in Autoimmunity: Potential for Clinical Applications. Arch. Pharm. Res. 2016, 39, 1565–1576. [Google Scholar] [CrossRef]
- Kronsten, V.T.; Tranah, T.H.; Pariante, C.; Shawcross, D.L. Gut-Derived Systemic Inflammation as a Driver of Depression in Chronic Liver Disease. J. Hepatol. 2022, 76, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, V.L.; Smith, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in Gut Microbiota Composition in Psychiatric Disorders: A Review and Meta-Analysis. JAMA Psychiatry 2021, 78, 1343–1354. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, H.; Zhang, H.; Chen, X.; Zhang, Y.; Wu, J.; Zhao, L.; Wang, D.; Pu, J.; Ji, P.; et al. Toward a Deeper Understanding of Gut Microbiome in Depression: The Promise of Clinical Applicability. Adv. Sci. 2022, 9, 2203707. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; Wilson, S.J.; Bailey, M.L.; Andridge, R.; Peng, J.; Jaremka, L.M.; Fagundes, C.P.; Malarkey, W.B.; Laskowski, B.; Belury, M.A. Marital Distress, Depression, and a Leaky Gut: Translocation of Bacterial Endotoxin as a Pathway to Inflammation. Psychoneuroendocrinology 2018, 98, 52–60. [Google Scholar] [CrossRef]
- Strandwitz, P. Neurotransmitter Modulation by the Gut Microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Wu, M.; Tian, T.; Mao, Q.; Zou, T.; Zhou, C.; Xie, J.; Chen, J. Associations between Disordered Gut Microbiota and Changes of Neurotransmitters and Short-Chain Fatty Acids in Depressed Mice. Transl. Psychiatry 2020, 10, 350. [Google Scholar] [CrossRef] [PubMed]
- Grifka-Walk, H.M.; Jenkins, B.R.; Kominsky, D.J. Amino Acid Trp: The Far Out Impacts of Host and Commensal Tryptophan Metabolism. Front. Immunol. 2021, 12, 653208. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wu, W.; Chen, J.; Zhong, Q.; Wu, D.; Niu, L.; Wang, S.; Zeng, Y.; Wang, Y. Tryptophan Metabolism as Bridge between Gut Microbiota and Brain in Chronic Social Defeat Stress-Induced Depression Mice. Front. Cell. Infect. Microbiol. 2023, 13, 1121445. [Google Scholar] [CrossRef] [PubMed]
- Skonieczna-Żydecka, K.; Grochans, E.; Maciejewska, D.; Szkup, M.; Schneider-Matyka, D.; Jurczak, A.; Łoniewski, I.; Kaczmarczyk, M.; Marlicz, W.; Czerwińska-Rogowska, M.; et al. Faecal Short Chain Fatty Acids Profile Is Changed in Polish Depressive Women. Nutrients 2018, 10, 1939. [Google Scholar] [CrossRef]
- Van De Wouw, M.; Boehme, M.; Lyte, J.M.; Wiley, N.; Strain, C.; O’Sullivan, O.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Short-Chain Fatty Acids: Microbial Metabolites That Alleviate Stress-Induced Brain–Gut Axis Alterations. J. Physiol. 2018, 596, 4923–4944. [Google Scholar] [CrossRef]
- Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut Microbial Metabolites in Depression: Understanding the Biochemical Mechanisms. Microb. Cell 2019, 6, 454–481. [Google Scholar] [CrossRef]
- Qi, X.-Y.; Liu, M.-X.; Jiang, X.-J.; Gao, T.; Xu, G.-Q.; Zhang, H.-Y.; Su, Q.-Y.; Du, Y.; Luo, J.; Zhang, S.-X. Gut Microbiota in Rheumatoid Arthritis: Mechanistic Insights, Clinical Biomarkers, and Translational Perspectives. Autoimmun. Rev. 2025, 24, 103912. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, K.; Xiong, Q.; Zhang, J.; Cai, B.; Huang, Z.; Yang, B.; Wei, B.; Chen, J.; Niu, Q. Gut Microbiota in Pre-Clinical Rheumatoid Arthritis: From Pathogenesis to Preventing Progression. J. Autoimmun. 2023, 141, 103001. [Google Scholar] [CrossRef]
- Oh, H.; Ghosh, S. NF-κB: Roles and Regulation in Different CD4+ T-cell Subsets. Immunol. Rev. 2013, 252, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Manfredo Vieira, S.; Hiltensperger, M.; Kumar, V.; Zegarra-Ruiz, D.; Dehner, C.; Khan, N.; Costa, F.R.C.; Tiniakou, E.; Greiling, T.; Ruff, W.; et al. Translocation of a Gut Pathobiont Drives Autoimmunity in Mice and Humans. Science 2018, 359, 1156–1161. [Google Scholar] [CrossRef]
- Thalhamer, T.; McGrath, M.A.; Harnett, M.M. MAPKs and Their Relevance to Arthritis and Inflammation. Rheumatology 2007, 47, 409–414. [Google Scholar] [CrossRef]
- Girase, R.; Gujarathi, N.A.; Sukhia, A.; Kota, S.S.N.; Patil, T.S.; Aher, A.A.; Agrawal, Y.O.; Ojha, S.; Sharma, C.; Goyal, S.N. Targeted Nanoliposomes for Precision Rheumatoid Arthritis Therapy: A Review on Mechanisms and in Vivo Potential. Drug Deliv. 2025, 32, 2459772. [Google Scholar] [CrossRef]
- Sun, Z.; Wei, T.; Zhou, X. Liposomes Encapsulated Dimethyl Curcumin Regulates Dipeptidyl Peptidase I Activity, Gelatinase Release and Cell Cycle of Spleen Lymphocytes in-Vivo to Attenuate Collagen Induced Arthritis in Rats. Int. Immunopharmacol. 2018, 65, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Deng, C.; Luo, J.; Zhang, P.; Sun, X.; Zhang, Z.; Gong, T. A Novel Dexamethasone-Loaded Liposome Alleviates Rheumatoid Arthritis in Rats. Int. J. Pharm. 2018, 540, 57–64. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Yuan, Y.; Yue, T. Immunomodulatory of Selenium Nano-Particles Decorated by Sulfated Ganoderma lucidum Polysaccharides. Food Chem. Toxicol. 2014, 68, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ismail, M.; Shan, Q.; Zhao, J.; Zhu, Y.; Zhang, L.; Du, Y.; Ling, L. ROS-Mediated Liposomal Dexamethasone: A New FA-Targeted Nanoformulation to Combat Rheumatoid Arthritis via Inhibiting iRhom2/TNF-α/BAFF Pathways. Nanoscale 2021, 13, 20170–20185. [Google Scholar] [CrossRef]
