Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (495)

Search Parameters:
Keywords = myelodysplastic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 669 KiB  
Case Report
Pathologically Confirmed Dual Coronavirus Disease 2019-Associated Tracheobronchial Aspergillosis and Pulmonary Mucormycosis in a Non-Endemic Region: A Case Report
by Keon Oh, Sung-Yeon Cho, Dong-Gun Lee, Dukhee Nho, Dong Young Kim, Hye Min Kweon, Minseung Song and Raeseok Lee
J. Clin. Med. 2025, 14(15), 5526; https://doi.org/10.3390/jcm14155526 - 5 Aug 2025
Abstract
Background: Coronavirus disease 2019 (COVID-19) has led to the expansion of the spectrum of invasive fungal infections beyond traditional immunocompromised populations. Although COVID-19-associated pulmonary aspergillosis is increasingly being recognised, COVID-19-associated mucormycosis remains rare, particularly in non-endemic regions. Concurrent COVID-19-associated invasive tracheobronchial aspergillosis and [...] Read more.
Background: Coronavirus disease 2019 (COVID-19) has led to the expansion of the spectrum of invasive fungal infections beyond traditional immunocompromised populations. Although COVID-19-associated pulmonary aspergillosis is increasingly being recognised, COVID-19-associated mucormycosis remains rare, particularly in non-endemic regions. Concurrent COVID-19-associated invasive tracheobronchial aspergillosis and pulmonary mucormycosis with histopathological confirmation is exceedingly uncommon and poses significant diagnostic and therapeutic challenges. Case presentation: We report the case of a 57-year-old female with myelodysplastic syndrome who underwent haploidentical allogeneic haematopoietic stem cell transplantation. During post-transplant recovery, she developed COVID-19 pneumonia, complicated by respiratory deterioration and radiological findings, including a reverse halo sign. Bronchoscopy revealed multiple whitish plaques in the right main bronchus. Despite negative serum and bronchoalveolar lavage fluid galactomannan assay results, cytopathological examination revealed septate hyphae and Aspergillus fumigatus was subsequently identified. Given the patient’s risk factors and clinical features, liposomal amphotericin B therapy was initiated. Subsequent surgical resection and histopathological analysis confirmed the presence of Rhizopus microsporus. Following antifungal therapy and surgical intervention, the patient recovered and was discharged in stable condition. Conclusions: This case highlights the critical need for heightened clinical suspicion of combined invasive fungal infections in severely immunocompromised patients with COVID-19, even in non-endemic regions for mucormycosis. Early tissue-based diagnostic interventions and prompt initiation of optimal antifungal therapy are essential for obtaining ideal outcomes when co-infection is suspected. Full article
Show Figures

