Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (215)

Search Parameters:
Keywords = nano-cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3071 KiB  
Article
Li-Ion Battery Cooling and Heating System with Loop Thermosyphon for Electric Vehicles
by Ju-Chan Jang, Taek-Kyu Lim, Ji-Su Lee and Seok-Ho Rhi
Energies 2025, 18(14), 3687; https://doi.org/10.3390/en18143687 - 12 Jul 2025
Viewed by 482
Abstract
Water, acetone, and TiO2/nano-silver water (NSW) nanofluids were investigated as working fluids in loop thermosyphon battery thermal management systems (LTBMS) under simulated electric vehicle (EV) conditions to evaluate scalability and robustness across inclinations (0° to 60°) and ambient temperatures (−10 °C [...] Read more.
Water, acetone, and TiO2/nano-silver water (NSW) nanofluids were investigated as working fluids in loop thermosyphon battery thermal management systems (LTBMS) under simulated electric vehicle (EV) conditions to evaluate scalability and robustness across inclinations (0° to 60°) and ambient temperatures (−10 °C to 20 °C). Experimental conditions were established with 60 °C as the reference temperature, corresponding to the onset of battery thermal runaway, to ensure relevance to critical thermal management scenarios. Results indicate that LTBMS A maintained battery cell temperatures at 50.4 °C with water and 31.6 °C with acetone under a 50 W heat load. In contrast, LTBMS B achieved cell temperatures of 41.8 °C with water and 42.8 °C with 0.01 vol% TiO2 nanofluid, however, performance deteriorated at higher nanofluid concentrations due to increased viscosity and related thermophysical constraints. In heating mode, LTBMS A elevated cell temperatures by 16 °C at an ambient temperature of −10 °C using acetone, while LTBMS B attained 52–55 °C at a 100 W heat load with nanofluids. The lightweight LTBMS design demonstrated superior thermal performance compared to conventional air-cooling systems and performance comparable to liquid-cooling systems. Pure water proved to be the most effective working fluid, while nanofluids require further optimization to enhance their practical applicability in EV thermal management. Full article
Show Figures

Figure 1

21 pages, 3755 KiB  
Article
Effect of Pore-Scale Anisotropic and Heterogeneous Structure on Rarefied Gas Flow in Three-Dimensional Porous Media
by Wenqiang Guo, Jinshan Zhao, Gang Wang, Ming Fang and Ke Zhu
Fluids 2025, 10(7), 175; https://doi.org/10.3390/fluids10070175 - 3 Jul 2025
Viewed by 315
Abstract
Porous media have great application prospects, such as transpiration cooling for the aerospace industry. The main challenge for the prediction of gas permeability includes the geometrical complexity and high Knudsen number of gas flow at the nano-scale to micro-scale, leading to failure of [...] Read more.
Porous media have great application prospects, such as transpiration cooling for the aerospace industry. The main challenge for the prediction of gas permeability includes the geometrical complexity and high Knudsen number of gas flow at the nano-scale to micro-scale, leading to failure of the conventional Darcy’s law. To address these issues, the Quartet Structure Generation Set (QSGS) method is improved to construct anisotropic and heterogeneous three-dimensional porous media, and the lattice Boltzmann method (LBM) with the multiple relaxation time (MRT) collision operator is adopted. Using MRT-LBM, the pressure boundary conditions at the inlet and outlet are firstly dealt with using the moment-based boundary conditions, demonstrating good agreement with the analytical solutions in two benchmark tests of three-dimensional Poiseuille flow and flow through a body-centered cubic array of spheres. Combined with the Bosanquet-type effective viscosity model and Maxwellian diffuse reflection boundary condition, the gas flow at high Knudsen (Kn) numbers in three-dimensional porous media is simulated to study the relationship between pore-scale anisotropy, heterogeneity and Kn, and permeability and micro-scale slip effects in porous media. The slip factor is positively correlated with the anisotropic factor, which means that the high Kn effect is stronger in anisotropic structures. There is no obvious correlation between the slip factor and heterogeneity factor. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

