Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,103)

Search Parameters:
Keywords = nano-sized additives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 15551 KB  
Article
Composition Optimization and Microstructure-Property Investigation of Al-3.0Ce-xCa-yMn Alloy Exhibiting High Hot Tearing Resistance
by Xiaoxiao Wei, Suhui Zhang, Xiaofei Wang, Yulin Teng, Wanwen Zhang and Mengmeng Wang
Metals 2025, 15(11), 1195; https://doi.org/10.3390/met15111195 - 27 Oct 2025
Abstract
This study employs a combined approach of theoretical calculations and experimental validation to systematically optimize the alloy composition, aiming to mitigate the hot cracking susceptibility of an Al-3.0Ce-xCa-yMn alloy in laser powder bed fusion (LPBF) processing. Through advanced characterization techniques such as electron [...] Read more.
This study employs a combined approach of theoretical calculations and experimental validation to systematically optimize the alloy composition, aiming to mitigate the hot cracking susceptibility of an Al-3.0Ce-xCa-yMn alloy in laser powder bed fusion (LPBF) processing. Through advanced characterization techniques such as electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and mechanical property testing, the intrinsic relationship between microstructure and mechanical performance was thoroughly elucidated. Computational results revealed that the addition of Ca significantly lowered the eutectic precipitation temperature, thereby effectively reducing the hot cracking tendency while maintaining a stable volume fraction of the Al11(Ce, Ca)3 phase. The optimal mass fractions of calcium (Ca) and manganese (Mn) were determined to be 0.8% and 1.9%, respectively. Microstructural characterization indicates that the alloy consisted of an α-Al matrix embedded with Al-Ce-Ca ternary eutectic compounds, and nanoscale Al6Mn spherical precipitates were uniformly distributed within the matrix. Mechanical property evaluations demonstrated that the Al-3Ce-0.8Ca-1.9Mn alloy exhibited an outstanding balance of strength and ductility at both room and elevated temperatures, with room temperature yield strength, tensile strength, and elongation values of 321 ± 15 MPa, 429 ± 8 MPa, and 10.9 ± 2.3%, respectively. This exceptional performance was attributed to a synergistic combination of multiple strengthening mechanisms including eutectic structure-induced strengthening, grain boundary strengthening due to ultrafine grains, and dislocation pinning strengthening caused by nano-sized Al6Mn precipitates. Full article
Show Figures

Figure 1

16 pages, 633 KB  
Review
Synergistic Effects of Exercise and Nano-Curcumin Supplementation in Women with Lifestyle-Related Diseases: A Scoping Review
by Nafih Cherappurath, Muhammed Navaf, Halil İbrahim Ceylan, Masilamani Elayaraja, Kappat Valiyapeediyekkal Sunooj, Saranya T. Satheesan, Muhammed Ali Thoompenthodi, Shamshadali Perumbalath, Serdar Bayrakdaroğlu, Raul Ioan Muntean, Nikolaos Mavritsakis and Dilshith A. Kabeer
Nutrients 2025, 17(21), 3334; https://doi.org/10.3390/nu17213334 - 23 Oct 2025
Viewed by 225
Abstract
Background/Objectives: Lifestyle-related diseases such as obesity, diabetes, hypertension, metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), and osteoarthritis disproportionately affect women due to hormonal, metabolic, and socio-cultural factors. Emerging evidence suggests that combining structured exercise with nano-curcumin, a bioavailable phytochemical formulation with potent antioxidant [...] Read more.
Background/Objectives: Lifestyle-related diseases such as obesity, diabetes, hypertension, metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), and osteoarthritis disproportionately affect women due to hormonal, metabolic, and socio-cultural factors. Emerging evidence suggests that combining structured exercise with nano-curcumin, a bioavailable phytochemical formulation with potent antioxidant and anti-inflammatory properties, may provide synergistic benefits. This scoping review systematically synthesizes available evidence on the combined effects of nano-curcumin supplementation and exercise interventions on health outcomes in women with lifestyle-related diseases. Methods: Following the Joanna Briggs Institute methodology and the PRISMA-ScR framework, a comprehensive database search was conducted in March 2025 and updated in June 2025. Records were retrieved from Scopus (n = 30), Web of Science (n = 22), PubMed (n = 18), and other sources (n = 71), yielding a total of 141 studies. After screening and deduplication, eight studies met the inclusion criteria and were included in this review. All the studies were conducted in Iran with small sample sizes (12–53 participants) and short intervention durations (6–16 weeks). Therefore, the current evidence is geographically and demographically limited. Results: Across the included trials, the combined interventions produced additive or synergistic improvements in oxidative stress markers, inflammatory cytokines, lipid and glucose metabolism, cardiovascular function, pulmonary capacity, muscle fitness, and psychological outcomes (e.g., depression). When paired with nano-curcumin supplementation at different concentrations, high-intensity interval training, aerobic exercise, Pilates, and resistance training consistently outperformed exercise or supplementation alone in modulating antioxidant defenses, reducing systemic inflammation, and improving metabolic risk factors. Conclusions: The integration of exercise and nano-curcumin supplementation appears to confer superior benefits for women with lifestyle-related diseases compared with either approach alone. These findings highlight the potential of combining phytochemicals with lifestyle interventions to optimize women’s health outcomes. However, most available evidence originates from small, short-term studies in single geographic regions. Large-scale, multicenter, randomized controlled trials with diverse populations are warranted to establish standardized protocols and optimal dosing strategies, and to assess long-term safety and efficacy. Full article
(This article belongs to the Special Issue Botanicals and Nutritional Approaches in Metabolic Disorders)
Show Figures

