Recent Advances in Functionalized Gold Nanoprobes for Photoacoustic Imaging Analysis of Diseases
Abstract
1. Introduction
2. Janus Gold Nanoprobes
3. Gold Nanocomposite Probes
3.1. Functionally Coated GNMs
3.2. GNMs-Loaded Nanocarriers
4. Gold Nanoaggregate Probes
4.1. Pre-Assembly of GNMs
4.2. In Situ Aggregation of GNMs
5. Challenges and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hodson, R. Precision medicine. Nature 2016, 53, S49. [Google Scholar] [CrossRef]
- MacEachern, S.J.; Forkert, N.D. Machine learning for precision medicine. Genome 2020, 64, 416–425. [Google Scholar] [CrossRef]
- Xu, Y.; Quan, R.; Xu, W.; Huang, Y.; Chen, X.; Liu, F. Advances in medical image segmentation: A comprehensive review of traditional, deep learning and hybrid approaches. Bioengineering 2024, 11, 1034. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y.; Zhao, Y.; Liu, S. Compressed sensing for biomedical photoacoustic imaging: A review. Sensors 2024, 24, 2670. [Google Scholar] [CrossRef]
- Shen, Q.; Song, G.; Lin, H.; Bai, H.; Huang, Y.; Lv, F.; Wang, S. Sensing, imaging, and therapeutic strategies endowing by conjugate polymers for precision medicine. Adv. Mater. 2024, 36, 2310032. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, X. Recent advances in NIR-II materials for biomedical applications. Acc. Mater. Res. 2024, 5, 600–613. [Google Scholar] [CrossRef]
- Chu, B.; Chen, Z.; Shi, H.; Wu, X.; Wang, H.; Dong, F.; He, Y. Fluorescence, ultrasonic and photoacoustic imaging for analysis and diagnosis of diseases. Chem. Commun. 2023, 59, 2399–2412. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhang, X.; Wu, L.; Wu, M.; James, T.D.; Zhang, R. Bioorthogonally activated probes for precise fluorescence imaging. Chem. Soc. Rev. 2025, 54, 201–265. [Google Scholar] [CrossRef]
- Chu, B.; Chen, Z.; Wu, X.; Shi, H.; Jin, X.; Song, B.; Cui, M.; Zhao, Y.; Zhao, Y.; He, Y.; et al. Photoactivated gas-generating nanocontrast agents for long-term ultrasonic imaging-guided combined therapy of tumors. ACS Nano 2024, 18, 15590–15606. [Google Scholar] [CrossRef]
- Wang, L. Acoustic radiation force-based ultrasound elasticity imaging for biomedical applications. Sensors 2018, 18, 2252. [Google Scholar] [CrossRef]
- Kim, M.G.; Yoon, C.; Lim, H.G. Recent advancements in high-frequency ultrasound applications from imaging to microbeam stimulation. Sensors 2024, 24, 6471. [Google Scholar] [CrossRef]
- Wang, D.; Xing, C.; Liang, Y.; Wang, C.; Zhao, P.; Liang, X.; Li, Q.; Yuan, L. Ultrasound imaging of tumor vascular CD93 with MMRN2 modified microbubbles for immune microenvironment prediction. Adv. Mater. 2024, 36, 2310421. [Google Scholar] [CrossRef]
- Sakdinawat, A.; Attwood, D. Nanoscale X-ray imaging. Nat. Photonics 2010, 4, 840–848. [Google Scholar] [CrossRef]
- Kirimtat, A.; Krejcar, O. GPU-based parallel processing techniques for enhanced brain magnetic resonance imaging analysis: A review of recent advances. Sensors 2024, 24, 1591. [Google Scholar] [CrossRef]
- Komolafe, T.E.; Zhang, C.; Olagbaju, O.A.; Yuan, G.; Du, Q.; Li, M.; Zheng, J.; Yang, X. Comparison of diagnostic test accuracy of cone-beam breast computed tomography and digital breast tomosynthesis for breast cancer: A systematic review and meta-analysis approach. Sensors 2022, 22, 3594. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, K.; Chen, G.; Lin, L. Advances in photoacoustic imaging of breast cancer. Sensors 2025, 25, 4812. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650. [Google Scholar] [CrossRef]
- Park, J.; Choi, S.; Knieling, F.; Clingman, B.; Bohndiek, S.; Wang, L.V.; Kim, C. Clinical translation of photoacoustic imaging. Nat. Rev. Bioeng. 2025, 3, 193–212. [Google Scholar] [CrossRef]
- Mantri, Y.; Jokerst, J.V. Engineering plasmonic nanoparticles for enhanced photoacoustic imaging. ACS Nano 2020, 14, 9408–9422. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Park, B.; Choi, S.; Oh, D.; Kim, J.; Kim, C. Recent advances in contrast-enhanced photoacoustic imaging: Overcoming the physical and practical challenges. Chem. Rev. 2023, 123, 7379–7419. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Fan, Z.; Huang, G.; Tang, J.; Nie, L. Current strategies of photoacoustic imaging assisted cancer theragnostics toward clinical studies. ACS Photonics 2022, 9, 2555–2578. [Google Scholar] [CrossRef]