19 pages, 3495 KiB  
Article
Experimental Investigation on Thermal Performance Optimization of Na2HPO4·12H2O-Based Gel Phase Change Materials for Solar Greenhouse
by Wenhe Liu, Gui Liu, Wenlu Shi, Xinyang Tang, Xuhui Wu, Jiayang Wu, Zhanyang Xu, Feng Zhang and Mengmeng Yang
Gels 2025, 11(6), 434; https://doi.org/10.3390/gels11060434 - 5 Jun 2025
Viewed by 1131
Abstract
The content of modified materials in multicomponent gel phase change materials directly affects their performance characteristics. To investigate the influence of different contents of modified materials on the performance features of Na2HPO4·12H2O-based multicomponent Gel Phase Change Materials, [...] Read more.
The content of modified materials in multicomponent gel phase change materials directly affects their performance characteristics. To investigate the influence of different contents of modified materials on the performance features of Na2HPO4·12H2O-based multicomponent Gel Phase Change Materials, four single factors (Na2SiO3·9H2O, C35H49O29, KCl, and nano-α-Fe2O3) and their interactions were selected as influencing factors. Using the Taguchi method with an L27(313) orthogonal array, multi-step melt–blending experiments were conducted to prepare a novel multi-component phase change material. The characteristics of the new multi-component phase change material, including supercooling degree (ΔT), phase change temperature (Tm), latent heat of phase change (ΔHm), and cooling time (CT), were obtained. In addition, characterization techniques such as DSC, SEM, FT-IR, and XRD were employed to analyze its thermal properties, microscopic morphology, chemical stability, and crystal structure. Based on the experimental results, the signal-to-noise ratio (S/N) was used to rank the influence of each factor on the quality characteristics, and the p-value from analysis of variance (ANOVA) was employed to evaluate the significance of each factor on the performance characteristics. Then, the effects of each significant factor on the characteristics of the multiple gel phase change materials were analyzed in detail, and the optimal mixing ratio of the new multiple gel phase change materials was selected. The results showed that Na2SiO3·9H2O, KCl, and α-Fe2O3 were the most critical process parameters. This research work enriches the selection of composite gel phase change materials for solar greenhouses and provides guidance for the selection of different modified material contents using Na2HPO4·12H2O as the starting material. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities)
Show Figures

Figure 1

17 pages, 2429 KiB  
Article
Experimental Investigation on Cutting Forces in Sustainable Hard Milling of Hardox 500 Steel Under Al2O3/MoS2 Hybrid Nanofluid MQCL Environment
by Tran The Long
Lubricants 2025, 13(6), 240; https://doi.org/10.3390/lubricants13060240 - 26 May 2025
Cited by 1 | Viewed by 516
Abstract
Hardox 500 is a special low-alloy, martensitic steel possessing extraordinary wear resistance, high hardness, and high ductility; thus, it has been widely used in many industrial applications. Nevertheless, this type of steel has a low machinability and is grouped among the difficult-to-machine materials. [...] Read more.
Hardox 500 is a special low-alloy, martensitic steel possessing extraordinary wear resistance, high hardness, and high ductility; thus, it has been widely used in many industrial applications. Nevertheless, this type of steel has a low machinability and is grouped among the difficult-to-machine materials. Hence, this paper’s objective was to study its hard milling performance under minimum quantity cooling lubrication (MQCL) conditions using an Al2O3/MoS2 hybrid nano cutting oil. The Box–Behnken response surface methodology was used to investigate the effects of the nanoparticle concentration (NC), cutting speed (v), and feed rate (f) on the total cutting force F and cutting force coefficient Fy/Fz. The obtained results indicate that the cutting efficiency of Hardox 500 steel was improved thanks to the enhancement in cooling lubrication from the MQCL using the Al2O3/MoS2 hybrid nano cutting oil. The applicability of vegetable oil and coated carbide inserts is thus extended to the hard milling of difficult-to-cut materials. Moreover, the provision of the appropriate ranges and optimal set of investigated variables obtained in this paper will be useful guides for technologists and further studies. Concretely, NC = 0.5–0.7%, v = 110–115 m/min, and f = 0.08–0.10 mm/tooth are the optimal set for the total cutting force F, while NC = 0.5%, v = 138–140 m/min, and f = 0.08–0.09 mm/tooth are suggested for the cutting force coefficient Fy/Fz. Full article
(This article belongs to the Special Issue Recent Advances in Tribological Properties of Machine Tools)
Show Figures