Figure 1

19 pages, 1025 KiB  
Review
A Genetically-Informed Network Model of Myelodysplastic Syndrome: From Splicing Aberrations to Therapeutic Vulnerabilities
by Sanghyeon Yu, Junghyun Kim and Man S. Kim
Genes 2025, 16(8), 928; https://doi.org/10.3390/genes16080928 - 1 Aug 2025
Viewed by 177
Abstract
Background/Objectives: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model [...] Read more.
Background/Objectives: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model and examine translation into precision therapeutic approaches. Methods: We reviewed breakthrough discoveries from the past three years, analyzing single-cell multi-omics technologies, epitranscriptomics, stem cell architecture analysis, and precision medicine approaches. We examined cell-type-specific splicing aberrations, distinct stem cell architectures, epitranscriptomic modifications, and microenvironmental alterations in MDS pathogenesis. Results: Four interconnected mechanisms drive MDS: genetic alterations (splicing factor mutations), aberrant stem cell architecture (CMP-pattern vs. GMP-pattern), epitranscriptomic dysregulation involving pseudouridine-modified tRNA-derived fragments, and microenvironmental changes. Splicing aberrations show cell-type specificity, with SF3B1 mutations preferentially affecting erythroid lineages. Stem cell architectures predict therapeutic responses, with CMP-pattern MDS achieving superior venetoclax response rates (>70%) versus GMP-pattern MDS (<30%). Epitranscriptomic alterations provide independent prognostic information, while microenvironmental changes mediate treatment resistance. Conclusions: These advances represent a paradigm shift toward personalized MDS medicine, moving from single-biomarker to comprehensive molecular profiling guiding multi-target strategies. While challenges remain in standardizing molecular profiling and developing clinical decision algorithms, this systems-level understanding provides a foundation for precision oncology implementation and overcoming current therapeutic limitations. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 2697 KiB  
Article
Integrating Molecular Alterations with Immunophenotype and Clinical Characteristics in Myelodysplastic Syndromes: A Single-Center Study
by Maciej Majcherek, Krzysztof Przeorski, Aleksandra Mroczkowska-Bękarciak, Natalia Nogaj, Donata Szymczak, Anna Kopszak, Krzysztof Kujawa, Paula Jabłonowska-Babij, Maciej Tomasiewicz, Agnieszka Szeremet, Tomasz Wróbel and Anna Czyż
Int. J. Mol. Sci. 2025, 26(15), 7382; https://doi.org/10.3390/ijms26157382 - 30 Jul 2025
Viewed by 277
Abstract
Continuous development of molecular and immunophenotypic techniques enables more precise diagnoses and more accurate assessment of prognosis in myelodysplastic syndromes (MDS). However, the relationship between genetic alterations and immunophenotype remains very poorly understood. The analysis included 30 patients diagnosed at a tertiary center [...] Read more.
Continuous development of molecular and immunophenotypic techniques enables more precise diagnoses and more accurate assessment of prognosis in myelodysplastic syndromes (MDS). However, the relationship between genetic alterations and immunophenotype remains very poorly understood. The analysis included 30 patients diagnosed at a tertiary center who were eligible for azacitidine treatment. Next-generation sequencing (NGS) was performed at the start of the study to assess the mutation status of 40 genes associated with MDS pathogenesis. In addition, multiparametric flow cytometry (MFC) was performed to assess the ELN score (Ogata score) and, additionally, to detect an abnormal CD11b/HLA-DR and CD11b/CD13 expression pattern. In the studied patient population, higher ELN score results were found in patients with mutations in epigenetic modifiers and pathogenic mutations of the tumor suppressor genes. Signal pathway mutations were associated with lower platelet counts at diagnosis. The results of this study indicate a correlation between molecular abnormalities and deviations in cell immunophenotype. Investigating this correlation may, in the future, allow the development of new scales that allow a more sensitive and specific diagnosis of MDS and a more precise prediction of its course. Full article
(This article belongs to the Special Issue Immunophenotyping in Autoimmune Diseases and Cancer, 4th Edition)
Show Figures

Figure 1

12 pages, 1002 KiB  
Article
Chromosomal Deletion Involving ANKRD26 Leads to Expression of a Fusion Protein Responsible for ANKRD26-Related Thrombocytopenia
by Gianluca Dell’Orso, Tommaso Passarella, Serena Cappato, Enrico Cappelli, Stefano Regis, Massimo Maffei, Matilde Balbi, Silvia Ravera, Daniela Di Martino, Silvia Viaggi, Sabrina Davì, Fabio Corsolini, Maria Carla Giarratana, Luca Arcuri, Eugenia Mariani, Riccardo Morini, Erika Massaccesi, Daniela Guardo, Michaela Calvillo, Elena Palmisani, Domenico Coviello, Francesca Fioredda, Carlo Dufour, Renata Bocciardi and Maurizio Mianoadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(15), 7330; https://doi.org/10.3390/ijms26157330 - 29 Jul 2025
Viewed by 244
Abstract
ANKRD26-related thrombocytopenia (ANKRD26-RT) is characterized by lifelong mild to moderate thrombocytopenia. Patients suffer from an increased susceptibility to acute or chronic myeloid leukemia, myelodysplastic syndrome, or chronic lymphocytic leukemia. We described here a patient with inherited thrombocytopenia initially misdiagnosed as immune thrombocytopenic purpura. [...] Read more.
ANKRD26-related thrombocytopenia (ANKRD26-RT) is characterized by lifelong mild to moderate thrombocytopenia. Patients suffer from an increased susceptibility to acute or chronic myeloid leukemia, myelodysplastic syndrome, or chronic lymphocytic leukemia. We described here a patient with inherited thrombocytopenia initially misdiagnosed as immune thrombocytopenic purpura. A chromosomal deletion involving the ANKRD26 gene was identified. Gene and protein expression analyses suggest an alternative pathogenic mechanism of altered megakaryopoiesis: the synthesis of a chimeric protein with aberrant expression due to the unregulated action of a promoter from a gene located upstream of ANKRD26. This study highlights the importance of advanced genetic testing and functional analysis of patients’ primary cells in the case of the detection of previously unrecognized structural variants in order to understand pathogenic mechanisms. These investigations provided a definitive diagnosis for the patient and facilitated the development of a tailored clinical management strategy, especially concerning the potential for myeloid transformation. Full article
(This article belongs to the Special Issue Molecular Advances in Blood Disorders)
Show Figures