Figure 1

23 pages, 29181 KB  
Article
Achieving Simultaneous Enhancement of Strength and Ductility in Aluminum Matrix Composites Reinforced by Dual-Scale Hybrid Reinforcement via Friction Stir Processing
by Zikun Wang, Xianyong Zhu, Chen Wang, Xiong Xiao, Ke Zhang, Cheng Jiang and Jiaan Liu
Materials 2025, 18(20), 4780; https://doi.org/10.3390/ma18204780 - 19 Oct 2025
Viewed by 320
Abstract
Overcoming the strength–ductility trade-off in conventional aluminum matrix composites (AMCs) remains a significant challenge. This study employs dual-scale hybrid reinforcement particles comprising micron-sized Cu and nano-sized Ti, alongside bimodal micro-sized pure Al powders as matrix fillers. The AMCs were fabricated through ball milling [...] Read more.
Overcoming the strength–ductility trade-off in conventional aluminum matrix composites (AMCs) remains a significant challenge. This study employs dual-scale hybrid reinforcement particles comprising micron-sized Cu and nano-sized Ti, alongside bimodal micro-sized pure Al powders as matrix fillers. The AMCs were fabricated through ball milling (BM) combined with multi-pass friction stir processing (FSP). The homogenously distributed hybrid reinforcement particles generate an integrated composite region consisting of both coarse-grained (CG) and fine-grained (FG) structures, demonstrating enhanced material characteristics. The interwoven network of coarse- and fine-crystalline domains constructs a heterogeneous architecture that enables simultaneous improvement in both strength and ductility properties. The micron-Cu acts as a skeletal support within the matrix, enhancing load transfer efficiency and effectively hindering dislocation motion. The nano-Ti and in situ intermetallics facilitate grain refinement via the pinning effect and promote heterogeneous nucleation, which contributes to stress dispersion and dislocation obstruction. The addition of dual-scale micron-sized pure Al powder particles promotes the formation of the heterogeneous architecture, which enhances the balancing of strength and ductility in the composite. Following compositing (Al10-5Cu-10Ti-10Al20), the alloy exhibits an ultimate tensile strength (UST) of 267 MPa, a hardness of 98 HV, and an elongation of 16.7%, representing increases of 193.4%, 226.7%, and 9.9%, respectively, relative to the base metal. Full article
Show Figures