Figure 1

16 pages, 3243 KiB  
Article
Comparative Analysis of Dry, Minimum Quantity Lubrication, and Nano-Reinforced Minimum Quantity Lubrication Environments on the Machining Performance of AZ91D Magnesium Alloy
by Berat Baris Buldum, Kamil Leksycki and Suleyman Cinar Cagan
Machines 2025, 13(5), 430; https://doi.org/10.3390/machines13050430 - 19 May 2025
Cited by 1 | Viewed by 563
Abstract
This study investigates the machining performance of AZ91D magnesium alloy under three different cooling environments: dry, minimum quantity lubrication (MQL), and nano-reinforced MQL (NanoMQL) with multi-walled carbon nanotubes. Turning experiments were conducted on a CNC lathe with systematically varied cutting parameters, including cutting [...] Read more.
This study investigates the machining performance of AZ91D magnesium alloy under three different cooling environments: dry, minimum quantity lubrication (MQL), and nano-reinforced MQL (NanoMQL) with multi-walled carbon nanotubes. Turning experiments were conducted on a CNC lathe with systematically varied cutting parameters, including cutting speed (150–450 m/min), feed rate (0.05–0.2 mm/rev), and depth of cut (0.5–2 mm). The machining performance was evaluated through cutting force measurements, surface roughness analysis, and tool wear examination using SEM. The results demonstrate that the NanoMQL environment significantly outperforms both dry and conventional MQL conditions, providing a 42.2% improvement in surface quality compared to dry machining and a 33.6% improvement over conventional MQL. Cutting forces were predominantly influenced by the depth of cut and the feed rate, while cutting speed showed variable effects. SEM analysis revealed that the NanoMQL environment substantially reduced built-up edge formation and flank wear, particularly under aggressive cutting conditions. The superior performance of the NanoMQL environment is attributed to the enhanced thermal conductivity and lubrication properties of carbon nanotubes, which form a protective tribofilm at the tool–workpiece interface. This study provides valuable insights for optimizing the machining parameters of AZ91D magnesium alloy in industrial applications, particularly where high surface quality and tool longevity are required. Full article
(This article belongs to the Special Issue Recent Developments in Machine Design, Automation and Robotics)
Show Figures

