Application of Optical Genome Mapping for the Diagnosis and Risk Stratification of Myeloid and Lymphoid Malignancies
Abstract
:1. Introduction
2. Results
2.1. Comparative Analysis of OGM, Karyotyping, and FISH in the Detection of Cytogenetic Abnormalities
2.2. OGM-Identified Alterations with Prognostic and Risk Classification Relevance
- Detection of Clinically Relevant Chromosomal Alterations in Myeloid Neoplasms by OGM
- OGM Accurately Characterizes Complex Genomic Rearrangements Associated with Chromoanagenesis in Myeloid Neoplasms
- Uncovering Key Cytogenetic Markers and Risk Factors in ALL
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Cytogenetics
4.3. Optical Genome Mapping
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.d.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.-M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data. Blood J. Am. Soc. Hematol. 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Duffield, A.S.; Mullighan, C.G.; Borowitz, M.J. International Consensus Classification of Acute Lymphoblastic Leukemia/Lymphoma. Virchows Arch. 2023, 482, 11–26. [Google Scholar] [CrossRef]
- Bernard, E.; Tuechler, H.; Greenberg, P.L.; Hasserjian, R.P.; Arango Ossa, J.E.; Nannya, Y.; Devlin, S.M.; Creignou, M.; Pinel, P.; Monnier, L. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. NEJM Evid. 2022, 1, EVIDoa2200008. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P. Diagnosis and Management of AML in Adults: 2022 Recommendations from an International Expert Panel on Behalf of the ELN. Blood J. Am. Soc. Hematol. 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Sahajpal, N.S.; Mondal, A.K.; Tvrdik, T.; Hauenstein, J.; Shi, H.; Deeb, K.K.; Saxe, D.; Hastie, A.R.; Chaubey, A.; Savage, N.M. Clinical Validation and Diagnostic Utility of Optical Genome Mapping for Enhanced Cytogenomic Analysis of Hematological Neoplasms. J. Mol. Diagn. 2022, 24, 1279–1291. [Google Scholar] [CrossRef]
- Lestringant, V.; Guermouche-Flament, H.; Jimenez-Pocquet, M.; Gaillard, J.-B.; Penther, D. Cytogenetics in the Management of Hematological Malignancies: An Overview of Alternative Technologies for Cytogenetic Characterization. Curr. Res. Transl. Med. 2024, 72, 103440. [Google Scholar] [CrossRef]
- Mantere, T.; Neveling, K.; Pebrel-Richard, C.; Benoist, M.; van der Zande, G.; Kater-Baats, E.; Baatout, I.; van Beek, R.; Yammine, T.; Oorsprong, M. Optical Genome Mapping Enables Constitutional Chromosomal Aberration Detection. Am. J. Hum. Genet. 2021, 108, 1409–1422. [Google Scholar] [CrossRef]
- Simonin, M.; Vasseur, L.; Lengliné, E.; Lhermitte, L.; Cabannes-Hamy, A.; Balsat, M.; Schmidt, A.; Dourthe, M.-E.; Touzart, A.; Graux, C. NGS-Based Stratification Refines the Risk Stratification in T-ALL and Identifies a Very-High-Risk Subgroup of Patients. Blood 2024, 144, 1570–1580. [Google Scholar] [CrossRef]
- Peterson, J.F.; Aggarwal, N.; Smith, C.A. Integration of Microarray Analysis into the Clinical Diagnosis of Hematological Malignancies. Oncotarget 2015, 6, 18845–18862. [Google Scholar] [CrossRef] [PubMed]