- Chen, M.; Daddy, J.C.; K.A.; Su, Z.; Guissi, N.E.I.; Xiao, Y.; Zong, L.; Ping, Q. Folate Receptor-Targeting and Reactive Oxygen Species-Responsive Liposomal Formulation of Methotrexate for Treatment of Rheumatoid Arthritis. Pharmaceutics 2019, 11, 582. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, D.; Ma, W.; Liu, J.; Ning, Q.; Tang, F.; Li, L. miR-223 in Exosomes from Bone Marrow Mesenchymal Stem Cells Ameliorates Rheumatoid Arthritis via Downregulation of NLRP3 Expression in Macrophages. Mol. Immunol. 2022, 143, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, H.Y.; Song, S.Y.; Go, S.; Sohn, H.S.; Baik, S.; Soh, M.; Kim, K.; Kim, D.; Kim, H.-C.; et al. Synergistic Oxygen Generation and Reactive Oxygen Species Scavenging by Manganese Ferrite/Ceria Co-Decorated Nanoparticles for Rheumatoid Arthritis Treatment. ACS Nano 2019, 13, 3206–3217. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Xu, X.; Fan, Y.; Xue, X.; Shen, M.; Shi, X. Targeted Combination of Antioxidative and Anti-Inflammatory Therapy of Rheumatoid Arthritis Using Multifunctional Dendrimer-Entrapped Gold Nanoparticles as a Platform. Small 2020, 16, 2005661. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Li, R.; Yang, H.; Li, B.; Zhang, L. Inflammation-Targeting Multienzyme Activity Carbon Dots Loaded with Methotrexate for Synergistic Immunotherapy in Rheumatoid Arthritis. Small 2025, 21, 2412491. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, Y.; Xu, T.; Xu, J.; Yu, J.; Chu, Z.; Jiang, Y.; Song, Y.; Wang, H.; Qian, H. Au Nanocluster-Modulated Macrophage Polarization and Synoviocyte Apoptosis for Enhanced Rheumatoid Arthritis Treatment. J. Mater. Chem. B 2022, 10, 4789–4799. [Google Scholar] [CrossRef] [PubMed]
- Rubab, S.; Naeem, K.; Rana, I.; Khan, N.; Afridi, M.; Ullah, I.; Shah, F.A.; Sarwar, S.; Din, F.U.; Choi, H.-I.; et al. Enhanced Neuroprotective and Antidepressant Activity of Curcumin-Loaded Nanostructured Lipid Carriers in Lipopolysaccharide-Induced Depression and Anxiety Rat Model. Int. J. Pharm. 2021, 603, 120670. [Google Scholar] [CrossRef]
- Min, X.; Liu, H.; Dou, X.; Chen, F.; Zhao, Q.; Zhao, X.; Shi, Y.; Zhao, Q.; Sun, S.; Wang, Z.; et al. Extracellular Vesicles from Neural Stem Cells Carry microRNA-16-5p to Reduce Corticosterone-Induced Neuronal Injury in Depression Rats. Neuroscience 2024, 538, 95–109. [Google Scholar] [CrossRef]
- Zavvari, F.; Nahavandi, A.; Shahbazi, A. Neuroprotective Effects of Cerium Oxide Nanoparticles on Experimental Stress-Induced Depression in Male Rats. J. Chem. Neuroanat. 2020, 106, 101799. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Hao, Z.; Jing, X.; Zhao, Y.; Cheng, X.; Ma, H.; Wang, J.; Wang, J. Mitigation Effects of Selenium Nanoparticles on Depression-Like Behavior Induced by Fluoride in Mice via the JAK2-STAT3 Pathway. ACS Appl. Mater. Interfaces 2022, 14, 3685–3700. [Google Scholar] [CrossRef]
- Xie, Y.; Ouyang, T.; Xu, A.; Bian, Q.; Zhu, B.; Zhao, M. Quercetin Improves Hippocampal Neurogenesis in Depression by Regulating the Level of Let-7e-5p in Microglia Exosomes. Drug Des. Devel. Ther. 2025, 19, 2189–2203. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Huang, B.; Wang, Y.; Zhang, Y.; Ma, Q.; Ren, Y. Bone Marrow Mesenchymal Stem Cells-Derived Exosomes Improve Injury of Hippocampal Neurons in Rats with Depression by Upregulating microRNA-26a Expression. Int. Immunopharmacol. 2020, 82, 106285. [Google Scholar] [CrossRef]
- Jia, H.; Gong, J.; Hu, Z.; Wen, T.; Li, C.; Chen, Y.; Huang, J.; He, W. Antioxidant Carbon Dots Nanozymes Alleviate Stress-Induced Depression by Modulating Gut Microbiota. Langmuir 2024, 40, 19739–19750. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, X.; Huang, Q.; Lei, T.; Luo, H.; Wu, D.; Yang, Z.; Xu, Y.; Dou, Y.; Ma, X.; et al. Microglial-Biomimetic Memantine-Loaded Polydopamine Nanomedicines for Alleviating Depression. Adv. Mater. 2025, 37, 2417869. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Dong, Y.; Jin, X.; Zhang, C.; Zhang, T.; Zhao, J.; Shi, J.; Li, J. The Novel and Potent Anti-Depressive Action of Triptolide and Its Influences on Hippocampal Neuroinflammation in a Rat Model of Depression Comorbidity of Chronic Pain. Brain. Behav. Immun. 2017, 64, 180–194. [Google Scholar] [CrossRef]