Figure 1

11 pages, 7824 KiB  
Article
Effects of Heat Treatment Cooling Methods on Precipitated Phase and Tensile Properties of Fe-18Mn-10Al-1C-5Ni Lightweight Steel
by Yu Wang, Heng Cao, Yanchun Lou, Lei Cao, Yunbao Gao and Ling Zhao
Materials 2025, 18(10), 2364; https://doi.org/10.3390/ma18102364 - 19 May 2025
Cited by 1 | Viewed by 424
Abstract
This research focuses on Fe-18Mn-10Al-1C-5Ni lightweight steel and deeply explores the influences of three different cooling methods, namely, water quenching (WQ), air cooling (AQ), and furnace cooling (FQ), on the precipitation behavior of the B2 phases and κ-carbides in the lightweight steel. The [...] Read more.
This research focuses on Fe-18Mn-10Al-1C-5Ni lightweight steel and deeply explores the influences of three different cooling methods, namely, water quenching (WQ), air cooling (AQ), and furnace cooling (FQ), on the precipitation behavior of the B2 phases and κ-carbides in the lightweight steel. The intrinsic relationship among the precipitated phases, mechanical properties, and fracture behavior is revealed. Compared with the WQ sample, the size of the intragranular B2 phase in the AQ sample did not change significantly (an increment of 9 nm), but nano-sized κ-carbides appeared at the grain boundaries and inside the grains. The yield strength and tensile strength of the AQ sample significantly increased to 1232 MPa and 1347 MPa, respectively, while an elongation of 17.4% was still maintained, which benefitted from the synergistic effect of the grain boundary B2, intragranular B2, and nano-sized κ-carbides. When the cooling rate of the heat treatment was further reduced, the size of the intragranular B2 phase in the FQ sample increased slightly (332 nm), and the κ-carbides at the grain boundaries became obviously coarsened (170 nm), resulting in a severe reduction in the elongation (2.3%) because, during the tensile deformation process, the coarsened κ-carbides at the grain boundaries promoted the nucleation of voids and microcracks. The present work provides new insights into the cooling heat treatment process of lightweight steel. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

17 pages, 10965 KiB  
Article
Evaluation of Surface Integrity of Multi-Energy Field Coupling-Assisted Micro-Grinding Hastelloy Alloy
by Peng Bian, Zhenjing Duan, Yishuai Jia, Ziheng Wang, Shuaishuai Wang, Ji Tan, Yuyang Zhou, Jinlong Song and Xin Liu
Micromachines 2025, 16(5), 565; https://doi.org/10.3390/mi16050565 - 8 May 2025
Cited by 4 | Viewed by 619
Abstract
Hastelloy is widely used in the manufacturing of high-temperature components in the aerospace industry because of its high strength and corrosion-resistant physical properties, as well as its ability to maintain excellent mechanical properties at high temperatures. However, with developments in science and technology, [...] Read more.
Hastelloy is widely used in the manufacturing of high-temperature components in the aerospace industry because of its high strength and corrosion-resistant physical properties, as well as its ability to maintain excellent mechanical properties at high temperatures. However, with developments in science and technology, the amount of available components for use in high-temperature and corrosive environments is increasing, their structures are becoming more complex and varied, and requirements with regard to the surface quality of the components has also become more stringent. The integration of cold plasma (CP) and nano-lubricant minimum quantity lubrication (NMQL), within a multi-physics coupling-assisted micro-grinding process (CPNMQL), presents a promising strategy to overcome this bottleneck. In this paper, micro-grinding of Hastelloy C-276 was performed under dry, CP, NMQL, and CPNMQL conditions, respectively. Contact angle testing, X-ray photoelectron spectroscopy (XPS) analysis, and nano-scratch experiments were used to investigate the mechanism of CPNMQL and to compare the micro-milling performance under different cooling and lubrication conditions employing various characteristics such as grinding temperature, surface roughness, and 3D surface profile. The results showed that at different micro-grinding depths, the micro-grinding temperature and surface roughness were significantly reduced under CP, NMQL, and CPNMQL conditions compared to dry friction. Among them, CPNMQL showed the best performance, with 53.4% and 54.7% reductions in temperature and surface roughness, respectively, compared to the dry condition. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