Figure 1

33 pages, 2714 KB  
Article
Seasonal Dynamics and Trophic Impact of Mesozooplankton in the Shannon River Estuary System, Ireland
by Ian R. Jenkinson and Tom H. Ryan
J. Mar. Sci. Eng. 2025, 13(10), 1966; https://doi.org/10.3390/jmse13101966 - 14 Oct 2025
Viewed by 253
Abstract
Mesozooplankton (netplankton > 250 µm) were sampled during nine cruises over one year at three stations in the Shannon estuary system, Ireland. A net with three mesh sizes was used to capture a wider range of plankton sizes than a standard single-mesh net. [...] Read more.
Mesozooplankton (netplankton > 250 µm) were sampled during nine cruises over one year at three stations in the Shannon estuary system, Ireland. A net with three mesh sizes was used to capture a wider range of plankton sizes than a standard single-mesh net. An innovation was the incorporation factorial analysis of celestial (seasonal) variables, spring equinox (Spr) and summer solstice (Sum), together with physicochemical and biological variables, without presuming cause or effect. Over the year, water temperature and salinity were closely positively related to each other and to the occurrence of most of the taxa. The approximate trophic impact of by major taxa was estimated from abundance and published clearance rates. Overall, the mean herbivorous/detritivorous grazing by mesozooplankton was 54 L m−3 d−1. Among the mesozooplankters and mysids, Mesopodopsis slabberi (predominantly April–November) contributed 96.3% and the appendicularian Oikopleura dioica (May–October) contributed 2.0% (nano- and picoplankton), while copepods only provided 0.98%. The ctenophore Pleurobrachia pileus (present April–October) grazed 2.0% (carnivorous grazing mysids and copepods contributed additional unquantified carnivorous grazing). These data, collected 45 years ago, provide a valuable baseline for assessing subsequent ecological changes. Full article
(This article belongs to the Special Issue Mesozooplankton Ecology in Marine Environments)
Show Figures

Graphical abstract

16 pages, 4514 KB  
Article
LATP-Enhanced Polymer Electrolyte for an Integrated Solid-State Battery
by Xianzheng Liu, Nashrah Hani Jamadon, Liancheng Zheng, Rongji Tang and Xiangjun Ren
Polymers 2025, 17(19), 2673; https://doi.org/10.3390/polym17192673 - 2 Oct 2025
Viewed by 712
Abstract
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti [...] Read more.
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti1.7(PO4)3 fillers into a polyethylene oxide matrix, effectively reducing crystallinity, enhancing mechanical robustness, and providing additional Li+ transport channels. The PELT electrolyte exhibited an electrochemical stability window of 4.9 V, an ionic conductivity of 1.2 × 10−4 S·cm−1 at 60 °C, and a Li+ transference number (tLi+) of 0.46, supporting stable Li plating/stripping for over 600 h in symmetric batteries. More importantly, to address poor electrode–electrolyte contact in conventional layered cells, we proposed an integrated electrode–electrolyte architecture by in situ coating the PELT precursor directly onto LiFePO4 cathodes. This design minimized interfacial impedance, improved ion transport, and enhanced electrochemical stability. The integrated PELT/LFP battery retained 74% of its capacity after 200 cycles at 1 A·g−1 and showed superior rate capability compared with sandwich-type batteries. These results highlight that coupling LATP-enhanced polymer electrolytes with an integrated architecture is a promising pathway toward high-safety, high-performance solid-state lithium-ion batteries. Full article
Show Figures