- Naz, A.; Hashim, F.; Ali, S.A.; Badshah, M. Fabrication, Characterization and Therapeutic Evaluation of Fluoxetine-Dextran Nanoparticles. ChemistrySelect 2023, 8, e202204110. [Google Scholar] [CrossRef]
- Large, D.E.; Abdelmessih, R.G.; Fink, E.A.; Auguste, D.T. Liposome Composition in Drug Delivery Design, Synthesis, Characterization, and Clinical Application. Adv. Drug Deliv. Rev. 2021, 176, 113851. [Google Scholar] [CrossRef]
- Deprez, J.; Verbeke, R.; Meulewaeter, S.; Aernout, I.; Dewitte, H.; Decruy, T.; Coudenys, J.; Van Duyse, J.; Van Isterdael, G.; Peer, D.; et al. Transport by Circulating Myeloid Cells Drives Liposomal Accumulation in Inflamed Synovium. Nat. Nanotechnol. 2023, 18, 1341–1350. [Google Scholar] [CrossRef]
- Fujimoto, S.; Niiro, H. Pathogenic Role of Cytokines in Rheumatoid Arthritis. J. Clin. Med. 2025, 14, 6409. [Google Scholar] [CrossRef]
- Tefas, L.R.; Sylvester, B.; Tomuta, I.; Sesarman, A.; Licarete, E.; Banciu, M.; Porfire, A. Development of Antiproliferative Long-Circulating Liposomes Co-Encapsulating Doxorubicin and Curcumin, through the Use of a Quality-by-Design Approach. Drug Des. Devel. Ther. 2017, 11, 1605–1621. [Google Scholar] [CrossRef] [PubMed]
- Maestrelli, F.; González-Rodríguez, M.L.; Fernández-Romero, A.-M.; Mura, P.A.; Rabasco, A.M.; Micheli, L.; Mannelli, L.D.C.; Ghelardini, C. Curcumin-in-Cyclodextrins-in-Liposomes: An Alternative for Osteoarthritis Treatment. Proceedings 2020, 78, 52. [Google Scholar] [CrossRef]
- Mohammadzadeh, R.; Fathi, M.; Pourseif, M.M.; Omidi, Y.; Farhang, S.; Barzegar Jalali, M.; Valizadeh, H.; Nakhlband, A.; Adibkia, K. Curcumin and Nano-Curcumin Applications in Psychiatric Disorders. Phytother. Res. 2024, 38, 4240–4260. [Google Scholar] [CrossRef]
- Guo, R.; Zhang, X.; Yan, D.; Yu, Y.; Wang, Y.; Geng, H.; Wu, Y.; Liu, Y.; Kong, L.; Li, X. Folate-Modified Triptolide Liposomes Target Activated Macrophages for Safe Rheumatoid Arthritis Therapy. Biomater. Sci. 2022, 10, 499–513. [Google Scholar] [CrossRef]
- Capini, C.; Jaturanpinyo, M.; Chang, H.-I.; Mutalik, S.; McNally, A.; Street, S.; Steptoe, R.; O’Sullivan, B.; Davies, N.; Thomas, R. Antigen-Specific Suppression of Inflammatory Arthritis Using Liposomes. J. Immunol. 2009, 182, 3556–3565. [Google Scholar] [CrossRef]
- Priprem, A.; Watanatorn, J.; Sutthiparinyanont, S.; Phachonpai, W.; Muchimapura, S. Anxiety and Cognitive Effects of Quercetin Liposomes in Rats. Nanomed. Nanotechnol. Biol. Med. 2008, 4, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Babazadeh, B.; Hatami Nemati, H.; Arsalani, N.; Dehghan, G.; Radbin, S.; Madatova, V. Protective Effect of Quercetin Liposome on Acute Low Dose Diazinon-Induced Oxidative Stress and Neurobehavioral Disorders by Affecting Serotonin Metabolite in Mature Male Rats. Vet. Res. Forum 2025, 16, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gou, R.; Li, W.; Chen, Z.; Gu, C.; Shi, S.; Zou, L.; Li, H. Targeting Delivery of Dexamethasone to Inflamed Joints by Albumin-Binding Peptide Modified Liposomes for Rheumatoid Arthritis Therapy. Int. J. Nanomed. 2025, 20, 3789–3802. [Google Scholar] [CrossRef] [PubMed]
- Siddique, R.; Mehmood, M.H.; Haris, M.; Saleem, A.; Chaudhry, Z. Promising Role of Polymeric Nanoparticles in the Treatment of Rheumatoid Arthritis. Inflammopharmacology 2022, 30, 1207–1218. [Google Scholar] [CrossRef]
- Kempe, K.; Nicolazzo, J.A. Biodegradable Polymeric Nanoparticles for Brain-Targeted Drug Delivery. In Nanomedicines for Brain Drug Delivery; Morales, J.O., Gaillard, P.J., Eds.; Springer: New York, NY, USA, 2021; pp. 1–27. ISBN 978-1-0716-0838-8. [Google Scholar]
- Dixit, T.; Vaidya, A.; Ravindran, S. Polymeric Nanoparticles-Based Targeted Delivery of Drugs and Bioactive Compounds for Arthritis Management. Future Sci. OA 2025, 11, 2467591. [Google Scholar] [CrossRef]
- Annu; Sartaj, A.; Qamar, Z.; Md, S.; Alhakamy, N.A.; Baboota, S.; Ali, J. An Insight to Brain Targeting Utilizing Polymeric Nanoparticles: Effective Treatment Modalities for Neurological Disorders and Brain Tumor. Front. Bioeng. Biotechnol. 2022, 10, 788128. [Google Scholar] [CrossRef]
- Tan, T.; Huang, Q.; Chu, W.; Li, B.; Wu, J.; Xia, Q.; Cao, X. Delivery of Germacrone (GER) Using Macrophages-Targeted Polymeric Nanoparticles and Its Application in Rheumatoid Arthritis. Drug Deliv. 2022, 29, 692–701. [Google Scholar] [CrossRef]
- Yusuf, M.; Khan, M.; Khan, R.A.; Maghrabi, I.A.; Ahmed, B. Polysorbate-80-Coated, Polymeric Curcumin Nanoparticles for in Vivo Anti-Depressant Activity across BBB and Envisaged Biomolecular Mechanism of Action through a Proposed Pharmacophore Model. J. Microencapsul. 2016, 33, 646–655. [Google Scholar] [CrossRef]
- Kottarath, S.K.; Bhat, M.; Verma, C.; Bhattacharya, S.; Kaul, A.; Kumar, U.; Dinda, A.K. Folate Receptor-β Targeted Cholesterol-Chitosan Nanocarrier for Treatment of Rheumatoid Arthritis: An Animal Study. J. Drug Deliv. Sci. Technol. 2020, 60, 101946. [Google Scholar] [CrossRef]