- Huang, Z.; Tian, H.; Luo, H.; Yang, K.; Chen, J.; Li, G.; Ding, Z.; Luo, Y.; Tang, S.; Xu, J.; et al. Assessment of oxygen saturation in breast lesions using photoacoustic imaging: Correlation with benign and malignant disease. Clin. Breast Cancer 2024, 24, e210–e218.e1. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Chen, J.; Gao, R.; Chen, R.; Xue, Q.; Ren, Y.; Liu, L.; Tang, C.; Hu, H.; Zeng, N.; et al. NIR-II photoacoustic imaging-guided oxygen delivery and controlled release improves photodynamic therapy for hepatocellular carcinoma. Adv. Mater. 2024, 36, 2308780. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wang, L.V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 2022, 19, 365–384. [Google Scholar] [CrossRef]
- Kye, H.; Kang, M.S.; Jo, D.; Park, B.; Jang, H.J.; Kim, J.; Han, D.W. Advances in high-resolution photoacoustic imaging techniques for cellular visualization. View 2025, 20250125, early view. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.; Ling, Y.; Chen, Z.; Wu, X.; Lu, X.; He, Y.; Wang, H.; Dong, F. A dual-response DNA origami platform for imaging and treatment of sepsis-associated acute kidney injury. Adv. Sci. 2025, 12, 2416330. [Google Scholar] [CrossRef]
- Rizwan, A.; Sridharan, B.; Park, J.H.; Kim, D.; Vial, J.C.; Kyhm, K.; Lim, H.G. Nanophotonic-enhanced photoacoustic imaging for brain tumor detection. J. Nanobiotechnol. 2025, 23, 170. [Google Scholar] [CrossRef]
- Barlow, B.R.; Kim, J. Next generation gold nanomaterials for photoacoustic imaging. Nanomedicine 2025, 20, 1479–1493. [Google Scholar] [CrossRef]
- Wu, M.; Xiao, Y.; Wu, R.; Lei, J.; Li, T.; Zheng, Y. Aggregable gold nanoparticles for cancer photothermal therapy. J. Mater. Chem. B 2024, 12, 8048–8061. [Google Scholar] [CrossRef]
- Karnwal, A.; Kumar Sachan, R.S.; Devgon, I.; Devgon, J.; Pant, G.; Panchpuri, M.; Ahmad, A.; Alshammari, M.B.; Hossain, K.; Kumar, G. Gold nanoparticles in nanobiotechnology: From synthesis to biosensing applications. ACS Omega 2024, 9, 29966–29982. [Google Scholar] [CrossRef]
- Ni, B.; González-Rubio, G.; Van Gordon, K.; Bals, S.; Kotov, N.A.; Liz-Marzán, L.M. Seed-mediated growth and advanced characterization of chiral gold nanorods. Adv. Mater. 2024, 36, 2412473. [Google Scholar] [CrossRef]
- Parimi, D.S.; Kumar, J.; Panneerselvam, R.; Sreenivasulu, T.; Suresh, A.K. Sustainable golden nanoflowers grafted food-waste derived biotemplate for the direct SERS-detection of carcinogenic herbicides from agro-farms. Mater. Today Chem. 2024, 36, 101985. [Google Scholar] [CrossRef]
- Delgado-Corrales, B.J.; Chopra, V.; Chauhan, G. Gold nanostars and nanourchins for enhanced photothermal therapy, bioimaging, and theranostics. J. Mater. Chem. B 2025, 13, 399–428. [Google Scholar] [CrossRef]
- Otero, C.M.; Boggan Simal, G.; Maier, C.M.; Lavorato, G.; Gargiulo, J.; Vericat, C.; Huergo, M.A. Photothermal properties of size-tunable gold nanotriangles with matching near infrared plasmon resonance wavelengths. ACS Appl. Nano Mater. 2025, 8, 11209–11218. [Google Scholar] [CrossRef]
- Halawa, M.I.; Belal, F.; Salem, A.A.; Su, L.; Zhang, X. Ultrasensitive platform for the determination of biothiols using aggregation-induced emission of gold-cysteine nanosheets. Biosens. Bioelectron. 2025, 272, 117131. [Google Scholar] [CrossRef]
- de Gennes, P.G. Soft matter. Science 1992, 256, 495–497. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, Q.; Duan, H.; Song, J.; Yang, H. Janus nanoparticles: From fabrication to (bio)applications. ACS Nano 2021, 15, 6147–6191. [Google Scholar] [CrossRef]
- Kirillova, A.; Marschelke, C.; Synytska, A. Hybrid Janus Particles: Challenges and opportunities for the design of active functional interfaces and surfaces. ACS Appl. Mater. Interfaces 2019, 11, 9643–9671. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gao, Z.; Wang, C.; Zou, D.; Zhou, H.; Yi, Y.; Wang, J.; Wang, L. Recent progress on bioimaging strategies based on Janus nanoparticles. Nanoscale 2022, 14, 12560–12568. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Pan, Q.; Li, M.; Wang, Z.; Wang, L.; Zhang, C.; Wang, Z.H.; Shi, J.; Li, D. Amplified copper ion interference and immunomodulation using self-thermophoretic nanomotors to treat refractory implant-associated biofilm infections. Nat. Commun. 2025, 16, 9009. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.H.; Zhao, W.; Yang, Z.; Wang, L.; Ren, W. Simultaneous guidance of intraoperative tumor resection by near-infrared-II imaging combined with complementary surface-enhanced Raman imaging via Janus Au-PbS nanoparticles. Anal. Chem. 2025, 97, 3161–3170. [Google Scholar] [CrossRef]
- Zhu, K.; Li, Z.; Cao, J.; Cao, Y.; Wang, J.; Wang, S.; Chen, L.; Zhou, H.; Huang, W.; Zou, H. Radio-activated selenium-doped Janus Ag/Ag2SexSy nanoparticles for precise cancer NIR-ii fluorescence imaging and radiosensitization therapy. Adv. Sci. 2025, 12, 2417828. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, F.; Pariente, E.; Xu, X.; Zhang, X.; Shabiti, S.; Ke, Y.; Hao, J.; Delville, J.P.; Delville, M.H. Tumor-targeted glutamine metabolism blocker synergizes with TiO2-Au Janus nanoparticles for enhanced sono-metabolic antitumor therapy. Adv. Mater. 2025, 37, 2418800. [Google Scholar] [CrossRef]