Figure 1

27 pages, 8301 KB  
Review
Recent Advances in Nano-Engineered Thermochemical Energy Storage Materials: Morphologies, Characteristics, and Performance
by Zhu Jiang, Wenye Li, Bohao Peng, Shifang Huang and Xiaosong Zhang
Nanomaterials 2025, 15(19), 1476; https://doi.org/10.3390/nano15191476 - 26 Sep 2025
Viewed by 634
Abstract
Thermochemical energy storage (TCES) has gained significant attention as a high-capacity, long-duration solution for renewable energy integration, yet material-level challenges hinder its widespread adoption. This review for the first time systematically examines recent advancements in nano-engineered composite thermochemical materials (TCMs), focusing on their [...] Read more.
Thermochemical energy storage (TCES) has gained significant attention as a high-capacity, long-duration solution for renewable energy integration, yet material-level challenges hinder its widespread adoption. This review for the first time systematically examines recent advancements in nano-engineered composite thermochemical materials (TCMs), focusing on their ability to overcome intrinsic limitations of conventional systems. Sorption-based TCMs, especially salt hydrates, benefit from nano-engineering through carbon-based additives like CNTs and graphene, which enhance thermal conductivity and reaction kinetics while achieving volumetric energy densities exceeding 200 kWh/m3. For reversible reaction-based systems operating at higher temperatures (250–1000 °C), the strategies include (1) nanoparticle doping (e.g., SiO2, Al2O3, carbonaceous materials) for the mitigation of sintering and agglomeration; (2) flow-improving agents to enhance fluidization; and (3) nanosized structure engineering for an enlarged specific surface area. All these approaches show promising results to address the critical issues of sintering and agglomeration, slow kinetics, and poor cyclic stability for reversible reaction-based TCMs. While laboratory results are promising, challenges still persist in side reactions, scalability, cost reduction, and system integration. In general, while nano-engineered thermochemical materials (TCMs) demonstrate transformative potential for performance enhancement, significant research and development efforts remain imperative to bridge the gap between laboratory-scale achievements and industrial implementation. Full article
Show Figures

Figure 1

24 pages, 20312 KB  
Review
Nano- and Microplastics in the Brain: An Emerging Threat to Neural Health
by Anna Baroni, Chantalle Moulton, Mario Cristina, Luigi Sansone, Manuel Belli and Ennio Tasciotti
Nanomaterials 2025, 15(17), 1361; https://doi.org/10.3390/nano15171361 - 4 Sep 2025
Viewed by 3284
Abstract
Nano- and microplastics (NMPs), with nanoplastics posing higher risks due to their smaller size and greater capacity for cellular and subcellular penetration, are being referred to as ubiquitous environmental neurotoxicants, due to their ability to pass through biological barriers, including the blood–brain barrier [...] Read more.
Nano- and microplastics (NMPs), with nanoplastics posing higher risks due to their smaller size and greater capacity for cellular and subcellular penetration, are being referred to as ubiquitous environmental neurotoxicants, due to their ability to pass through biological barriers, including the blood–brain barrier (BBB) and nasal olfactory epithelium, and to remain lodged in neural tissue. Upon uptake, such particles disturb neuronal homeostasis by multiple converging pathways, including oxidative stress, mitochondrial dysfunction, pathological protein aggregation, and chronic neuroinflammation, all closely involved with the molecular signatures of neurodegenerative disorders (Alzheimer’s, Parkinson’s, Amyotrophic Lateral Sclerosis—ALS). In addition to their neurotoxicity, recent findings suggest that NMPs could disturb synaptic communication and neuroplasticity, thereby compromising the brain’s capacity to recover from an injury, a trauma, or neurodegeneration, thus impacting the progression of the disease, our ability to treat it and eventually the efficacy of rehabilitation approaches. Despite these findings, our understanding remains hampered by analytical issues, the scarcity of standard detection methods, and a total lack of longitudinal studies in humans. This review combines multidisciplinary evidence on brain–plastic interactions and calls for accelerated advances in our ability to monitor bioaccumulation in humans, and to integrate neurotoxicology paradigms in the assessment of this underappreciated but growing threat to brain health. Full article
Show Figures