Figure 1

23 pages, 1324 KiB  
Review
Advances and Challenges in the Management of Myelodysplastic Syndromes
by Jessica M. Stempel, Tariq Kewan and Amer M. Zeidan
Cancers 2025, 17(15), 2469; https://doi.org/10.3390/cancers17152469 - 25 Jul 2025
Viewed by 986
Abstract
Myelodysplastic syndromes/neoplasms (MDS) represent a biologically and clinically diverse group of myeloid malignancies marked by cytopenias, morphological dysplasia, and an inherent risk of progression to acute myeloid leukemia. Over the past two decades, the field has made significant advances in characterizing the molecular [...] Read more.
Myelodysplastic syndromes/neoplasms (MDS) represent a biologically and clinically diverse group of myeloid malignancies marked by cytopenias, morphological dysplasia, and an inherent risk of progression to acute myeloid leukemia. Over the past two decades, the field has made significant advances in characterizing the molecular landscape of MDS, leading to refined classification systems to reflect the underlying genetic and biological diversity. In 2025, the treatment of MDS is increasingly individualized, guided by integrated clinical, cytogenetic, and molecular risk stratification tools. For lower-risk MDS, the treatment paradigm has evolved beyond erythropoiesis-stimulating agents (ESAs) with the introduction of novel effective agents such as luspatercept and imetelstat, as well as shortened schedules of hypomethylating agents (HMAs). For higher-risk disease, monotherapy with HMAs continue to be the standard of care as combination therapies of HMAs with novel agents have, to date, failed to redefine treatment paradigms. The recognition of precursor states like clonal hematopoiesis of indeterminate potential (CHIP) and the increasing use of molecular monitoring will hopefully enable earlier intervention/prevention strategies. This review provides a comprehensive overview of the current treatment approach for MDS, highlighting new classifications, prognostic tools, evolving therapeutic options, and ongoing challenges. We discuss evidence-based recommendations, treatment sequencing, and emerging clinical trials, with a focus on translating biological insights into improved outcomes for patients with MDS. Full article
(This article belongs to the Special Issue New Insights of Hematology in Cancer)
Show Figures

Figure 1

9 pages, 1016 KiB  
Communication
BCOR, BCORL1, and BCL6 Mutations in Pediatric Leukemias
by Thomas C. Fisher-Heath, Aastha Sharma, Mark S. Marshall, Tiffany Brown and Sandeep Batra
Cancers 2025, 17(15), 2443; https://doi.org/10.3390/cancers17152443 - 23 Jul 2025
Viewed by 314
Abstract
Somatic and epigenetic alterations contribute to myeloid leukemogenesis and play an important role in risk stratification and the optimization of treatment for myeloid malignancies. The significance of rare genetic alterations, such B-cell lymphoma-6 corepressor (BCOR) and B-cell lymphoma-6 corepressor-like protein 1 (BCORL1 [...] Read more.
Somatic and epigenetic alterations contribute to myeloid leukemogenesis and play an important role in risk stratification and the optimization of treatment for myeloid malignancies. The significance of rare genetic alterations, such B-cell lymphoma-6 corepressor (BCOR) and B-cell lymphoma-6 corepressor-like protein 1 (BCORL1) mutations, in pediatric acute myeloid leukemias (AML) and myelodysplastic syndrome (MDS) is unknown. We present a case series of pediatric and adolescent patients, with de novo AML, harboring BCOR/BCORL1 mutations. Studies involving larger cohorts of patients are needed to further elucidate the role of BCOR/BCORL1 mutations in pediatric AML and MDS. Full article
Show Figures