- Honciuc, M.; Honciuc, A. Scaling amphiphilicity with Janus nanoparticles: A new frontier in nanomaterials and interface science. Nanomaterials 2025, 15, 1079. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhao, X.; Liu, Y.; Chen, B.; Ding, X.; Zhao, N.; Xu, F.J. Controlled synthesis and surface engineering of Janus chitosan-gold nanoparticles for photoacoustic imaging-guided synergistic gene/photothermal therapy. Small 2021, 17, 2006004. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Tang, Y.; Chen, L.; Liu, L.; Huo, H.; Ye, J.; Ge, X.; Su, L.; Chen, Z.; Song, J. In-situ assembly of Janus nanoprobe for cancer activated NIR-II photoacoustic imaging and enhanced photodynamic therapy. Anal. Chem. 2022, 94, 10540–10548. [Google Scholar] [CrossRef]
- Wang, S.; Liu, W.; Cao, Y.; Wang, J.; Zhu, K.; Li, Z.; Cao, J.; Mo, C.; Chen, Q.; Huang, W.; et al. Janus nanoprobe with dual-modal NIR-II fluorescence/photoacoustic imaging for precision cancer radiosensitizing therapy. ACS Appl. Mater. Interfaces 2025, 17, 29266–29275. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Lee, J.; Kim, J.; Kim, J.; Wi, J.-S.; Park, J.Y.; Lee, T.G.; Choi, B.G.; Lee, K.G.; Kim, Y.H.; et al. Janus gold nanodiscs with an asymmetrically positioned polyaniline nano-urchin for photothermal therapy and multimodal imaging in the second near-infrared window. ACS Appl. Mater. Interfaces 2025, 17, 31799–31809. [Google Scholar] [CrossRef]
- Reguera, J.; Jiménez de Aberasturi, D.; Henriksen-Lacey, M.; Langer, J.; Espinosa, A.; Szczupak, B.; Wilhelm, C.; Liz-Marzán, L.M. Janus plasmonic–magnetic gold–iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale 2017, 9, 9467–9480. [Google Scholar] [CrossRef]
- Park, J.H.; Dumani, D.S.; Arsiwala, A.; Emelianov, S.; Kane, R.S. Tunable aggregation of gold-silica Janus nanoparticles to enable contrast-enhanced multiwavelength photoacoustic imaging in vivo. Nanoscale 2018, 10, 15365–15370. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.-W.; Wu, Y.; Ge, X.; Su, L.; Feng, H.; Wu, Z.; Yang, H.; Song, J. Highly controlled Janus organic-inorganic nanocomposite as a versatile photoacoustic platform. Angew. Chem. Int. Ed. 2021, 60, 17647–17653. [Google Scholar] [CrossRef]
- Zhong, R.; Wang, R.; Hou, X.; Song, L.; Zhang, Y. Polydopamine-doped virus-like structured nanoparticles for photoacoustic imaging guided synergistic chemo-/photothermal therapy. RSC Adv. 2020, 10, 18016–18024. [Google Scholar] [CrossRef] [PubMed]
- Yim, W.; Borum, R.M.; Zhou, J.; Mantri, Y.; Wu, Z.; Zhou, J.; Jin, Z.; Creyer, M.; Jokerst, J.V. Ultrasmall gold nanorod-polydopamine hybrids for enhanced photoacoustic imaging and photothermal therapy in second near-infrared window. Nanotheranostics 2022, 6, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Ferrer, D.; Vasileiadis, T.; Iatsunskyi, I.; Ziółek, M.; Żebrowska, K.; Ivashchenko, O.; Błaszkiewicz, P.; Grześkowiak, B.; Pazos, R.; Moya, S. Understanding the photothermal and photocatalytic mechanism of polydopamine coated gold nanorods. Adv. Funct. Mater. 2023, 33, 2304208. [Google Scholar] [CrossRef]
- Repenko, T.; Rix, A.; Nedilko, A.; Rose, J.; Hermann, A.; Vinokur, R.; Moli, S.; Cao-Milàn, R.; Mayer, M.; von Plessen, G. Strong photoacoustic signal enhancement by coating gold nanoparticles with melanin for biomedical imaging. Adv. Funct. Mater. 2018, 28, 1705607. [Google Scholar] [CrossRef]
- Ye, T.; Wu, X.; Su, C.; Huang, M.; Bai, L.; Xue, M.; Yuan, M.; Cao, H.; Hao, L.; Yin, F.; et al. Polydopamine-coated aptamer-modified gold nanoparticles for enhanced Pb2+ sensing via molecular imprinting. Microchem. J. 2025, 216, 114607. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.; Cai, W.; Chen, A.; Zhang, R. Multifunctional hybrid nanoprobe for photoacoustic/PET/MR imaging-guided photothermal therapy of laryngeal cancer. ACS Appl. Bio Mater. 2021, 4, 5312–5323. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, X.; Yu, B.; Chen, M.; Zhao, N.; Xu, F.J. pH-Responsive hyaluronic acid-cloaked polycation/gold nanohybrids for tumor-targeted synergistic photothermal/gene therapy. Biomater. Sci. 2022, 10, 2618–2627. [Google Scholar] [CrossRef]