17 pages, 10148 KiB  
Article
Mechanical Properties of Aluminum Alloy Tubes Fabricated Through Surface Mechanical Grinding Treatment and Graphene Lubrication Under Biaxial Stress States
by Yang Cai, Xiao-Lei Cui, Chunhuan Guo, Fengchun Jiang and Piaoping Yang
Materials 2025, 18(9), 2038; https://doi.org/10.3390/ma18092038 - 29 Apr 2025
Viewed by 368
Abstract
To enhance the mechanical properties of 6063-T4 aluminum alloy tubes, surface mechanical grinding treatment was conducted under graphene-assisted lubrication. The effects of rotational speed and cooling conditions on the mechanical properties of aluminum alloy tubes under biaxial stress were systematically explored. It was [...] Read more.
To enhance the mechanical properties of 6063-T4 aluminum alloy tubes, surface mechanical grinding treatment was conducted under graphene-assisted lubrication. The effects of rotational speed and cooling conditions on the mechanical properties of aluminum alloy tubes under biaxial stress were systematically explored. It was found that increasing the rotational speed and cooling rate facilitates the formation of finer lamellar grains, higher-density nano-precipitates, and a reduced dislocation density on the tube surface. These microstructural characteristics significantly contribute to an increased yield strength and sustained strain hardening capacity during bulging deformation. This study proposes an innovative approach for improving the strength and toughness of light alloy components during integral forming, providing meaningful insights for future engineering applications. Full article
Show Figures

Figure 1

13 pages, 3514 KiB  
Article
A Comprehensive Analysis of Thermal Heat Dissipation for Lithium-Ion Battery Packs
by Xuguang Zhang, Hexiang Zhang, Amjad Almansour, Mrityunjay Singh, James D. Kiser, Hengling Zhu, Michael C. Halbig and Yi Zheng
Energies 2025, 18(9), 2234; https://doi.org/10.3390/en18092234 - 28 Apr 2025
Viewed by 816
Abstract
Effective thermal management is essential for the safe and efficient operation of lithium-ion battery packs, particularly in compact, airflow-sensitive applications such as drones. This study presents a comprehensive thermal analysis of a 16-cell lithium-ion battery pack by exploring seven geometric configurations under airflow [...] Read more.
Effective thermal management is essential for the safe and efficient operation of lithium-ion battery packs, particularly in compact, airflow-sensitive applications such as drones. This study presents a comprehensive thermal analysis of a 16-cell lithium-ion battery pack by exploring seven geometric configurations under airflow speeds ranging from 0 to 15 m/s and integrating nano-carbon-based phase change materials (PCMs) to enhance heat dissipation. A Computational Fluid Dynamics (CFD) approach was employed using Ansys Discovery and Workbench 2024 R1 to simulate airflow and heat transfer processes with high spatial resolution. Using high-fidelity 3D simulations, we found that the trapezoidal wide-base configuration, combined with a 5-inlet and 1-outlet airflow design, achieved the most balanced cooling performance across all speed regimes. This configuration maintained battery temperatures within the optimal operating range (∼45 °C) in both low- and high-speed airflow conditions, with a maximum temperature reduction of up to 8.3 °C compared to the standard square configuration. Additionally, PCM integration extended the thermal regulation duration to approximately 12.5 min, effectively buffering thermal spikes during peak loads. These findings underscore the critical role of CFD-driven geometric optimization and advanced material integration in designing high-efficiency, compact cooling systems for energy-dense battery applications in drones and portable electronics. Full article
Show Figures