Figure 1

14 pages, 3307 KiB  
Article
Expanding the Spectrum of CSF3R-Mutated Myeloid Neoplasm Beyond Chronic Neutrophilic Leukemia and Atypical Chronic Myeloid Leukemia: A Comprehensive Analysis of 13 Cases
by Neha Seth, Judith Brody, Peihong Hsu, Jonathan Kolitz, Pratik Q. Deb and Xinmin Zhang
J. Clin. Med. 2025, 14(15), 5174; https://doi.org/10.3390/jcm14155174 - 22 Jul 2025
Viewed by 309
Abstract
Background: Genetic alterations in CSF3R, typically associated with chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML), rarely occur in other myeloid neoplasms. Methods: This study characterized the clinical, morphologic, cytogenetic, and molecular features of 13 patients with non-CNL non-aCML myeloid [...] Read more.
Background: Genetic alterations in CSF3R, typically associated with chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML), rarely occur in other myeloid neoplasms. Methods: This study characterized the clinical, morphologic, cytogenetic, and molecular features of 13 patients with non-CNL non-aCML myeloid neoplasms with CSF3R alterations. Patients (median age, 77 years) were categorized into groups with a myelodysplastic/myeloproliferative neoplasm (MDS/MPN) (n = 5), acute leukemia (n = 4), and other myeloid neoplasms (n = 4) based on the WHO 2022 and ICC criteria. Results: The CSF3R p.Thr618Ile mutation was most frequent (11/13), with additional pathogenic variants including p.Gln743Ter and frameshift mutations affecting the cytoplasmic tail. Variant allele frequencies (VAFs) ranged from 2% to 49%, with the highest median VAF in the MDS/MPN group. Co-mutations varied by subtype; MDS/MPN, NOS, and CMML cases frequently harbored mutations in epigenetic regulators (ASXL1, TET2) and splicing factors (SF3B1, SRSF2, ZRSR2), while acute leukemia cases showed alterations in JAK3, STAT3, and NRAS. Survival analysis revealed distinct patterns across the three diagnostic groups, with MDS/MPN having the poorest prognosis. Conclusion: This study expands the recognized spectrum of CSF3R-related myeloid neoplasms and highlights the clinical and molecular heterogeneity associated with these mutations, emphasizing the need for comprehensive molecular profiling and the potential for targeted therapies. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Acute Myeloid Leukemia)
Show Figures

Figure 1

13 pages, 860 KiB  
Article
Identification of Genetic Variants Using Next-Generation Sequencing in Pediatric Myelodysplastic Syndrome: From Disease Biology to Clinical Applications
by Viviane Lamim Lovatel, Gerson Moura Ferreira, Beatriz Ferreira da Silva, Rayane de Souza Torres, Rita de Cássia Barbosa da Silva Tavares, Ana Paula Silva Bueno, Eliana Abdelhay and Teresa de Souza Fernandez
Int. J. Mol. Sci. 2025, 26(14), 6907; https://doi.org/10.3390/ijms26146907 - 18 Jul 2025
Viewed by 280
Abstract
This study aimed to identify genetic variants using a customized next-generation sequencing (NGS) panel for pediatric myelodysplastic syndrome (pMDS) and to explore their associations with cytogenetic and clinical characteristics. Cytogenetic analyses were conducted using G-banding and fluorescence in situ hybridization. NGS was performed [...] Read more.
This study aimed to identify genetic variants using a customized next-generation sequencing (NGS) panel for pediatric myelodysplastic syndrome (pMDS) and to explore their associations with cytogenetic and clinical characteristics. Cytogenetic analyses were conducted using G-banding and fluorescence in situ hybridization. NGS was performed with the Ion Torrent Personal Genome Machine for the following genes: GATA2, RUNX1, CEBPA, ANKRD26, ETV6, SAMD9, SAMD9L, PTPN11, NRAS, SETBP1, DDX41, TP53, FLT3, SRP72, and JAK3. Analyses were performed with Ion Reporter 5.20.8.0 software. Genetic variants were classified using the dbSNP, 1000 Genomes, COSMIC, and Varsome databases. We analyzed 25 cases of pMDS; 15 presented abnormal karyotypes, and 19 showed genetic variants. Among the 29 variants identified across 12/15 genes, 27% were pathogenic and 14% were likely pathogenic, with NRAS and GATA2 most frequently associated with disease progression. A new somatic variant of uncertain significance in SETBP1 was detected in seven patients showing heterogeneous clinical outcomes. Genetic variants were found in 7/10 patients with normal karyotypes, indicating that submicroscopic alterations can shed light on disease biology. Our results highlight the critical role of a targeted NGS panel in identifying molecular alterations associated with pMDS pathogenesis, thereby enhancing diagnostic precision, prognosis, and aiding in treatment selection. Full article
Show Figures