- Fahmy, H.M.; Khadrawy, Y.A.; Abd-El Daim, T.M.; Elfeky, A.S.; Abd Rabo, A.A.; Mustafa, A.B.; Mostafa, I.T. Thymoquinone-Encapsulated Chitosan Nanoparticles Coated with Polysorbate 80 as a Novel Treatment Agent in a Reserpine-Induced Depression Animal Model. Physiol. Behav. 2020, 222, 112934. [Google Scholar] [CrossRef]
- He, J.; Yang, L.; Li, D.; Xie, J.; Zhou, G.; Zhou, R.; Li, Y.; Wei, G.; Gong, Z.; Li, L.; et al. Transferrin-Modified Carboxymethyl Chitosan-Chitosan Nanoparticles as an Efficient Delivery Carrier for Targeted Therapy of Depression. Int. J. Biol. Macromol. 2025, 286, 138352. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Na, R.; Zhao, N.; Yuan, X.; Fu, L.; Jing, J.; Qian, A.; Ye, W. Macrophage-Targeted Dextran Sulfate-Dexamethasone Conjugate Micelles for Effective Treatment of Rheumatoid Arthritis. Molecules 2023, 28, 591. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, M.; Arif, H.; Awan, A.N.; Khan, M.M.; Batool, S.; Ahmed, S. Synthesis and Optimization of Fluoxetine-Loaded Polymeric Nanoparticles for Dual Therapeutic Applications in Cancer and Depression. DARU J. Pharm. Sci. 2025, 33, 18. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Jiang, X.; Cai, J.; Chen, Y.; Huang, H.; Yang, Y.; Zheng, L.; Zhao, J.; Gao, M. Dimethylamino Group Modified Polydopamine Nanoparticles with Positive Charges to Scavenge Cell-Free DNA for Rheumatoid Arthritis Therapy. Bioact. Mater. 2022, 18, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Wang, H.; Gu, H.; Ju, L.; Wu, X.; Pan, W.; Zhao, M.; Yang, J.; Liu, P. Melanin-like Polydopamine Nanoparticles Mediating Anti-Inflammatory and Rescuing Synaptic Loss for Inflammatory Depression Therapy. J. Nanobiotechnology 2023, 21, 52. [Google Scholar] [CrossRef]
- Chen, C.; Sun, W.; Wang, X.; Wang, Y.; Wang, P. Rational Design of Curcumin Loaded Multifunctional Mesoporous Silica Nanoparticles to Enhance the Cytotoxicity for Targeted and Controlled Drug Release. Mater. Sci. Eng. C 2018, 85, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Tenchov, R.; Sasso, J.M.; Wang, X.; Liaw, W.-S.; Chen, C.-A.; Zhou, Q.A. Exosomes—Nature’s Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS Nano 2022, 16, 17802–17846. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhang, J.; Zhao, Q.; Zhuang, W.; Ding, J.; Zhang, C.; Gao, H.; Pang, D.-W.; Pu, K.; Xie, H.-Y. Molecularly Engineered Macrophage-Derived Exosomes with Inflammation Tropism and Intrinsic Heme Biosynthesis for Atherosclerosis Treatment. Angew. Chem. Int. Ed. 2020, 59, 4068–4074. [Google Scholar] [CrossRef]
- Smith, J.; Field, M.; Sugaya, K. Brain-Homing Peptide Expression on the Membrane Enhances the Delivery of Exosomes to Neural Cells and Tissue. Neuroglia 2025, 6, 3. [Google Scholar] [CrossRef]
- Banks, W.A.; Sharma, P.; Bullock, K.M.; Hansen, K.M.; Ludwig, N.; Whiteside, T.L. Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. Int. J. Mol. Sci. 2020, 21, 4407. [Google Scholar] [CrossRef]
- Lafourcade, C.A.; Fernández, A.; Ramírez, J.P.; Corvalán, K.; Carrasco, M.Á.; Iturriaga, A.; Bátiz, L.F.; Luarte, A.; Wyneken, U. A Role for Mir-26a in Stress: A Potential sEV Biomarker and Modulator of Excitatory Neurotransmission. Cells 2020, 9, 1364. [Google Scholar] [CrossRef]
- Li, Y.; Fan, C.; Wang, L.; Lan, T.; Gao, R.; Wang, W.; Yu, S.Y. MicroRNA-26a-3p Rescues Depression-like Behaviors in Male Rats via Preventing Hippocampal Neuronal Anomalies. J. Clin. Investig. 2021, 131, e148853. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yan, X.-J.; Hu, J.; Pan, H.; Mao, X.; Cheng, Y. Exosome Derived from Bone Marrow Derived Mesenchymal Stem Cells Prevents LPS-Induced Depressive like Behaviors. Brain Res. Bull. 2025, 231, 111527. [Google Scholar] [CrossRef]
- Tsiapalis, D.; Floudas, A.; Tertel, T.; Boerger, V.; Giebel, B.; Veale, D.J.; Fearon, U.; O’Driscoll, L. Therapeutic Effects of Mesenchymal/Stromal Stem Cells and Their Derived Extracellular Vesicles in Rheumatoid Arthritis. Stem Cells Transl. Med. 2023, 12, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Feng, Y.; Zheng, X.; Jia, M.; Mei, Z.; Wang, Y.; Zhang, Z.; Zhou, M.; Li, C. M2-Type Exosomes Nanoparticles for Rheumatoid Arthritis Therapy via Macrophage Re-Polarization. J. Control. Release 2022, 341, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Luo, L.; Wang, L.; Hu, Z.-L.; Yin, Q.-R.; Li, M.; Gu, B.; Wang, B.; Zhuang, T.; Zhang, X.-Y.; et al. Lepidium meyenii Walp (Maca)-Derived Extracellular Vesicles Ameliorate Depression by Promoting 5-HT Synthesis via the Modulation of Gut–Brain Axis. iMeta 2023, 2, e116. [Google Scholar] [CrossRef]
- Park, J.-Y.; Kwon, S.; Kim, S.-H.; Kang, Y.J.; Khang, D. Triamcinolone–Gold Nanoparticles Repolarize Synoviocytes and Macrophages in an Inflamed Synovium. ACS Appl. Mater. Interfaces 2020, 12, 38936–38949. [Google Scholar] [CrossRef]