Graphical abstract

18 pages, 2486 KB  
Article
Stability and Foam Performance Optimization of CO2-Soluble Foaming Agents: Influencing Factors and Mechanistic Analysis
by Wenjing Sun, Wenlu Yang, Zian Yang, Sheng Cao, Quan Xu, Fajun Zhao, Tianjiao Guo and Tianyi Sun
Processes 2025, 13(9), 2784; https://doi.org/10.3390/pr13092784 - 30 Aug 2025
Viewed by 679
Abstract
This study systematically analyzes the influencing factors and optimization strategies of foam stability and performance for CO2-soluble foaming agents in high-temperature and high-pressure (HTHP) complex reservoir environments. By constructing a HTHP experimental system and utilizing dynamic foam testing, interfacial tension analysis, [...] Read more.
This study systematically analyzes the influencing factors and optimization strategies of foam stability and performance for CO2-soluble foaming agents in high-temperature and high-pressure (HTHP) complex reservoir environments. By constructing a HTHP experimental system and utilizing dynamic foam testing, interfacial tension analysis, and microscopic observation of liquid films, the effects of chemical factors (e.g., pH, foaming agent concentration, stabilizer synergy) and physical factors (e.g., temperature, pressure) on foam behavior are investigated. The results show that the nonionic surfactant E-1312 exhibits optimal foam performance in neutral to mildly alkaline environments. The foam performance tends to saturate at around 0.5% concentration. High pressure enhances the foam stability, whereas elevated temperature significantly reduces the foam lifetime. Moreover, the addition of nano-sized foam stabilizers such as silica (SiO2) can significantly delay liquid film drainage and strengthen interfacial mechanical properties, thereby improving foam durability. This study further reveals the key mechanisms of CO2-soluble foaming agents in terms of interfacial behavior, liquid film evolution, and foam formation in porous media, providing theoretical guidance and optimization pathways for the molecular design and field application of CO2 foam flooding technology. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 5488 KB  
Article
Comparative Analyses of Different Routes to Prepare Cutin Colloidal- and Nano- Particle Dispersions from Tomato (Solanum lycopersicum) Peels
by Sandra Bučko, Ljiljana Spasojević, Jelena Milinković Budinčić, Jadranka Fraj, Lidija Petrović, Jaroslav Katona, Saule Aidarova, Kuanyshbek Mussabekov, Alpamys Babayev, Raziya Sarsembekova and Altynay Sharipova
Polymers 2025, 17(17), 2348; https://doi.org/10.3390/polym17172348 - 29 Aug 2025
Viewed by 793
Abstract
Cutin is a natural plant polyester, a constituent of the cuticle that covers aerial plant surfaces. Following the trends of agricultural and food waste reduction and the growing demand for plant-derived nanomaterials, cutin was extracted from tomato peels, a by-product of tomato processing. [...] Read more.
Cutin is a natural plant polyester, a constituent of the cuticle that covers aerial plant surfaces. Following the trends of agricultural and food waste reduction and the growing demand for plant-derived nanomaterials, cutin was extracted from tomato peels, a by-product of tomato processing. Subsequently, dispersions of cutin particles in the nano- and colloidal size range were prepared by pH-dependent precipitation. Four types of the dispersions were obtained, i.e., dispersion from cutin extract—NP E dispersion, dispersions from a solution of different cutin isolates, dialyzed cutin isolate–NP D dispersion, washed cutin isolate–NP W dispersion, and standard cutin isolate–NP S dispersion. Cutin precipitation occurred at pH lower than 7 and cutin dispersions with final pH 3–7 were formed. Zeta potential, particle size, and recovery of four cutin dispersions were investigated. All types of cutin particles bear a negative charge which increases on pH increase from 3 to 7, resulting in decrease in cutin nanoparticle size upon pH increase. In addition to that, the influence of cutin solution concentration and storage time on cutin dispersion particle size was found to be mitigated at pH ≥ 6. Among four dispersions, NP S had the highest cutin nanoparticle recovery at all pHs investigated. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