Figure 1

18 pages, 1674 KiB  
Article
CD34+ Cell Dose, Measurable Residual Disease, and Outcome After Myeloablative HLA-Matched Peripheral Blood Hematopoietic Cell Transplantation for Adults with Acute Myeloid Leukemia
by Margery Gang, Megan Othus, Anne-Chloe Olix, Kate A. Markey, Derek L. Stirewalt, Laura S. Connelly-Smith, Stephanie J. Lee, Filippo Milano and Roland B. Walter
Cancers 2025, 17(14), 2323; https://doi.org/10.3390/cancers17142323 - 12 Jul 2025
Viewed by 396
Abstract
Background: The impact of donor graft cell composition on post-HCT outcomes in AML remains controversial. Furthermore, it is unknown whether this interacts with pre-HCT MRD status. We evaluated the impact of CD34+ and CD3+ cell doses on outcomes of myeloablative conditioning (MAC) [...] Read more.
Background: The impact of donor graft cell composition on post-HCT outcomes in AML remains controversial. Furthermore, it is unknown whether this interacts with pre-HCT MRD status. We evaluated the impact of CD34+ and CD3+ cell doses on outcomes of myeloablative conditioning (MAC) HCT in patients with myelodysplastic neoplasm (MDS)/AML or AML with and without detectable MRD in pre-HCT bone marrow specimens. Methods: We utilized an electronic database to identify all adults ≥18 years with MDS/AML or AML who underwent MAC and received 10/10 HLA-matched sibling or unrelated donor mobilized PBSC allografts in first morphologic remission between 2006 and 2023 at the University of Washington/Fred Hutchinson Cancer Center. Results: Among 385 adults, we found a progressive decrease in relapse incidence and improved survival with increasing CD34+ doses up to a threshold of 5.61 × 106/kg, above which the relapse risk no longer decreased. After multivariable adjustment, a low CD34+ dose was associated with increased risk of relapse as well as lower overall and relapse-free survival. Similar results were obtained for patients with and without pre-HCT MRD. Higher CD3+ doses were linearly associated with an increased incidence of moderate–severe chronic GVHD. Conclusions: Our data identify a non-linear relationship between CD34+ cell dose and relapse risk in AML patients undergoing myeloablative allogeneic HCT, with no apparent added benefit beyond a CD34+ dose threshold. Our findings suggest that donor graft composition impacts outcomes in adults with AML undergoing allogeneic HCT after MAC, independent of pre-HCT MRD status; however, additional studies are needed for other donor cell scenarios. Full article
Show Figures