Figure 1

23 pages, 6274 KiB  
Article
Thermal Irreversibility in Nano-Enhanced Phase Change Material Liquefaction
by Fikret Alić
Fluids 2025, 10(4), 102; https://doi.org/10.3390/fluids10040102 - 16 Apr 2025
Viewed by 407
Abstract
Inside a closed, thin-walled hollow cylinder, there is a solid state of phase change material (NePCM) that has been nano-enhanced. This NePCM is heated at its bottom, with nanoparticles (Al2O3) inserted and homogenized within the PCM (sodium acetate trihydrate, [...] Read more.
Inside a closed, thin-walled hollow cylinder, there is a solid state of phase change material (NePCM) that has been nano-enhanced. This NePCM is heated at its bottom, with nanoparticles (Al2O3) inserted and homogenized within the PCM (sodium acetate trihydrate, C2H3O2Na) to create the NePCM. The hollow cylinder is thermally insulated from the outside ambient temperature, while the heat supplied is sufficient to cause a phase change. Once the entire NePCM has converted from a solid to a liquid due to heating, it is then cooled, and the thermal insulation is removed. The cylindrical liquefied NePCM bar is cooled in this manner. Thermal entropy, entransy dissipation rate, and bar efficiency during the heating and cooling of the NePCM bar were analyzed by changing variables. The volume fraction ratio of nanoparticles, inlet heat flux, and liquefied bar height were the variables considered. The results indicate a significant impact on the NePCM bar during liquefaction and convective cooling when the values of these variables are altered. For instance, with an increase in the volume fraction ratio from 3% to 9%, at a constant heat flux of 104 Wm−2 and a liquefied bar height of 0.02 m, the NePCM bar efficiency decreases to 99%. The thermal entropy from heat conduction through the liquefied NePCM bar is significantly lower compared to the thermal entropy from convective air cooling on its surface. The thermal entropy of the liquefied NePCM bar increases on average by 110% without any cooling. With a volume fraction ratio of 6%, there is an 80% increase in heat flux as the bar height increases to 0.02 m. Full article
(This article belongs to the Section Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 8949 KiB  
Article
Sustainable Cooling Strategies in End Milling of AISI H11 Steel Based on ANFIS Model
by Arumugam Balasuadhakar, Sundaresan Thirumalai Kumaran and Saood Ali
Machines 2025, 13(3), 237; https://doi.org/10.3390/machines13030237 - 14 Mar 2025
Viewed by 677
Abstract
In hard milling, there has been a significant surge in demand for sustainable machining techniques. Research indicates that the Minimum Quantity Lubrication (MQL) method is a promising approach to achieving sustainability in milling processes due to its eco-friendly characteristics, as well as its [...] Read more.
In hard milling, there has been a significant surge in demand for sustainable machining techniques. Research indicates that the Minimum Quantity Lubrication (MQL) method is a promising approach to achieving sustainability in milling processes due to its eco-friendly characteristics, as well as its cost-effectiveness and improved cooling efficiency compared to conventional flood cooling. This study investigates the end milling of AISI H11 die steel, utilizing a cooling system that involves a mixture of graphene nanoparticles (Gnps) and sesame oil for MQL. The experimental framework is based on a Taguchi L36 orthogonal array, with key parameters including feed rate, cutting speed, cooling condition, and air pressure. The resulting outcomes for cutting zone temperature and surface roughness were analyzed using the Taguchi Signal-to-Noise ratio and Analysis of Variance (ANOVA). Additionally, an Adaptive Neuro-Fuzzy Inference System (ANFIS) prediction model was developed to assess the impact of process parameters on cutting temperature and surface quality. The optimal cutting parameters were found to be a cutting speed of 40 m/min, a feed rate of 0.01 mm/rev, a jet pressure of 4 bar, and a nano-based MQL cooling environment. The adoption of these optimal parameters resulted in a substantial 62.5% reduction in cutting temperature and a 68.6% decrease in surface roughness. Furthermore, the ANFIS models demonstrated high accuracy, with 97.4% accuracy in predicting cutting temperature and 92.6% accuracy in predicting surface roughness, highlighting their effectiveness in providing precise forecasts for the machining process. Full article
(This article belongs to the Special Issue Surface Engineering Techniques in Advanced Manufacturing)
Show Figures