- Bariana, M.; Zhang, B.; Sun, J.; Wang, W.; Wang, J.; Cassella, E.; Myint, F.; Anuncio, S.A.; Ouk, S.; Liou, H.-C.; et al. Targeted lymphoma therapy using a gold nanoframework-based drug delivery system. ACS Appl. Mater. Interfaces 2023, 15, 6312–6325. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Yang, L.; Lin, Y.; Tian, Y.; Ni, Q.; Wang, S.; Ju, H.; Guo, J.; Lu, G. Gold nanostar@polyaniline theranostic agent with high photothermal conversion efficiency for photoacoustic imaging-guided anticancer phototherapy at a low dosage. ACS Appl. Mater. Interfaces 2022, 14, 28570–28580. [Google Scholar] [CrossRef]
- Lou, F.; Wei, Q.; Yin, Y.; Liu, S.; He, Z.; Tan, S.; Gao, J.; Dong, Z.; Xu, Y.; Li, Z.; et al. CD44-targeted gold-nanorod-based nano-adjuvant combining mild photothermal therapy and immune activation for triple-negative breast cancer therapy. ACS Appl. Nano Mater. 2025, 8, 16040–16052. [Google Scholar] [CrossRef]
- Jokerst, J.V.; Thangaraj, M.; Kempen, P.J.; Sinclair, R.; Gambhir, S.S. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano 2012, 6, 5920–5930. [Google Scholar] [CrossRef]
- Peng, D.; Du, Y.; Shi, Y.; Mao, D.; Jia, X.; Li, H.; Zhu, Y.; Wang, K.; Tian, J. Precise diagnosis in different scenarios using photoacoustic and fluorescence imaging with dual-modality nanoparticles. Nanoscale 2016, 8, 14480–14488. [Google Scholar] [CrossRef]
- Xu, C.; Chen, F.; Valdovinos, H.F.; Jiang, D.; Goel, S.; Yu, B.; Sun, H.; Barnhart, T.E.; Moon, J.J.; Cai, W. Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials 2018, 165, 56–65. [Google Scholar] [CrossRef]
- Mueller, E.N.; Kuriakose, M.; Ganguly, S.; Ma, K.; Inzunza-Ibarra, M.A.; Murray, T.W.; Cha, J.N.; Goodwin, A.P. Hydrophobically modified silica-coated gold nanorods for generating nonlinear photoacoustic signals. ACS Appl. Nano Mater. 2021, 4, 12073–12082. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fadhel, M.N.; Hysi, E.; Pastenak, M.; Sathiyamoorthy, K.; Kolios, M.C. In vivo spectroscopic photoacoustic imaging and laser-induced nanoparticle vaporization for anti-HER2 breast cancer. J. Biophotonics 2021, 14, e202100099. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Kang, P.; Youn, J.; Wilson, B.A.; Zhang, T.; Basavarajappa, L.; Wang, Q.; Kim, M.; Li, L.; Hoyt, K.; et al. Mechanism of amplified photoacoustic effect for silica-coated spherical gold nanoparticles. Nano Lett. 2025, 25, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, C.; Cheng, Y.; Cheng, Q. Photostability enhancement of silica-coated gold nanostars for photoacoustic imaging guided photothermal therapy. Photoacoustics 2021, 23, 100284. [Google Scholar] [CrossRef]
- Mantri, Y.; Sit, I.; Zhou, J.; Grassian, V.H.; Jokerst, J.V. Photoacoustic enhancement of ferricyanide-treated silver chalcogenide-coated gold nanorods. J. Phys. Chem. C 2022, 126, 7605–7614. [Google Scholar] [CrossRef]
- Ma, Y.; Xiong, L.; Qiu, W.; Dong, Z.; Wei, X.; Li, J.; Fu, Y.; Xiong, J.; Wu, H. Growth of NIR-II-responsive gold nanobipyramids with improved yield and a study of their application in cancer therapy. Langmuir 2025, 41, 10841–10852. [Google Scholar] [CrossRef]
- Kim, T.; Zhang, Q.; Li, J.; Zhang, L.; Jokerst, J.V. A gold/silver hybrid nanoparticle for treatment and photoacoustic imaging of bacterial infection. ACS Nano 2018, 12, 5615–5625. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Jiang, W.; Yu, Y.; Zhang, H.; Cai, C.; Shen, Q. Anisotropic plasmonic Pd-tipped Au nanorods for near-infrared light-activated photoacoustic imaging guided photothermal–photodynamic cancer therapy. J. Mater. Chem. B 2022, 10, 2028–2037. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Q.; Chen, R.; Cao, H.; Tang, J.; Wu, Y.; Lu, X.; Chu, B.; Song, B.; Wang, H.; et al. NIR-II photoacoustic-active DNA origami nanoantenna for early diagnosis and smart therapy of acute kidney injury. J. Am. Chem. Soc. 2022, 144, 23522–23533. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Shen, S.; Huang, Y.; Zhang, X.; Lai, Z.; Tran, T.H.; Liu, Z.; Cheng, L. Controllable growth of Au nanostructures onto MoS2 nanosheets for dual-modal imaging and photothermal–radiation combined therapy. Nanoscale 2019, 11, 22788–22795. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Kumar, D.; Kim, H.; Sim, C.; Chang, J.H.; Kim, J.-M.; Kim, H.; Lim, D.K. Amplified Photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 2015, 9, 2711–2719. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.Y. Gold nanorod/reduced graphene oxide composite nanocarriers for near-infrared-induced cancer therapy and photoacoustic imaging. ACS Appl. Nano Mater. 2021, 4, 11849–11860. [Google Scholar] [CrossRef]