Figure 1

15 pages, 1003 KiB  
Article
Restoration of Autophagy and Apoptosis in Myelodysplastic Syndromes: The Effect of Azacitidine in Disease Pathogenesis
by Georgia Tsekoura, Andreas Agathangelidis, Christina-Nefeli Kontandreopoulou, Eirini Sofia Fasouli, Eleni Katsantoni, Vaia Pliaka, Leonidas Alexopoulos, Eleni Katana, Myrto Papaioannou, Georgia Taktikou, Maria Eleftheria Strataki, Angeliki Taliouraki, Marina Mantzourani, Nora-Athina Viniou, Panagiotis T. Diamantopoulos and Panagoula Kollia
Curr. Issues Mol. Biol. 2025, 47(7), 520; https://doi.org/10.3390/cimb47070520 - 4 Jul 2025
Viewed by 375
Abstract
Myelodysplastic syndromes (MDSs) comprise a diverse group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, cytopenia in the peripheral blood, and an increased risk of transformation into acute myeloid leukemia (AML). Despite extensive research, the mechanisms underlying MDS pathogenesis remain unclear. [...] Read more.
Myelodysplastic syndromes (MDSs) comprise a diverse group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, cytopenia in the peripheral blood, and an increased risk of transformation into acute myeloid leukemia (AML). Despite extensive research, the mechanisms underlying MDS pathogenesis remain unclear. In the present study, we explored the role of autophagy and apoptosis in the development of MDS and assessed the impact of azacitidine on these processes in vitro. First, we assessed the expression of proteins involved in both autophagic and apoptotic pathways in MDS patients with different prognoses. Furthermore, using the MDS-L cell line as a model, we investigated the in vitro effects of azacitidine treatment on these processes. We report that MDS, irrespective of risk classification, is associated with the dysregulation of autophagy and apoptosis. Notably, azacitidine treatment restored these cellular processes, accompanied by modulation of key signaling phosphoproteins. Overall, these findings provide evidence that impaired autophagy and apoptosis contribute to MDS pathogenesis and that azacitidine helps restore cellular homeostasis by activating both processes. Furthermore, our study highlights the potential therapeutic benefits of targeting these mechanisms and suggests that combining azacitidine with agents that modulate autophagy and apoptosis could enhance the treatment efficacy for MDS patients. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

14 pages, 994 KiB  
Article
Prognostic Value of Inflammation and Nutrition-Based Scores in Low-Risk Myelodysplastic Syndrome: A Retrospective Cohort Study
by Tuba Ersal, Vildan Özkocaman, Sinem Çubukçu, Tuba Güllü Koca, Fazıl Çağrı Hunutlu, Şeyma Yavuz, Ezel Elgün, Gökhan Ocakoğlu and Fahir Özkalemkaş
J. Clin. Med. 2025, 14(13), 4751; https://doi.org/10.3390/jcm14134751 - 4 Jul 2025
Viewed by 408
Abstract
Background/Objectives: The pathogenesis of Myelodysplastic Syndrome (MDS) is diverse; however, increasing evidence suggests that inflammation and oxidative stress play a significant role in the development and progression of the disease. This study aimed to evaluate the prognostic impact of inflammation, nutritional status, and [...] Read more.
Background/Objectives: The pathogenesis of Myelodysplastic Syndrome (MDS) is diverse; however, increasing evidence suggests that inflammation and oxidative stress play a significant role in the development and progression of the disease. This study aimed to evaluate the prognostic impact of inflammation, nutritional status, and oxidative stress at diagnosis in patients with low-risk MDS. Methods: A retrospective analysis was conducted on 175 newly diagnosed low-risk MDS patients. Results: A low Prognostic Nutritional Index (PNI) and a high systemic oxidative stress (SOS) score were independently associated with poorer prognosis (PNI: HR 1.598, 95% CI 1.076–2.372, p = 0.02; SOS: HR 1.003, 95% CI 1.001–1.006, p = 0.002). The optimal PNI cut-off value for predicting mortality was identified as 47.47. Based on this cut-off, 92 patients had a low PNI score, while 83 patients had a high PNI score. The comparison between these groups revealed a statistically significant difference in median overall survival (OS), with 45.5 months for the low-PNI group and 75.1 months for the high-PNI group (p < 0.001). However, PNI was not significantly associated with progression to acute myeloid leukemia (AML) (p = 0.668). In the multivariate OS analysis, several factors were identified as independent predictors of prognosis, including a high Revised International Prognostic Scoring System (R-IPSS) score, low PNI, high SOS score, advanced age, male gender, and transformation to AML. Conclusions: Together, PNI and SOS may serve as simple, accessible tools to improve risk stratification in low-risk MDS patients. Full article
Show Figures