Figure 1

25 pages, 7880 KiB  
Article
Comparative Analysis of BTM Systems Made of a Fireproof Composite Material with Nano Boron Nitride
by Ioan Szabo, Florin Mariasiu and Thomas Imre Cyrille Buidin
Fire 2025, 8(2), 63; https://doi.org/10.3390/fire8020063 - 4 Feb 2025
Viewed by 903
Abstract
The paper presents a numerical analysis of the possibilities of replacing the aluminum serpentines in the current construction of battery thermal management systems (BTMS) with cooling serpentines made of fireproof composite materials with high heat transfer parameters (fireproof epoxy resin + nano boron [...] Read more.
The paper presents a numerical analysis of the possibilities of replacing the aluminum serpentines in the current construction of battery thermal management systems (BTMS) with cooling serpentines made of fireproof composite materials with high heat transfer parameters (fireproof epoxy resin + nano boron nitride). This approach was given by the need to replace aluminum (which, in case of fire, maintains and accelerates the combustion process) with fireproof materials that reduce/eliminate the fire risk due to improper battery operation. Numerical analysis methods were used through simulation to identify the most efficient design among the single-channel, multichannel, multiflow and multiple coolant inlet–outlet solutions for cooling serpentine. In addition to these geometric constructive parameters, the variation of the coolant flow rate (9, 12, 15 and 18 L/min) and coolant inlet temperature (17, 20 and 25 °C) was also considered. The obtained results showed that the single-inlet nanocomposite resin cooling serpentine four-channel configuration presents the highest cooling efficiency of the cells that form the battery module while ensuring very good thermal uniformity as well. These findings are supported by the lowest average heat absorption by the batteries, of 34.44 kJ, as well as the lowest average internal resistance difference (caused by thermal gradients), of 5.23%. Future research is needed to identify the degree of structural resistance of serpentines made of fireproof composite material to external stresses (vibrations characteristic of the operation of electric vehicles). Full article
(This article belongs to the Special Issue Advances in Thermal Energy Storage in Fire Prevention and Control)
Show Figures

Figure 1

10 pages, 2840 KiB  
Article
The Effect of Final Cooling Temperature on Nano Cu Precipitation in a Cu-Bearing High-Strength Low-Alloy Steel
by Haitao Cui, Haicheng Liang, Xinglong Sun, Yonghua Li, Zhanjie Gao and Jinsong Liu
Metals 2025, 15(2), 150; https://doi.org/10.3390/met15020150 - 1 Feb 2025
Viewed by 662
Abstract
Nano Cu precipitation plays a crucial role in significantly improving the performance of the Cu-bearing high-strength low-alloy steel. The final cooling temperature effects the transformation products of austenite during the continuous cooling process, as well as the nano precipitations of steel. This study [...] Read more.
Nano Cu precipitation plays a crucial role in significantly improving the performance of the Cu-bearing high-strength low-alloy steel. The final cooling temperature effects the transformation products of austenite during the continuous cooling process, as well as the nano precipitations of steel. This study investigated the microstructure and hardness at different final cooling temperatures (750, 700, 650, 600, 550, and 500 °C) using the MMS-300 thermal simulation experimental machine (Northeastern University, Shenyang, China) and Vickers hardness tester. The changes in microstructure and the phase transformation law of austenite were determined during continuous cooling and then analyzed. The precipitation reaction of nano Cu precipitation during continuous cooling was studied using transmission electron microscopy (TEM), revealing the precipitation state under different final cooling temperature conditions. The results showed that the precipitations led to an increase and then a decrease in the microhardness, and the microhardness reaches its peak at 550 °C. The precipitations changed from spherical to elliptical, and the size gradually increased when the final cooling temperature increased. Full article
Show Figures