- Jin, X.; Xu, C.; Hu, J.; Yao, S.; Hu, Z.; Wang, B. A biodegradable multifunctional nanoplatform based on antimonene nanosheets for synergistic cancer phototherapy and dual imaging. J. Mater. Chem. B 2021, 9, 9333–9346. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhang, H.; Xu, X.; Shen, T.; An, X.; Pan, H.; Chang, D. Colorimetric sensor modified with Mxenes @MnCoZDH@Au composite nanomaterials for visualization of circulating tumor cells in lung cancer. Anal. Chim. Acta 2025, 1368, 344298. [Google Scholar] [CrossRef]
- Cui, M.; Liu, S.; Song, B.; Guo, D.; Wang, J.; Hu, G.; Su, Y.; He, Y. Fluorescent silicon nanorods-based nanotheranostic agents for multimodal imaging-guided photothermal therapy. Nano-Micro Lett. 2019, 11, 73. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Y.; Gong, F.; Dang, Q.; Xiang, G.; Cheng, L.; Liao, F.; Shao, M. Silicon nanowires decorated with gold nanoparticles via in situ reduction for photoacoustic imaging-guided photothermal cancer therapy. J. Mater. Chem. B 2019, 7, 4393–4401. [Google Scholar] [CrossRef]
- Ye, P.; Li, F.; Zou, J.; Luo, Y.; Wang, S.; Lu, G.; Zhang, F.; Chen, C.; Long, J.; Jia, R. In situ generation of gold nanoparticles on bacteria-derived magnetosomes for imaging-guided starving/chemodynamic/photothermal synergistic therapy against cancer. Adv. Funct. Mater. 2022, 32, 2110063. [Google Scholar] [CrossRef]
- Tian, R.; Zhu, L.; Qin, Z.; Wang, G.; Wang, J.; Zhang, H. Glypican-3 (GPC3) targeted Fe3O4 core/Au shell nanocomplex for fluorescence/MRI/photoacoustic imaging-guided tumor photothermal therapy. Biomater. Sci. 2019, 7, 5258–5269. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Zhao, Y.; Yoon, S.J.; Gambhir, S.S.; Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 2019, 14, 465–472. [Google Scholar] [CrossRef]
- Chen, J.; Liang, H.; Lin, L.; Guo, Z.; Sun, P.; Chen, M.; Tian, H.; Deng, M.; Chen, X. Gold-nanorods-based gene carriers with the capability of photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2016, 8, 31558–31566. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, Y.; Liu, X.; Cui, D.; Shi, Y.; Huang, G. Tumor-specific enhanced NIR-II photoacoustic imaging via photothermal and low-pH coactivated AuNR@PNIPAM-VAA nanogel. J. Nanobiotechnol. 2024, 22, 326. [Google Scholar] [CrossRef]
- Darrigues, E.; Nima, Z.A.; Nedosekin, D.A.; Watanabe, F.; Alghazali, K.M.; Zharov, V.P.; Biris, A.S. Tracking gold nanorods’ interaction with large 3D pancreatic-stromal tumor spheroids by multimodal imaging: Fluorescence, photoacoustic, and photothermal microscopies. Sci. Rep. 2020, 10, 3362. [Google Scholar] [CrossRef]
- Salah, D.; Moghanm, F.S.; Arshad, M.; Alanazi, A.A.; Latif, S.; El-Gammal, M.I.; Shimaa, E.M.; Elsayed, S. Polymer-peptide modified gold nanorods to improve cell conjugation and cell labelling for stem cells photoacoustic imaging. Diagnostics 2021, 11, 1196. [Google Scholar] [CrossRef]
- Jin, R.-M.; Yao, M.-H.; Yang, J.; Zhao, D.-H.; Zhao, Y.-D.; Liu, B. One-Step in situ synthesis of polypeptide-gold nanoparticles hybrid nanogels and their application in targeted photoacoustic imaging. ACS Sustain. Chem. Eng. 2017, 5, 9841–9847. [Google Scholar] [CrossRef]
- Meng, Z.; Zhou, X.; She, J.; Zhang, Y.; Feng, L.; Liu, Z. Ultrasound-responsive conversion of microbubbles to nanoparticles to enable background-free in vivo photoacoustic imaging. Nano Lett. 2019, 19, 8109–8117. [Google Scholar] [CrossRef]
- Dixon, A.J.; Hu, S.; Klibanov, A.L.; Hossack, J.A. Oscillatory dynamics and in vivo photoacoustic imaging performance of plasmonic nanoparticle-coated microbubbles. Small 2015, 11, 3066–3077. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, M.; Tang, J.; Li, J.; Zhou, Y.; Liu, Y.; Yang, F.; Gu, N. An acoustic strategy for gold nanoparticle loading in platelets as biomimetic multifunctional carriers. J. Mater. Chem. B 2019, 7, 2138–2144. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Feng, Q.; Yang, H.; Wang, G.; Huang, L.; Bai, Q.; Zhang, C.; Wang, Y.; Chen, Y.; Cheng, Q. A light-triggered mesenchymal stem cell delivery system for photoacoustic imaging and chemo-photothermal therapy of triple negative breast cancer. Adv. Sci. 2018, 5, 1800382. [Google Scholar] [CrossRef] [PubMed]
- Ning, P.; Chen, Y.; Bai, Q.; Xu, C.; Deng, C.; Cheng, Q.; Cheng, Y. Multimodal imaging-guided spatiotemporal tracking of photosensitive stem cells for breast cancer treatment. ACS Appl. Mater. Interfaces 2022, 14, 7551–7564. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, P.; Xu, D.; Liu, H.; Hao, Q.; Zhang, M.; Wang, Z.; Wei, T.; Dai, Z. Facile alkyne assembly-enabled functional Au nanosheets for photoacoustic imaging-guided photothermal/gene therapy of orthotopic glioblastoma. J. Am. Chem. Soc. 2024, 146, 32965–32978. [Google Scholar] [CrossRef]