Figure 1

23 pages, 599 KiB  
Review
Oxidative Stress and Mitochondrial Dysfunction in Myelodysplastic Syndrome: Roles in Development, Diagnosis, Prognosis, and Treatment
by Federico Pierro, Manlio Fazio, Giuseppe Murdaca, Fabio Stagno, Sebastiano Gangemi and Alessandro Allegra
Int. J. Mol. Sci. 2025, 26(13), 6415; https://doi.org/10.3390/ijms26136415 - 3 Jul 2025
Viewed by 746
Abstract
Myelodysplastic syndromes are a group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, peripheral cytopenia, and dysplasia in one or more myeloid lineages, with a variable risk of progression to acute myeloid leukemia. In addition to well-characterized genetic and epigenetic abnormalities, [...] Read more.
Myelodysplastic syndromes are a group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, peripheral cytopenia, and dysplasia in one or more myeloid lineages, with a variable risk of progression to acute myeloid leukemia. In addition to well-characterized genetic and epigenetic abnormalities, oxidative stress has emerged as a critical contributor to the pathophysiology of myelodysplastic syndrome. Reactive oxygen species and reactive nitrogen species can induce cumulative DNA damage, mitochondrial dysfunction, and altered redox homeostasis, promoting genomic instability and clonal evolution. Elevated oxidative stress in patients with myelodysplastic syndromes has been linked to increased apoptosis of hematopoietic stem and progenitor cells, disruption of the bone marrow microenvironment, and progression toward leukemic transformation. Moreover, ROS-related pathways, such as TP53 mutations and epigenetic dysregulation, interact with the key molecular drivers of myelodysplastic syndrome. Given these findings, oxidative stress is now recognized not only as a hallmark of disease biology but also as a potential therapeutic target. Antioxidant-based strategies and agents that modulate redox signaling are being investigated for their ability to restore hematopoietic function and enhance treatment efficacy. This review provides an overview of the current biology of myelodysplastic syndrome, highlights the connections between oxidative stress and disease mechanisms, and explores emerging redox-targeted therapeutic approaches. Full article
(This article belongs to the Special Issue Oxygen Variations, 2nd Edition)
Show Figures

Figure 1

7 pages, 4563 KiB  
Case Report
Diagnosis and Treatment of Langerhans Cell Sarcoma: A Case Report and Review of the Literature
by Giulia Pileggi, Sabrina Mariani, Valentina De Santis, Gianluca Maiorana, Federica Lubrano Lobianco, Chiara Togni, Monica Piedimonte, Caterina Tatarelli, Esmeralda Conte, Arianna di Napoli, Emanuela Pilozzi, Evelina Rogges, Agostino Tafuri and Giovanna Palumbo
Hemato 2025, 6(3), 18; https://doi.org/10.3390/hemato6030018 - 26 Jun 2025
Viewed by 360
Abstract
Langerhans cell sarcoma (LCS) is a rare and aggressive neoplasm characterized by a clonal proliferation of Langerhans cells (LCs), with multi-organ involvement and poor prognosis. Diagnostic challenges arise from its rarity and overlapping features with Langerhans cell histiocytosis (LCH), requiring immunophenotypic and histological [...] Read more.
Langerhans cell sarcoma (LCS) is a rare and aggressive neoplasm characterized by a clonal proliferation of Langerhans cells (LCs), with multi-organ involvement and poor prognosis. Diagnostic challenges arise from its rarity and overlapping features with Langerhans cell histiocytosis (LCH), requiring immunophenotypic and histological analysis for differentiation. This case report discusses a 67-year-old male with multi-organ LCS involvement. Diagnosis was confirmed via liver biopsy and genetic analysis, revealing a MAP2K1 mutation. Treatment with subcutaneous cladribine and dexamethasone resulted in significant clinical and radiological improvement, despite hematological toxicity due to an underlying myelodysplastic neoplasm (MDS). This case proves the potential efficacy of cladribine for disseminated LCS and highlights the necessity for further research into optimal therapeutic approaches for this rare malignancy. Full article
(This article belongs to the Special Issue Hematopathology: Rare Hematological Diseases)
Show Figures