Figure 1

15 pages, 2717 KiB  
Article
Combination of Phase Change Composite Material and Liquid-Cooled Plate Prevents Thermal Runaway Propagation of High-Specific-Energy Battery
by Weigao Ji, Yongchun Dang, Yongchao Yu, Xunli Zhou and Lei Li
Appl. Sci. 2025, 15(3), 1274; https://doi.org/10.3390/app15031274 - 26 Jan 2025
Cited by 2 | Viewed by 1133
Abstract
Ternary lithium-ion batteries (LIBs) have the advantages of high energy density and high charging efficiency, and they are the preferred energy source for long-life new energy vehicles. However, when thermal runaway (TR) occurs in the ternary LIB, an open flame is easily produced. [...] Read more.
Ternary lithium-ion batteries (LIBs) have the advantages of high energy density and high charging efficiency, and they are the preferred energy source for long-life new energy vehicles. However, when thermal runaway (TR) occurs in the ternary LIB, an open flame is easily produced. The burning phenomenon is intense, and the rapid of TR propagation is high; consequently, vehicle-level fire accidents are easily induced. These accidents have become the biggest obstacle restricting the batteries’ development. Therefore, this study investigates the TR behavior of ternary LIBs at the cell and module levels. The addition of an insulation layer alone, including ceramic nano fibers, glass fiber aerogel, and phase-change composite materials, cannot prevent TR propagation. To completely block the TR propagation, we developed a safety prevention strategy, combining the phase-change composite materials with a commercial liquid cooling plate. This approach provides a three-level TR protection mechanism that includes heat absorption, heat conduction, and heat insulation. The use of a 2 mm thick phase change composite material combined with a liquid cooling plate effectively prevents the TR propagation between60 Ah ternary LIBs with 100%SOCs.. The front surface temperature of the adjacent cell is maintained near 90 °C, with its maximum temperature consistently stays below 100 °C. This study successfully demonstrates the blockage of TR propagation and offers valuable insights for the thermal safety design of high-specific-energy LIBs; the aim is to improve the overall safety of battery packs in practical applications. Full article
(This article belongs to the Special Issue Current Updates and Key Techniques of Battery Safety)
Show Figures

Figure 1

18 pages, 3040 KiB  
Article
Bioconvective Flow Characteristics of NEPCM–Water Nanofluid over an Inclined Cylinder in Porous Medium: An Extended Darcy Model Approach
by Bikash Das, Sahin Ahmed and Joaquín Zueco
Mathematics 2024, 12(24), 4012; https://doi.org/10.3390/math12244012 - 20 Dec 2024
Viewed by 998
Abstract
Bioconvection phenomena play a pivotal role in diverse applications, including the synthesis of biological polymers and advancements in renewable energy technologies. This study develops a comprehensive mathematical model to examine the effects of key parameters, such as the Lewis number (Lb), Peclet number [...] Read more.
Bioconvection phenomena play a pivotal role in diverse applications, including the synthesis of biological polymers and advancements in renewable energy technologies. This study develops a comprehensive mathematical model to examine the effects of key parameters, such as the Lewis number (Lb), Peclet number (Pe), volume fraction (φ), and angle of inclination (α), on the flow and heat transfer characteristics of a nanofluid over an inclined cylinder embedded in a non-Darcy porous medium. The investigated nanofluid comprises nano-encapsulated phase-change materials (NEPCMs) dispersed in water, offering enhanced thermal performance. The governing non-linear partial differential equations are transformed into dimensionless ordinary differential equations using similarity transformations and solved numerically via the Network Simulation Method (NSM) and an implicit Runge–Kutta method implemented through the bvp4c routine in MATLAB R2021a. Validation against the existing literature confirms the accuracy and reliability of the numerical approach, with strong convergence observed. Quantitative analysis reveals that an increase in the Peclet number reduces the shear stress at the cylinder wall by up to 18% while simultaneously enhancing heat transfer by approximately 12%. Similarly, the angle of inclination (α) significantly boosts heat transmission rates. Additionally, higher Peclet and Lewis numbers, along with greater nanoparticle volume fractions, amplify the density gradient of microorganisms, intensifying the bioconvection process by nearly 15%. These findings underscore the critical interplay between bioconvection and transport phenomena, providing a framework for optimizing bioconvection-driven heat and mass transfer systems. The insights from this investigation hold substantial implications for industrial processes and renewable energy technologies, paving the way for improved efficiency in applications such as thermal energy storage and advanced cooling systems. Full article
Show Figures

Figure 1

Back to TopTop