- Ge, X.; Chen, B.; Liu, T.; Wei, L.; Tong, L.; Ma, Q.; Gao, S.; Song, J. Active targeting drug-gold nanorod hybrid nanoparticles for amplifying photoacoustic signal and enhancing anticancer efficacy. RSC Adv. 2019, 9, 13494–13502. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, R.; Jin, X.; Zhong, W.; Zhou, L. Quantitative near-infrared photoacoustic imaging of gamma-glutamyl transpeptidase activity in tumors. Anal. Chem. 2025, 97, 12540–12547. [Google Scholar] [CrossRef]
- Liao, S.; Yue, W.; Cai, S.; Tang, Q.; Lu, W.; Huang, L.; Qi, T.; Liao, J. Improvement of gold nanorods in photothermal therapy: Recent progress and perspective. Front. Pharmacol. 2021, 12, 664123. [Google Scholar] [CrossRef]
- Tian, C.; Qian, W.; Shao, X.; Xie, Z.; Cheng, X.; Liu, S.; Cheng, Q.; Liu, B.; Wang, X. Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells. Adv. Sci. 2016, 3, 1600237. [Google Scholar] [CrossRef]
- Sun, I.C.; Jo, S.; Dumani, D.; Yun, W.S.; Yoon, H.Y.; Lim, D.-K.; Ahn, C.H.; Emelianov, S.; Kim, K. Theragnostic glycol chitosan-conjugated gold nanoparticles for photoacoustic imaging of regional lymph nodes and delivering tumor antigen to lymph nodes. Nanomaterials 2021, 11, 1700. [Google Scholar] [CrossRef]
- Cheng, X.; Sun, R.; Yin, L.; Chai, Z.; Shi, H.; Gao, M. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv. Mater. 2017, 29, 1604894. [Google Scholar] [CrossRef]
- Gomerdinger, V.F.; Nabar, N.; Hammond, P.T. Advancing engineering design strategies for targeted cancer nanomedicine. Nat. Rev. Cancer 2025, 25, 657–683. [Google Scholar] [CrossRef]
- Lee, B.; Lee, Y.; Lee, N.; Kim, D.; Hyeon, T. Design of oxide nanoparticles for biomedical applications. Nat. Rev. Mater. 2025, 10, 252–267. [Google Scholar] [CrossRef]
- Higbee-Dempsey, E.; Amirshaghaghi, A.; Case, M.J.; Miller, J.; Busch, T.M.; Tsourkas, A. Indocyanine green-coated gold nanoclusters for photoacoustic imaging and photothermal therapy. Adv. Ther. 2019, 2, 1900088. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, K.; Chen, B.; Zhao, N.; Xu, F.J. Flexible photothermal assemblies with tunable gold patterns for improved imaging-guided synergistic therapy. Small 2020, 16, 2002790. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, L.; Sun, T.; Zhang, Y.; Liu, Y.; Gong, M.; Xu, Z.; Du, M.; Liu, Y.; Liu, G. Activatable NIR-II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy. Adv. Mater. 2021, 33, 2006532. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Fan, W.; Zhu, T.; Qian, W.; Li, Y.; Liu, B.; Zhang, W.; Henry, J.; Yuan, S.; Wang, X.; et al. Long-term, noninvasive in vivo tracking of progenitor cells using multimodality photoacoustic, optical coherence tomography, and fluorescence imaging. ACS Nano 2021, 15, 13289–13306. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.P.; Qian, W.; Li, Y.; Liu, B.; Aaberg, M.; Henry, J.; Zhang, W.; Wang, X.; Paulus, Y.M. Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nat. Commun. 2021, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Bera, D.; Mahata, S.; Biswas, M.; Kumari, K.; Rakshit, S.; Nonappa; Ghosh, S.; Goswami, N. Efficient photocatalytic hydrogen production using in-situ polymerized gold nanocluster assemblies. Small 2025, 21, 2406551. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Yoon, S.J.; Frey, W.; Dockery, M.; Emelianov, S. Dynamic contrast-enhanced photoacoustic imaging using photothermal stimuli-responsive composite nanomodulators. Nat. Commun. 2017, 8, 15782. [Google Scholar] [CrossRef]
- Chen, T.; Su, L.; Ge, X.; Zhang, W.; Li, Q.; Zhang, X.; Ye, J.; Lin, L.; Song, J.; Yang, H. Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies. Nano Res. 2020, 13, 3268–3277. [Google Scholar] [CrossRef]
- Ge, X.; Fu, Q.; Su, L.; Li, Z.; Zhang, W.; Chen, T.; Yang, H.; Song, J. Light-activated gold nanorod vesicles with NIR-II fluorescence and photoacoustic imaging performances for cancer theranostics. Theranostics 2020, 10, 4809–4821. [Google Scholar] [CrossRef] [PubMed]
- Lv, N.; Zhang, X.; Wang, S.; Wu, Y.; Ge, X.; Song, J.; Ma, Q.; Gao, S. Stimuli-Responsive Hybrid Vesicle for Tumor Dual-Model NIR-II Photoacoustic and Fluorescence Imaging and Precise Radiotherapy. Adv. Opt. Mater. 2022, 10, 2200694. [Google Scholar] [CrossRef]
- Chen, T.; Su, L.; Lin, L.; Ge, X.; Bai, F.; Niu, M.; Wang, C.; Song, J.; Guo, S.; Yang, H. Mesoporous radiosensitized nanoprobe for enhanced NIR-II photoacoustic imaging-guided accurate radio-chemotherapy. Nano Res. 2022, 15, 4154–4163. [Google Scholar] [CrossRef]