- Yang, C.; Xie, L.; Deng, Z.; Ai, H.; Xiang, T.; Yan, X.; Ling, Z.; Xiao, S.; Tang, Y.; Huang, G.; et al. An Orally-Administered Nanotherapeutics with Gold Nanospheres Supplying for Rheumatoid Arthritis Therapy by Re-Shaping Gut Microbial Tryptophan Metabolism. J. Nanobiotechnology 2025, 23, 376. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, L.; Wang, Z.; Liu, P.; Liu, X.; Ding, J.; Zhou, W. Targeted Silver Nanoparticles for Rheumatoid Arthritis Therapy via Macrophage Apoptosis and Re-Polarization. Biomaterials 2021, 264, 120390. [Google Scholar] [CrossRef]
- Rehman, A.; John, P.; Bhatti, A. Biogenic Selenium Nanoparticles: Potential Solution to Oxidative Stress Mediated Inflammation in Rheumatoid Arthritis and Associated Complications. Nanomaterials 2021, 11, 2005. [Google Scholar] [CrossRef]
- Afridi, R.; Suk, K. Microglial Responses to Stress-Induced Depression: Causes and Consequences. Cells 2023, 12, 1521. [Google Scholar] [CrossRef]
- Wu, L.; Shen, S. What Potential Do Magnetic Iron Oxide Nanoparticles Have for The Treatment of Rheumatoid Arthritis? Nanomedicine 2019, 14, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Saeidienik, F.; Shahraki, M.R.; Fanaei, H.; Badini, F. The Effects of Iron Oxide Nanoparticles Administration on Depression Symptoms Induced by LPS in Male Wistar Rats. Basic Clin. Neurosci. J. 2018, 9, 209–216. [Google Scholar] [CrossRef]
- Khadrawy, Y.A.; Hosny, E.N.; Magdy, M.; Mohammed, H.S. Antidepressant Effects of Curcumin-Coated Iron Oxide Nanoparticles in a Rat Model of Depression. Eur. J. Pharmacol. 2021, 908, 174384. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Y.; Zhang, T.; Ren, G.; Yang, Z. Effects of Nanoparticle Zinc Oxide on Spatial Cognition and Synaptic Plasticity in Mice with Depressive-like Behaviors. J. Biomed. Sci. 2012, 19, 14. [Google Scholar] [CrossRef]
- Gan, J.; Huang, D.; Che, J.; Zhao, Y.; Sun, L. Biomimetic Nanoparticles with Cell-Membrane Camouflage for Rheumatoid Arthritis. Matter 2024, 7, 794–825. [Google Scholar] [CrossRef]
- Yuan, S.; Hu, D.; Gao, D.; Butch, C.J.; Wang, Y.; Zheng, H.; Sheng, Z. Recent Advances of Engineering Cell Membranes for Nanomedicine Delivery across the Blood–Brain Barrier. J. Nanobiotechnology 2025, 23, 493. [Google Scholar] [CrossRef]
- Geng, C.; Ren, X.; Cao, P.; Chu, X.; Wei, P.; Liu, Q.; Lu, Y.; Fu, B.; Li, W.; Li, Y.; et al. Macrophage Membrane–biomimetic Nanoparticles Target Inflammatory Microenvironment for Epilepsy Treatment. Theranostics 2024, 14, 6652–6670. [Google Scholar] [CrossRef]
- Zhang, Q.; Dehaini, D.; Zhang, Y.; Zhou, J.; Chen, X.; Zhang, L.; Fang, R.H.; Gao, W.; Zhang, L. Neutrophil Membrane-Coated Nanoparticles Inhibit Synovial Inflammation and Alleviate Joint Damage in Inflammatory Arthritis. Nat. Nanotechnol. 2018, 13, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ji, J.; Zhang, L.; Chen, T.; Zhang, Y.; Zhang, F.; Wang, J.; Ke, Y. Inflammatory Responsive Neutrophil-like Membrane-Based Drug Delivery System for Post-Surgical Glioblastoma Therapy. J. Control. Release 2023, 362, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; He, Y.; Fan, Q.; Wu, Y.; Li, J.; Deng, S.; Xie, Q.; Zhao, Y.; Guo, J.; Du, X. Tea Plant-Inspired Nanoassembled Supraparticles Alleviate Colitis and Associated Mental Disorders via Microbiota-Gut-Brain Interactions. Theranostics 2025, 15, 7291–7307. [Google Scholar] [CrossRef]
- Aldayel, A.M.; O’Mary, H.L.; Valdes, S.A.; Li, X.; Thakkar, S.G.; Mustafa, B.E.; Cui, Z. Lipid Nanoparticles with Minimum Burst Release of TNF-α siRNA Show Strong Activity against Rheumatoid Arthritis Unresponsive to Methotrexate. J. Control. Release 2018, 283, 280–289. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Liu, W.; Chen, L.; Jin, M.; Gao, Z.; Huang, W. Macrophage-Hitchhiking Interleukin-10 Plasmid DNA Delivery System Modulates Rheumatoid Arthritis Microenvironment via the Re-Polarization of Macrophages. Nano Today 2024, 54, 102068. [Google Scholar] [CrossRef]
- Fan, C.; Li, Y.; Lan, T.; Wang, W.; Long, Y.; Yu, S.Y. Microglia Secrete miR-146a-5p-Containing Exosomes to Regulate Neurogenesis in Depression. Mol. Ther. 2022, 30, 1300–1314. [Google Scholar] [CrossRef]
- Xia, C.-Y.; Guo, Y.-X.; Lian, W.-W.; Yan, Y.; Ma, B.-Z.; Cheng, Y.-C.; Xu, J.-K.; He, J.; Zhang, W.-K. The NLRP3 Inflammasome in Depression: Potential Mechanisms and Therapies. Pharmacol. Res. 2023, 187, 106625. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xue, Y.; Markovic, T.; Li, H.; Wang, S.; Zhong, Y.; Du, S.; Zhang, Y.; Hou, X.; Yu, Y.; et al. Blood–Brain-Barrier-Crossing Lipid Nanoparticles for mRNA Delivery to the Central Nervous System. Nat. Mater. 2025, 24, 1653–1663. [Google Scholar] [CrossRef]