15 pages, 5204 KB  
Article
Controlled-Release Urea–Hydroxyapatite Nanohybrid for Foliar Nitrogen and Phosphorus Delivery Enhances Biomass and Grain Yield in Wheat (Triticum aestivum L.)
by Mayyas Al-Rimawi, Riyad Al-Sharif, Ayman Ayesh, Naem Mazahrih, Iyad Musallam, Abdel Razzaq Al-Tawaha, Sami Awabdeh, Bayan Al Rjoub, Eva Raya and Saad Awamleh
Nitrogen 2025, 6(3), 72; https://doi.org/10.3390/nitrogen6030072 - 26 Aug 2025
Viewed by 970
Abstract
Efficient use of nitrogen and phosphorus is crucial for achieving sustainable wheat production. Slow-release nano-fertilizers offer a targeted strategy to minimize nutrient losses, reduce excessive fertilizer application, and improve crop yield. This study introduces urea–hydroxyapatite (n-UHA) nanohybrid as a slow-release fertilizer synthesized to [...] Read more.
Efficient use of nitrogen and phosphorus is crucial for achieving sustainable wheat production. Slow-release nano-fertilizers offer a targeted strategy to minimize nutrient losses, reduce excessive fertilizer application, and improve crop yield. This study introduces urea–hydroxyapatite (n-UHA) nanohybrid as a slow-release fertilizer synthesized to enhance nitrogen (N) and phosphorus (P) delivery efficiency in wheat (Triticum aestivum L.). Physical characterization techniques, including Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Zetasizer, and Fourier Transform Infrared Spectroscopy (FTIR), confirmed the formation of spherical n-UHA with a particle size of 106 nm. FTIR results indicated the formation of physically bound urea as a coating layer on the particle surface. Foliar application of n-UHA at 2500 and 5000 ppm N significantly increased tiller intensity and grain yield compared to conventional urea. The highest biological yield, approximately 16 t ha−1, was achieved with 5000 ppm n-UHA plus supplemental soil phosphorus (P), representing a 4-fold increase over the control. Conventional urea treatments, in comparison, only doubled yield. Notably, increasing conventional urea concentration from 2500 to 5000 ppm N did not significantly increase the yield even with additional P-soil supplement, while applying 5000 ppm N from n-UHA with supplemental P provided an approximate 25% yield increase compared to 2500 ppm n-UHA without P. The n-UHA’s slow-release mechanism supported prolonged tiller intensity, enhanced protein content, and higher biomass yield and chlorophyll content. This study showed that the slow-release mechanism of urea in the monohybrid due to hydrolysis resulted in localized acidity from carbonic acid production on the leaf surface area and contributed to dissociating phosphate ions from hydroxyapatite, making phosphorous more accessible. The enhanced performance of n-UHA is due to its controlled nutrient release, enabled by the physical binding of urea with hydroxyapatite nanoparticles. This binding ensures a synchronized supply of nitrogen and phosphorus aligned with plant demand. The nano-hydroxyapatite composite (N/Ca 6:1) supplies balanced nutrients via efficient stomatal absorption and gradual release. As an eco-friendly alternative to conventional fertilizers, n-UHA improves nitrogen delivery efficiency and reduces N-evaporation, supporting sustainable agriculture. Full article
Show Figures

Figure 1

20 pages, 8484 KB  
Article
Nanoparticle-Reinforced Electroless Composite Coatings for Pipeline Steel: Synthesis and Characterization
by Biplab Baran Mandal, Vikash Kumar, Sovan Sahoo, Buddhadeb Oraon and Sumanta Mukherjee
Materials 2025, 18(17), 3949; https://doi.org/10.3390/ma18173949 - 22 Aug 2025
Viewed by 700
Abstract
Protective coatings are essential for extending the service life of components exposed to harsh conditions, such as pipes used in industrial systems, where wear and corrosion remain constant challenges. This study explores the development of a nano-sized TiO2-reinforced electroless nickel-based ternary [...] Read more.
Protective coatings are essential for extending the service life of components exposed to harsh conditions, such as pipes used in industrial systems, where wear and corrosion remain constant challenges. This study explores the development of a nano-sized TiO2-reinforced electroless nickel-based ternary (Ni-W-P) alloy and composite coating on API X60 steel, a high-strength carbon steel pipe grade widely used in oil and gas pipelines, using an alkaline hypophosphite-reduced bath. The surface morphology, microstructure, elemental composition, structure, phase evolution, adhesion, and roughness of the coatings were analyzed using optical microscopy, FESEM, EDS, XRD, AFM, cross-cut tape test, and 3D profilometry. The tribological performance was evaluated via Vickers microhardness measurements and reciprocating wear tests conducted under dry conditions at a 5 N load. The TiO2 nanoparticle-reinforced composite coating achieved a consistent thickness of approximately 24 µm and exhibited enhanced microhardness and reduced coefficient of friction (COF), although the addition of nanoparticles increased surface roughness (Sa). Annealing the electroless composites at 400 °C led to a significant improvement in their tribological properties, primarily owing to the grain growth, phase transformation, and Ni3P crystallization. XRD analysis revealed phase evolution from an amorphous state to crystalline Ni3P upon annealing. Both the alloy and composite coatings exhibited excellent adhesion performances. The combined effect of TiO2 nanoparticles, tungsten, and Ni3P crystallization greatly improved the wear resistance, with abrasive and adhesive wear identified as the dominant mechanisms, making these coatings well suited for high-wear applications. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