- Retout, M.; Lepeintre, V.; Amer, L.; Yim, W.; Jokerst, J.V. Activatable photoacoustic probe for imaging infection: Gold nanorod dissociation in vivo reports bacterial protease activity. ACS Nano 2025, 19, 12041–12052. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Su, Q.; Liu, T.; He, X.; Yuan, P.; Tian, R.; Li, B.; Zhang, Y.; Chen, X. Intelligent gold nanoparticles for synergistic tumor treatment via intracellular Ca2+ regulation and resulting on-demand photothermal therapy. Chem. Eng. J. 2022, 433, 133850. [Google Scholar] [CrossRef]
- Köker, T.; Tang, N.; Tian, C.; Zhang, W.; Wang, X.; Martel, R.; Pinaud, F. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds. Nat. Commun. 2018, 9, 607. [Google Scholar] [CrossRef]
- Dumani, D.S.; Sun, I.-C.; Emelianov, S.Y. Ultrasound-guided immunofunctional photoacoustic imaging for diagnosis of lymph node metastases. Nanoscale 2019, 11, 11649–11659. [Google Scholar] [CrossRef]
- Kong, W.-C.; Li, C.-C.; Zhang, A.-H.; Li, X.-L.; Gong, Q.-R.; Jin, B.-T.; Jia, X.-J.; Liu, X.-Y.; Kang, Y.-F. A colorimetric-aptamer-based assay for the determination of enrofloxacin through triggering the aggregation of gold nanoparticles. Anal. Methods 2024, 16, 7121–7129. [Google Scholar] [CrossRef]
- Wang, H.; An, L.; Tao, C.; Ling, Z.; Lin, J.; Tian, Q.; Yang, S. A smart theranostic platform for photoacoustic and magnetic resonance dual-imaging-guided photothermal-enhanced chemodynamic therapy. Nanoscale 2020, 12, 5139–5150. [Google Scholar] [CrossRef]
- Zhang, L.; Zhuang, W.; Yuan, Y.; Shen, J.; Shi, W.; Liu, G.; Wu, W.; Zhang, Q.; Shao, G.; Mei, Q.; et al. Novel glutathione activated smart probe for photoacoustic imaging, photothermal therapy, and safe postsurgery treatment. ACS Appl. Mater. Interfaces 2022, 14, 24174–24186. [Google Scholar] [CrossRef]
- An, X.; Chen, Z.; Luo, Y.; Yang, P.; Yang, Z.; Ji, T.; Chi, Y.; Wang, S.; Zhang, R.; Wang, Z.; et al. Light-activated in situ vaccine with enhanced cytotoxic t lymphocyte infiltration and function for potent cancer immunotherapy. Adv. Sci. 2024, 11, 2403158. [Google Scholar] [CrossRef]
- Liu, D.; Liu, L.; Liu, F.; Zhang, M.; Wei, P.; Yi, T. HOCl-activated aggregation of gold nanoparticles for multimodality therapy of tumors. Adv. Sci. 2021, 8, 2100074. [Google Scholar] [CrossRef]
- Wang, X.; Yang, T.; Yu, Z.; Liu, T.; Jin, R.; Weng, L.; Bai, Y.; Gooding, J.J.; Zhang, Y.; Chen, X. Intelligent gold nanoparticles with oncogenic MicroRNA-dependent activities to manipulate tumorigenic environments for synergistic tumor therapy. Adv. Mater. 2022, 34, 2110219. [Google Scholar] [CrossRef]
- Li, S.; Lui, K.-H.; Tsoi, T.-H.; Lo, W.-S.; Li, X.; Hu, X.; Chi-Shing Tai, W.; Hiu-Ling Hung, C.; Gu, Y.-J.; Wong, W.-T. pH-responsive targeted gold nanoparticles for in vivo photoacoustic imaging of tumor microenvironments. Nanoscale Adv. 2019, 1, 554–564. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, L.; Wang, X.; Jia, Q.; Chen, Z.; Yang, Z.; Ji, R.; Tian, J.; Wang, Z. Acid-induced in vivo assembly of gold nanoparticles for enhanced photoacoustic imaging-guided photothermal therapy of tumors. Adv. Healthc. Mater. 2020, 9, 2000394. [Google Scholar] [CrossRef]
- Zhou, J.; Li, K.; Qin, H.; Xie, B.; Liao, H.; Su, X.; Li, C.; He, X.; Chen, W.; Jiang, X. Programmed-stimuli responsive carrier-free multidrug delivery system for highly efficient trimodal combination therapy. J. Colloid Interface Sci. 2023, 637, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Fang, X.; Wu, Y.; Xu, Y.; Feng, H.; Mu, J.; Chen, Z.; Lin, Y.; Fu, Q.; Du, W.; et al. Activatable nanoprobe with aggregation-induced dual fluorescence and photoacoustic signal enhancement for tumor precision imaging and radiotherapy. Anal. Chem. 2022, 94, 5204–5211. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.-T.D.; Park, Y.; Jung, Y.M.; Chew, S.Y.; Yoo, H.S. Reactive oxygen species-responsive clicked assembly of gold nanoparticles to enhance photothermal therapy. J. Mater. Chem. B 2023, 11, 6961–6974. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Zhao, H.; Shui, M.; Ding, Y.F.; Sun, C.; Wang, Z.; Gao, C.; Chen, G.; Wang, R. Spermine-responsive intracellular self-aggregation of gold nanocages for enhanced chemotherapy and photothermal therapy of breast cancer. Small 2022, 18, 2201971. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, M.; Chang, X.; Tang, X.; Yuan, P.; Tian, R.; Zhu, Z.; Zhang, Y.; Chen, X. Tumor-specific photothermal-therapy-assisted immunomodulation via multiresponsive adjuvant nanoparticles. Adv. Mater. 2023, 35, 2300086. [Google Scholar] [CrossRef]