- Ashfaq, R.; Rasul, A.; Asghar, S.; Kovács, A.; Berkó, S.; Budai-Szűcs, M. Lipid Nanoparticles: An Effective Tool to Improve the Bioavailability of Nutraceuticals. Int. J. Mol. Sci. 2023, 24, 15764. [Google Scholar] [CrossRef]
- Usulkar, S.; Sutar, K.P.; Biradar, P.; Patil, V.; Jadhav, V. Innovative Berberine Nanoethosomal Vaginal in Situ Gel: Unraveling Polycystic Ovary Syndrome Treatment on Female Wistar Rats. Int. J. Pharm. 2024, 663, 124564. [Google Scholar] [CrossRef] [PubMed]
- Corrie, L.; Kommineni, N.; Kaur, J.; Awasthi, A.; Gundaram, R.; Kukati, L. In Situ Photo Responsive Biodegradable Nanoparticle Forming Intrauterine Implant for Drug Delivery to Treat Ovarian Diseases: A Rationale-Based Review. Curr. Radiopharm. 2024, 17, 313–319. [Google Scholar] [CrossRef]
- Butt, M.A.; Shafique, H.M.; Mustafa, M.; Moghul, N.B.; Munir, A.; Shamas, U.; Tabassum, S.; Kiyani, M.M. Therapeutic Potential of Selenium Nanoparticles on Letrozole-Induced Polycystic Ovarian Syndrome in Female Wistar Rats. Biol. Trace Elem. Res. 2023, 201, 5213–5229. [Google Scholar] [CrossRef]
- Zhong, S.; Liu, P.; Ding, J.; Zhou, W. Hyaluronic Acid-Coated MTX-PEI Nanoparticles for Targeted Rheumatoid Arthritis Therapy. Crystals 2021, 11, 321. [Google Scholar] [CrossRef]
- Nogueira, E.; Gomes, A.C.; Preto, A.; Cavaco-Paulo, A. Folate-Targeted Nanoparticles for Rheumatoid Arthritis Therapy. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1113–1126. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, J.-H.; You, D.G.; Saravanakumar, G.; Yoon, H.Y.; Choi, K.Y.; Thambi, T.; Deepagan, V.G.; Jo, D.-G.; Park, J.H. Self-Assembled Dextran Sulphate Nanoparticles for Targeting Rheumatoid Arthritis. Chem. Commun. 2013, 49, 10349–10351. [Google Scholar] [CrossRef]
- Meka, R.R.; Venkatesha, S.H.; Moudgil, K.D. Peptide-Directed Liposomal Delivery Improves the Therapeutic Index of an Immunomodulatory Cytokine in Controlling Autoimmune Arthritis. J. Control. Release 2018, 286, 279–288. [Google Scholar] [CrossRef]
- Nanjaiah, H.; Moudgil, K.D. Targeted Therapy of Antibody-Induced Autoimmune Arthritis Using Peptide-Guided Nanoparticles. Int. J. Mol. Sci. 2024, 25, 12019. [Google Scholar] [CrossRef]
- Meng, S.; Song, Z.; Tang, Z.; Yang, X.; Xiao, Y.; Guo, H.; Zhou, K.; Du, M.; Zhu, Y.Z.; Wang, X. Surface-Decorated Nanoliposomal Leonurine Targets Activated Fibroblast-like Synoviocytes for Efficient Rheumatoid Arthritis Therapy. Biomater. Sci. 2023, 11, 7099–7113. [Google Scholar] [CrossRef]
- Wu, S.; Yin, Y.; Du, L. Blood–Brain Barrier Dysfunction in the Pathogenesis of Major Depressive Disorder. Cell. Mol. Neurobiol. 2022, 42, 2571–2591. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.S.; Johnsen, K.B.; Kucharz, K.; Lauritzen, M.; Moos, T. Blood–Brain Barrier Transport of Transferrin Receptor-Targeted Nanoparticles. Pharmaceutics 2022, 14, 2237. [Google Scholar] [CrossRef] [PubMed]
- Simsek, E.; Esim, O.; Hascicek, C. Paroxetine HCl-Loaded Hybrid Nanoparticles for Intranasal Application to Brain Delivery: Evaluation and Cell Culture Studies. J. Nanopart. Res. 2025, 27, 214. [Google Scholar] [CrossRef]
- Youssef, J.R.; Boraie, N.A.; Ismail, F.A.; Bakr, B.A.; Allam, E.A.; El-Moslemany, R.M. Brain Targeted Lactoferrin Coated Lipid Nanocapsules for the Combined Effects of Apocynin and Lavender Essential Oil in PTZ Induced Seizures. Drug Deliv. Transl. Res. 2025, 15, 534–555. [Google Scholar] [CrossRef]
- Moreira, R.; Nóbrega, C.; De Almeida, L.P.; Mendonça, L. Brain-Targeted Drug Delivery—Nanovesicles Directed to Specific Brain Cells by Brain-Targeting Ligands. J. Nanobiotechnol. 2024, 22, 260. [Google Scholar] [CrossRef]
- Ali, A.; Sultana, N.; Waheed, A.; Ali, M.H.; Emad, N.A.; Aqil, M.; Sultana, Y.; Mujeeb, M. Nanoliposomal in Situ Gel of Fluoxetine and Embelin as a Potent Intervention for Depression via the Intranasal Route in CUMS Animal Model. J. Drug Deliv. Sci. Technol. 2024, 99, 105947. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, H.; Zhou, Y.-F.; Hu, B. Dual and Multi-Targeted Nanoparticles for Site-Specific Brain Drug Delivery. J. Control. Release 2020, 317, 195–215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yao, P.; Chen, F.; Zheng, S.; Niu, X.; Wang, H.; Lin, Y.; Gao, B.; Kang, D. In Situ Proliferating Peptide Nanoparticle Augments Multi-Target Intervention of Secondary Brain Damage Following Subarachnoid Hemorrhage. Adv. Sci. 2025, 12, e17456. [Google Scholar] [CrossRef]
- Szebeni, J. Complement Activation-Related Pseudoallergy: A Stress Reaction in Blood Triggered by Nanomedicines and Biologicals. Mol. Immunol. 2014, 61, 163–173. [Google Scholar] [CrossRef] [PubMed]


| No. | Model | Drug | NPs | Administration Route | Pathway | Effect | Reference |
|---|---|---|---|---|---|---|---|