Figure 1

15 pages, 868 KiB  
Review
Hematopoietic Stem Cell Transplant in Adult Patients with Fanconi Anemia: A Review
by Bradley Rockwell, Prakriti Ramamurthy, Jhannine Alyssa Verceles, Amanda Lombardo, Amit Verma and Dennis L. Cooper
Diseases 2025, 13(7), 195; https://doi.org/10.3390/diseases13070195 - 25 Jun 2025
Viewed by 624
Abstract
Fanconi anemia (FA) is characterized by faulty DNA repair and is associated with bone marrow failure, acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS). Because of the more widespread use of next-generation sequencing (NGS) and increased testing for germline mutations in young patients [...] Read more.
Fanconi anemia (FA) is characterized by faulty DNA repair and is associated with bone marrow failure, acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS). Because of the more widespread use of next-generation sequencing (NGS) and increased testing for germline mutations in young patients with MDS and AML, FA is increasingly being first diagnosed in adults, many of whom lack classical physical stigmata. Hematopoietic stem cell transplant is the only cure for the hematologic manifestations of FA but there are several unique considerations in FA patients, including first maintaining a high index of suspicion for the diagnosis in patients with minimal phenotypic abnormalities, second an exaggerated sensitivity to alkylating agents and radiation, precluding the use of standard myeloablative conditioning regimens despite the young age of most of the patients, and lastly a marked propensity for squamous cell cancers of the upper aerodigestive tract and anogenital region, likely further increased by the drugs used in conditioning and by chronic inflammation in patients who develop graft-versus-host disease. Despite a growing number of FA patients surviving into adulthood or first being diagnosed with FA as an adult, there is minimal literature describing transplant methodology and outcomes. In the following case-based review of a patient, we incorporate recent findings from the literature on the care of this challenging patient population. Full article
Show Figures

Figure 1

17 pages, 2154 KiB  
Article
Application of Optical Genome Mapping for the Diagnosis and Risk Stratification of Myeloid and Lymphoid Malignancies
by Lucía Ballesta-Alcaraz, Mónica Bernal, Jose Ramón Vilchez, Jorge Antonio Palacios, Pilar Jiménez, Pilar Garrido, Juan Francisco Gutiérrez-Bautista and Francisco Ruiz-Cabello
Int. J. Mol. Sci. 2025, 26(12), 5763; https://doi.org/10.3390/ijms26125763 - 16 Jun 2025
Viewed by 553
Abstract
Optical genome mapping (OGM) is a novel, high-resolution technology for genome-wide detection of structural variants, offering clear advantages over conventional cytogenetics in hematologic malignancies. We applied OGM to a large cohort of patients with acute myeloid leukemia (AML), myelodysplastic syndromes (MDSs), and B-cell [...] Read more.
Optical genome mapping (OGM) is a novel, high-resolution technology for genome-wide detection of structural variants, offering clear advantages over conventional cytogenetics in hematologic malignancies. We applied OGM to a large cohort of patients with acute myeloid leukemia (AML), myelodysplastic syndromes (MDSs), and B-cell acute lymphoblastic leukemia (B-ALL) to evaluate its clinical utility. In AML and MDS, it revealed high-risk alterations such as deletions in 5q31–5q32 and 7q22, and cryptic fusions like NUP98::NSD1 that were missed by karyotyping or FISH. It also identified chromoanagenesis, a catastrophic chromosomal event linked to poor prognosis and often undetectable by standard methods. In B-ALL, OGM uncovered clinically relevant deletions in CDKN2A/B, PAX5, and IKZF1, as well as high-risk ploidy changes like hypodiploidy and hyperdiploidy, all important for risk assessment and frequently underdetected. OGM not only refines diagnosis and improves risk stratification but can also uncover cryptic and complex genomic abnormalities. Our findings support its integration into routine diagnostics to enhance classification, guide treatment decisions, and improve patient outcomes. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Treatment of Hematological Malignancies)
Show Figures

Figure 1

Back to TopTop