18 pages, 6820 KB  
Article
Carbon Restrains the Precipitation of Cu-Rich Nanoparticles in CuFeMnNi HEAs
by Mingze Wang, Mengyuan He, Yongfeng Shen, Wenying Xue and Zhijian Fan
Nanomaterials 2025, 15(16), 1223; https://doi.org/10.3390/nano15161223 - 11 Aug 2025
Viewed by 503
Abstract
In this study, we report a strategy to suppress the formation of large Cu-rich particles by adding excessive interstitial carbon into CuFeMnNi high-entropy alloys. With the increase in C contents in the CuFeMnNi HEAs annealed at 1000 °C, the size and area fraction [...] Read more.
In this study, we report a strategy to suppress the formation of large Cu-rich particles by adding excessive interstitial carbon into CuFeMnNi high-entropy alloys. With the increase in C contents in the CuFeMnNi HEAs annealed at 1000 °C, the size and area fraction of the submicron Cu-rich particles markedly decreased. Of note, the CuFeMnNi 1.5 at. %C alloy containing nanosized Cu-rich particles (13 nm) displayed excellent strength–ductility synergy, with yield strength of 695 ± 10 MPa, ultimate tensile strength of 925 ± 20 MPa, and ductility of 21.5%. This is because the addition of carbon significantly increases the diffusion speed of Cu atoms, thereby restraining the growth of Cu-rich nanoparticles. As a result, the comprehensive mechanical properties of the prepared HEAs were significantly enhanced. Additionally, the active diffusion channels induced by high-temperature short-time annealing significantly inhibited the grain growth, which improved the ductility. This work creates a new strategy for solving the dilemma caused by the large Cu-rich particles in the Cu-containing HEAs. Full article
Show Figures

Figure 1

17 pages, 3538 KB  
Article
Enhanced Nanoparticle Collection Using an Electrostatic Precipitator Integrated with a Wire Screen
by Raíssa Gabrielle Silva Araújo Andrade and Vádila Giovana Guerra
Powders 2025, 4(3), 23; https://doi.org/10.3390/powders4030023 - 6 Aug 2025
Viewed by 684
Abstract
Electrostatic precipitators (ESPs) are widely applied to reduce particle concentrations. However, the performance of ESPs is impaired in the nanosized diameter range due to the difficulty in electrically charging these particles. The present work evaluated the inclusion of a wire screen, perpendicular to [...] Read more.
Electrostatic precipitators (ESPs) are widely applied to reduce particle concentrations. However, the performance of ESPs is impaired in the nanosized diameter range due to the difficulty in electrically charging these particles. The present work evaluated the inclusion of a wire screen, perpendicular to the airflow, as an additional collecting electrode of a single-stage wire-plate ESP containing two collecting plates and a single discharge wire. ESP performance was evaluated in terms of voltage, air velocity and electrode positioning in relation to the beginning of the collecting plate (inlet spacings of 1.5, 10 and 23 cm). When compared to theoretical prediction, the penetration results presented a decay for larger particles not predicted by the diffusion battery model. It was observed that the inclusion of the wire screen increased the removal of ultrafine particles and that the overall collection efficiencies increased up to 70% in the operating conditions evaluated. Moreover, the central positioning of the electrodes (inlet spacing of 10 cm) achieved the highest collection efficiencies at high voltages, but the final positioning (inlet spacing of 23 cm) presented a better performance at higher air velocities. Therefore, the wire screen can be an alternative to enhance nanoparticle collection. Full article
Show Figures