| 1 | CIA rats | Dimethylcurcumin (DiMC) | Lipo-DiMC | Intra-articular Injection | DPPI, MMP-2/9 | Reduces circulating neutrophils and lymphocytes, suppresses abnormal DPPI and MMP-2/9 expression, and alleviates joint swelling and arthritis severity. | [72] |
| 2 | AIA rats | Quercetin + methylated BSA antigen | Quercetin/antigen co-loaded liposomes | Intravenous Injection | NF-κB | Modulates APCs and inhibits NF-κB activation, markedly reducing inflammation and protecting joints. | [73] |
| 3 | RAW 264.7 macrophage | - | SeNPs-SPS (selenium NPs with sulfated polysaccharides) | - | NF-κB (IκBα); MAPK (JNK1/2, p38) | Downregulated iNOS, TNF-α, IL-1; upregulated IL-10; inhibited IκBα phosphorylation and JNK/p38 activation, showing strong anti-inflammatory effects. | [74] |
| 4 | AIA rats | DEX | Dex@FA-ROS-Lipo (ROS-responsive folate liposomes) | Subcutaneous Injection | ROS-triggered thioether oxidation | High ROS oxidizes thioether lipids to sulfoxides/sulfones, causing liposomal disassembly and DEX release; folate enables FR-β-mediated targeting of inflamed RA tissues. | [75] |
| 5 | CIA rats | MTX | Catalase-loaded folate liposomes | Intravenous Injection | H2O2 decomposition/ROS | Encapsulated catalase decomposes H2O2 into O2, generating pressure that disrupts the liposomal membrane and rapidly releases MTX while scavenging ROS, independent of a ROS threshold. | [76] |
| 6 | AIA rats | miR-223 | BMSC-derived exosomes | Subcutaneous Injection | NLRP3 inflammasome | miR-223 bound NLRP3 mRNA 3′UTR, downregulated NLRP3, suppressed IL-1β, TNF-α, IL-18, attenuated RA joint inflammation and tissue damage. | [77] |
| 7 | AIA rats | MTX | MFC-MSNs (Mn-ferrite/ceria-modified mesoporous silica NPs) | Intra-articular Injection | HIF-1α; ROS; macrophage polarization | Generated O2 and scavenged ROS, promoted M1→M2 macrophage shift; reduced HIF-1α, alleviated swelling/hyperthermia, improved motor function and cartilage preservation. | [78] |
| 8 | CIA rats | TNF-α inhibitor | Multifunctional PAMAM-dendrimer-entrapped Au NPs | Intra-articular Injection | ROS; TNF-α | PEG-FA targeting + PEG-α-TOS antioxidant units + internal AuNPs + TNF-α inhibitor synergistically scavenged ROS and suppressed TNF-α mRNA/protein expression. | [79] |
| 9 | CIA rats | MTX | CDs2-P@M (PEG-modified multienzyme carbon dots with MTX) | Intravenous Injection | Catalase/SOD-like ROS scavenging; M2 polarization | Removed H2O2, superoxide, and hydroxyl radicals; released MTX to suppress inflammatory cytokines; promoted M2 macrophage polarization and inhibited osteoclast activation. | [80] |
| 10 | AIA rats | - | Au25@GSH (glutathione-stabilized gold nanoclusters) | Intravenous Injection | NF-κB; TrxR; STAT3-cyclin D1-Bcl-2 | Inhibited NF-κB and promoted M1→M2 shift; reduced TNF-α and IL-6; selectively inhibited TrxR in FLS and induced apoptosis via STAT3-cyclin D1-Bcl-2, suppressing FLS proliferation/migration/invasion. | [81] |
| No. | Model | Drug | NPs | Administration Route | Pathway | Effect | Reference |
|---|---|---|---|---|---|---|---|
| 1 | LPS-induced depression and anxiety rats | Curcumin | CUR-NLCs (curcumin nanostructured lipid carriers) | Intraperitoneal Injection | NF-κB, COX-2 | In LPS-induced depression models, inhibit p-NF-κB, downregulate TNF-α and COX-2, preserve neuronal integrity, and enhance antidepressant and anxiolytic effects. | [82] |
| 2 | CORT-induced depression rats | miR-16-5p | Neural stem cell-derived EVs (NSC-EVs) | Tail Vein Injection | miR-16-5p/MYB | Suppressed MYB expression, reduced corticosterone-induced neuronal apoptosis, improved neurodegeneration and depressive-like behaviors. | [83] |
| 3 | CUMS-induced depression mice | - | CeO2 NPs | Intracerebroventricular Injection | SOD/CAT-mimetic ROS scavenging; IL-6 | Eliminated ROS, reduced hippocampal MDA and IL-6, protected neurons, enhanced neurogenesis; stronger antioxidant/anti-inflammatory efficacy than FLX. | [84] |
| 4 | NaF-induced depression-like behaviors mice | - | Selenium NPs | Oral Gavage | JAK2-STAT3 | Inhibited STAT3 nuclear translocation, reduced IL-1β, restored microglial morphology, recovered DA/NE, enhanced neuronal survival, reduced vacuolar degeneration, improved depression-like behavior. | [85] |
| 5 | CUMS-induced depression mice | let-7e-5p cargo | Microglia-derived exosomes | Oral Gavage | Wnt1/β-catenin | let-7e-5p inhibited Wnt1/β-catenin, impaired hippocampal neurogenesis; quercetin downregulated exosomal let-7e-5p and reversed CUMS-induced depressive-like phenotypes. | [86] |
| 6 | CORT-induced depression rat | miR-26a | BMSC-derived exosomes carrying miR-26a | Tail Vein Injection | miR-26a/oxidative-stress regulation | Increased hippocampal miR-26a and SOD, reduced MDA and LDH, restored redox balance, suppressed TNF-α and IL-1β, improved depressive-like behaviors. | [87] |