- Mao, Q.; Fang, J.; Wang, A.; Zhang, Y.; Cui, C.; Ye, S.; Zhao, Y.; Feng, Y.; Li, J.; Shi, H. Aggregation of gold nanoparticles triggered by hydrogen peroxide-initiated chemiluminescence for activated tumor theranostics. Angew. Chem. Int. Ed. 2021, 60, 23805–23811. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Chen, K.; Li, X.; Li, R.; Chen, X. Hydrogen bonding-induced aggregation of chiral functionalized AuNS@Ag NPs for photothermal enantioanalysis. Anal. Chem. 2024, 96, 6292–6300. [Google Scholar] [CrossRef]
- Hong, S.; Zheng, D.-W.; Zhang, C.; Huang, Q.X.; Cheng, S.X.; Zhang, X.Z. Vascular disrupting agent induced aggregation of gold nanoparticles for photothermally enhanced tumor vascular disruption. Sci. Adv. 2021, 6, eabb0020. [Google Scholar] [CrossRef]
- Yang, Y.; Chu, B.; Cheng, J.; Tang, J.; Song, B.; Wang, H.; He, Y. Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms. Nat. Commun. 2022, 13, 1255. [Google Scholar] [CrossRef]
- Yan, X.; Li, K.; Xie, T.-Q.; Jin, X.K.; Zhang, C.; Li, Q.-R.; Feng, J.; Liu, C.J.; Zhang, X.Z. Bioorthogonal “click and release” reaction-triggered aggregation of gold nanoparticles combined with released lonidamine for enhanced cancer photothermal therapy. Angew. Chem. Int. Ed. 2024, 63, e202318539. [Google Scholar] [CrossRef] [PubMed]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 2018, 19, 1979. [Google Scholar] [CrossRef] [PubMed]
- Kus-Liśkiewicz, M.; Fickers, P.; Ben Tahar, I. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations. Int. J. Mol. Sci. 2021, 22, 10952. [Google Scholar] [CrossRef] [PubMed]






| Nanoprobes | Types of GNMs | One Side | Another Side | Models | Imaging Window | Ref. |
|---|---|---|---|---|---|---|
| J-Au-CS | AuNRs | Chitosan | Rigid AuNRs | Tumors/Mice | 1064 nm | [45] |
| MnO2-AuNR-Ppa | AuNRs | MnO2 | Ppa | Tumors/Mice | 1250 nm | [46] |
| AuNR@DCNP@PEG | AuNRs | SiO2/DCNP | Bare AuNRs | Tumors/Mice | 1250 nm | [47] |
| AuPANI NDs | AuNDs | PANI | NOTA | Tumors/Mice | 1064 nm | [48] |
| GSJNPs | AuNPs | SiO2 | Bare AuNPs | Lymph node/mice | 700 nm | [50] |
| JNCPs | AuNPs | IR Dyes | AuNPs | Tumors/Mice | 690/825 nm | [51] |
| Nanoprobes | Types of GNMs | Shell | Function | Models | Imaging Window | Ref. |
|---|---|---|---|---|---|---|
| AuNRs/PDA | AuNRs | PDA | Enhancing PA performance | Not mentioned | 750–950 nm | [54] |
| Gold/melanin probes | GNMs | PDA | Enhancing PA performance | Intestine/Mice | 764 nm | [55] |
| AP/p53–HA | AuNRs | HA | Tumor targeting | Tumors/Mice | 815 nm | [58] |
| AuNSPHs | AuNSs | HA | Tumor targeting | Tumors/Mice | 850 nm | [60] |
| LHMSiO2−AuNR | AuNPs | SiO2 | Enhancing PA performance | Not mentioned | 750–800 nm | [65] |
| Au@SiO2 | AuNRs | SiO2 | Enhancing PA performance | Not mentioned | 500 nm | [67] |
| Au/AgNRs | AuNRs | Ag | Quenching PA signals | Wound/Mice | 800 nm | [71] |
| PTA NRs | AuNRs | Pd | Enhancing PA performance | Tumors/Mice | 800–850 nm | [72] |
| Nanoprobes | Types of GNMs | Aggregation form | Response Sites | Models | Imaging Window | Ref. |
|---|---|---|---|---|---|---|
| CGNP clusters-RGD | AuNPs | Chain-like | No | CNV/Rabbit | 578/650 nm | [106] |
| PNIPAM-AuNR | AuNPs | Spherical | No | Tumors/Mice | 1064 nm | [109] |
| AuNNPs-Ag2S Ve | AuNRs | Spherical | pH (PA OFF) | Tumors/Mice | 900–1000 nm | [112] |
| GC-AuNPs PEG-AuNPs | AuNPs | Nanoclusters | Cells | Metastatic lymph node/mice | 680–970 nm | [117] |
| AMOPs | AuNPs | Nanoclusters | GSH | Tumors/Mice | NIR-I | [121] |
| Au–MB–PEG | AuNPs | Nanoclusters | ROS | Tumors/Mice | 700–900 nm | [122] |
| Au-MUA-TMA | AuNPs | Nanoclusters | pH | Tumors/Mice | NIR-I | [125] |
| AuDPFC | AuNPs | Nanoclusters | Spermine | Tumors/Mice | 670 nm | [129] |
| GP-dAuNPs@Ce6 | AuNPs | Nanoclusters | UV light | Bacteria/Mice | 700–900 nm | [134] |
| AuNPs-ImLND AuNPs-DBCO-RGD | AuNPs | Nanoclusters | BCR reaction | Tumors/Mice | NIR-I | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Huang, Z.; Ye, H.; Cao, H.; Ma, Y.; Lou, K.; He, Y.; Chu, B. Recent Advances in Functionalized Gold Nanoprobes for Photoacoustic Imaging Analysis of Diseases. Sensors 2026, 26, 203. https://doi.org/10.3390/s26010203
Huang Z, Ye H, Cao H, Ma Y, Lou K, He Y, Chu B. Recent Advances in Functionalized Gold Nanoprobes for Photoacoustic Imaging Analysis of Diseases. Sensors. 2026; 26(1):203. https://doi.org/10.3390/s26010203
Chicago/Turabian StyleHuang, Zhiwan, Hanying Ye, Haiting Cao, Yao Ma, Kecheng Lou, Yao He, and Binbin Chu. 2026. "Recent Advances in Functionalized Gold Nanoprobes for Photoacoustic Imaging Analysis of Diseases" Sensors 26, no. 1: 203. https://doi.org/10.3390/s26010203
APA StyleHuang, Z., Ye, H., Cao, H., Ma, Y., Lou, K., He, Y., & Chu, B. (2026). Recent Advances in Functionalized Gold Nanoprobes for Photoacoustic Imaging Analysis of Diseases. Sensors, 26(1), 203. https://doi.org/10.3390/s26010203