Figure 1

10 pages, 782 KB  
Article
Color Stability of Digital and Conventional Maxillofacial Silicone Elastomers Mixed with Nano-Sized Antimicrobials: An In Vitro Study
by Muhanad M. Hatamleh
Prosthesis 2025, 7(4), 96; https://doi.org/10.3390/prosthesis7040096 - 5 Aug 2025
Viewed by 721
Abstract
Background/Objectives: Maxillofacial silicone prostheses’ long-term color stability remains a challenge. This study aimed to evaluate and compare the color stability of conventional and digital maxillofacial silicone elastomers mixed with nano-sized antimicrobial additives (ZnO nanoparticles and chlorhexidine salt-CHX) at various concentrations over a [...] Read more.
Background/Objectives: Maxillofacial silicone prostheses’ long-term color stability remains a challenge. This study aimed to evaluate and compare the color stability of conventional and digital maxillofacial silicone elastomers mixed with nano-sized antimicrobial additives (ZnO nanoparticles and chlorhexidine salt-CHX) at various concentrations over a 10-week period. Methods: A total of nine groups (n = 10) of maxillofacial silicone elastomers were prepared. These included a control group (no additives), conventionally pigmented silicone, digitally pigmented silicone (Spectromatch system), and silicone mixed with ZnO or CHX at 1%, 3%, and 5% by weight. Specimens were fabricated in steel molds and cured at 100 °C for 1 h. Color measurements were performed at baseline and after 1, 4, 6, and 10 weeks using a Minolta Chroma Meter (CIELAB system, ΔE00 formula). Data were analyzed using two-way ANOVA and Tukey HSD post hoc tests (α = 0.05). Results: Color changes (ΔE00) ranged from 0.74 to 2.83 across all groups. The conventional pigmented silicone group showed the highest color difference (ΔE00 = 2.83), while the lowest was observed in the ZnO 1% group (ΔE00 = 0.74). Digital silicone and all antimicrobial-modified groups exhibited acceptable color stability (ΔE00 < 3.1). Time significantly affected color difference, with the largest change occurring during the first four weeks (p < 0.05), followed by stabilization. Regression analysis confirmed high color stability over time for all groups except the conventional pigmented group. Conclusions: This is one of the first studies to directly compare digital and conventional pigmentation methods combined with nano-antimicrobials in maxillofacial silicones. Maxillofacial silicone elastomers mixed with up to 5% ZnO or CHX maintained acceptable color stability over 10 weeks. Digital pigmentation is similar to conventional methods. The incorporation of nano-antimicrobials offers significant microbial resistance and improved color retention. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

16 pages, 1976 KB  
Article
Anatase-Free Nanosized Hierarchical Titanosilicate TS-1 Synthesis via Nitric Acid-Catalyzed Gel Preparation
by Vera R. Bikbaeva, Sergey V. Bubennov, Dmitry V. Serebrennikov, Daria A. Ogurechnikova, Evgenii V. Vakulin, Boris I. Kutepov, Nellia G. Grigoreva and Anton L. Maximov
Gels 2025, 11(8), 605; https://doi.org/10.3390/gels11080605 - 2 Aug 2025
Viewed by 524
Abstract
A new approach to the synthesis of a nanosized and hierarchical titanosilicate, TS-1, is presented. Instead of using specific solid or additional mesoporous templates or individual additives to slow down the hydrolysis of titanium alkoxides, it is proposed that the titanosilicate TS-1 can [...] Read more.
A new approach to the synthesis of a nanosized and hierarchical titanosilicate, TS-1, is presented. Instead of using specific solid or additional mesoporous templates or individual additives to slow down the hydrolysis of titanium alkoxides, it is proposed that the titanosilicate TS-1 can be obtained from gels synthesized with hydrolysis catalysts (HNO3 and tetrapropylammonium hydroxide). When nitric acid catalyzes tetraethyl orthosilicate (TEOS) hydrolysis, the resulting crystalline TS-1 that can be obtained has uniform particle sizes (150–180 nm), is anatase-free, and contains up to 46–67% of mesopores. When a base catalyst is applied, the obtained material’s features are opposite. Moreover, acid-promoted TS-1 samples catalyze cyclohexene H2O2-oxidation via a heterolytic route to the cyclohexane epoxide with 67% selectivity, which is non-typical. Full article
(This article belongs to the Special Issue Advances in Functional Gel (2nd Edition))
Show Figures

Graphical abstract

Back to TopTop