| 7 | CUMS-induced depression mice | - | N-doped carbon dot nanozymes (CDzymes) | Oral Gavage | Oxidative stress; gut–brain axis | Increased hippocampal 5-HT and GABA, restored gut microbiota diversity and amino-acid metabolism, alleviated depressive-like behaviors in CUMS rats. | [88] |
| 8 | CRS-induced depression mice | Memantine | Microglia-membrane-coated PDA NPs (PDA-Mem@M) | Intravenous Injection | TLR4/NF-κB inhibition; ROS scavenging; microglial M1 to M2 repolarization | Reduces neuroinflammation, protects synapses, improves depressive-like behaviors | [89] |
| 9 | CUMS-induced depression mice | Triptolide | Folate-modified triptolide liposomes (FA-TP-Lips) | Intraperitoneal Injection | p38 MAPK-mediated neuroinflammation | Reduces hippocampal inflammation, modulates microglia, alleviates pain-associated depression | [90] |
| 10 | HeLa cells | FLX | FLX-dextran NPs | - | Monoamine neurotransmitter regulation | Enhances targeted brain delivery and antidepressant efficacy | [91] |
| No. | Dimension | Single-Target Nanomedicine Strategies | Dual-Target Nanomedicine Strategies |
|---|---|---|---|
| 1 | Primary therapeutic targets | Either peripheral joint inflammation (synovium, FLS, macrophages) or central depression-related pathology (microglia, neurons) | Concurrent targeting of peripheral arthritic inflammation and central neuroinflammation/neuroplasticity alterations |
| 2 | Pathophysiological rationale | Treats RA and depression as relatively independent disease entities | Based on a systemic positive feedback loop linking peripheral inflammation, BBB dysfunction, central neuroinflammation, and depressive-like behaviors |
| 3 | Major mechanisms of action | Local suppression of inflammatory mediators in joints or isolated modulation of neurotransmission and neuroinflammation in the CNS | Simultaneous regulation of peripheral immune inflammation, oxidative stress, BBB integrity, central neuroinflammation, and neuroplasticity |
| 4 | Nanodelivery dependence | Relies on EPR/ELVIS effects for accumulation in inflamed joints or on BBB-crossing strategies for CNS delivery | Integrates inflammation-homing effects, receptor-mediated BBB transcytosis, and biomimetic membrane targeting to achieve multi-organ distribution |
| 5 | Representative nanoplatforms | MTX-loaded liposomes, polymeric NPs delivering anti-inflammatory drugs, brain-targeted nanocarriers carrying antidepressants | Co-delivery nanoplatforms carrying anti-rheumatic and antidepressant agents, exosome-based or biomimetic membrane-coated NPs, multifunctional nanozymes |
| 6 | Drug loading and release profiles | Single-site accumulation with relatively simple release kinetics | Hierarchical or stimulus-responsive release: inflammation-triggered drug release in joints followed by sustained or secondary release in the CNS after BBB crossing |
| 7 | System-level synergistic effects | Therapeutic effects largely confined to a single organ or pathological level | Breaks the pathological positive feedback loop along the joint–brain axis through bidirectional neuro-immune regulation |
| 8 | Key advantages | Simpler design and clearer translational pathways | Better alignment with the complex comorbid pathophysiology of RA-associated depression and greater potential for systemic therapeutic efficacy |
| 9 | Major challenges | Limited efficacy in controlling comorbid conditions and higher relapse risk | Increased design complexity, including challenges in drug co-loading, targeting coordination, and long-term biosafety |
| 10 | Current research stage | Mostly validated in single-disease animal models | Primarily at early or proof-of-concept stages, with limited validation in comorbid models or clinical settings |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hu, J.; Shi, M.; Tian, M.; Xie, B.; Tan, Y.; Zhou, D.; Qian, T.; Qin, D. Nanomedicine-Driven Therapeutic Strategies for Rheumatoid Arthritis-Associated Depression: Mechanisms and Pharmacological Progress. Pharmaceuticals 2026, 19, 94. https://doi.org/10.3390/ph19010094
Hu J, Shi M, Tian M, Xie B, Tan Y, Zhou D, Qian T, Qin D. Nanomedicine-Driven Therapeutic Strategies for Rheumatoid Arthritis-Associated Depression: Mechanisms and Pharmacological Progress. Pharmaceuticals. 2026; 19(1):94. https://doi.org/10.3390/ph19010094
Chicago/Turabian StyleHu, Jiaxiang, Mingqin Shi, Miao Tian, Baiqing Xie, Yi Tan, Dongxu Zhou, Tengfei Qian, and Dongdong Qin. 2026. "Nanomedicine-Driven Therapeutic Strategies for Rheumatoid Arthritis-Associated Depression: Mechanisms and Pharmacological Progress" Pharmaceuticals 19, no. 1: 94. https://doi.org/10.3390/ph19010094
APA StyleHu, J., Shi, M., Tian, M., Xie, B., Tan, Y., Zhou, D., Qian, T., & Qin, D. (2026). Nanomedicine-Driven Therapeutic Strategies for Rheumatoid Arthritis-Associated Depression: Mechanisms and Pharmacological Progress. Pharmaceuticals, 19(1), 94. https://doi.org/10.3390/ph19010094