- Bejjani, B.A.; Shaffer, L.G. Clinical Utility of Contemporary Molecular Cytogenetics. Annu. Rev. Genom. Hum. Genet. 2008, 9, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood J. Am. Soc. Hematol. 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Hastings, R.J.; Moore, S.; Chia, N. ISCN 2024: An International System for Human Cytogenomic Nomenclature (2024); S Karger AG: Basel, Switzerland, 2024; ISBN 331807330X. [Google Scholar]
- Loghavi, S.; Wei, Q.; Ravandi, F.; Quesada, A.E.; Routbort, M.J.; Hu, S.; Toruner, G.A.; Wang, S.A.; Wang, W.; Miranda, R.N. Optical Genome Mapping Improves the Accuracy of Classification, Risk Stratification, and Personalized Treatment Strategies for Patients with Acute Myeloid Leukemia. Am. J. Hematol. 2024, 99, 1959–1968. [Google Scholar] [CrossRef]
- Levy, B.; Baughn, L.B.; Akkari, Y.; Chartrand, S.; LaBarge, B.; Claxton, D.; Lennon, P.A.; Cujar, C.; Kolhe, R.; Kroeger, K. Optical Genome Mapping in Acute Myeloid Leukemia: A Multicenter Evaluation. Blood Adv. 2023, 7, 1297–1307. [Google Scholar] [CrossRef]
- Shiah, H.S.; Kuo, Y.Y.; Tang, J.L.; Huang, S.Y.; Yao, M.; Tsay, W.; Chen, Y.C.; Wang, C.H.; Shen, M.C.; Lin, D.T. Clinical and Biological Implications of Partial Tandem Duplication of the MLL Gene in Acute Myeloid Leukemia without Chromosomal Abnormalities at 11q23. Leukemia 2002, 16, 196–202. [Google Scholar] [CrossRef]
- Wei, Q.; Hu, S.; Xu, J.; Loghavi, S.; Daver, N.; Toruner, G.A.; Wang, W.; Medeiros, L.J.; Tang, G. Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes. Cancers 2024, 16, 4193. [Google Scholar] [CrossRef]
- Mori, M.; Kubota, Y.; Durmaz, A.; Gurnari, C.; Goodings, C.; Adema, V.; Ponvilawan, B.; Bahaj, W.S.; Kewan, T.; LaFramboise, T. Genomics of Deletion 7 and 7q in Myeloid Neoplasm: From Pathogenic Culprits to Potential Synthetic Lethal Therapeutic Targets. Leukemia 2023, 37, 2082–2093. [Google Scholar] [CrossRef]
- Wong, J.C.; Weinfurtner, K.M.; Alzamora, M.d.P.; Kogan, S.C.; Burgess, M.R.; Zhang, Y.; Nakitandwe, J.; Ma, J.; Cheng, J.; Chen, S.-C. Functional Evidence Implicating Chromosome 7q22 Haploinsufficiency in Myelodysplastic Syndrome Pathogenesis. eLife 2015, 4, e07839. [Google Scholar] [CrossRef]
- McNerney, M.E.; Brown, C.D.; Wang, X.; Bartom, E.T.; Karmakar, S.; Bandlamudi, C.; Yu, S.; Ko, J.; Sandall, B.P.; Stricker, T. CUX1 Is a Haploinsufficient Tumor Suppressor Gene on Chromosome 7 Frequently Inactivated in Acute Myeloid Leukemia. Blood J. Am. Soc. Hematol. 2013, 121, 975–983. [Google Scholar] [CrossRef]
- Okamoto, K.; Imamura, T.; Tanaka, S.; Urata, T.; Yoshida, H.; Shiba, N.; Iehara, T. The Nup98:: Nsd1 Fusion Gene Induces CD123 Expression in 32D Cells. Int. J. Hematol. 2023, 118, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Thanasopoulou, A.; Tzankov, A.; Schwaller, J. Potent Co-Operation between the NUP98-NSD1 Fusion and the FLT3-ITD Mutation in Acute Myeloid Leukemia Induction. Haematologica 2014, 99, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Hollink, I.H.I.M.; van den Heuvel-Eibrink, M.M.; Arentsen-Peters, S.T.; Pratcorona, M.; Abbas, S.; Kuipers, J.E.; van Galen, J.F.; Beverloo, H.B.; Sonneveld, E.; Kaspers, G.-J.J.L. NUP98/NSD1 Characterizes a Novel Poor Prognostic Group in Acute Myeloid Leukemia with a Distinct HOX Gene Expression Pattern. Blood J. Am. Soc. Hematol. 2011, 118, 3645–3656. [Google Scholar] [CrossRef] [PubMed]
- Struski, S.; Lagarde, S.; Bories, P.; Puiseux, C.; Prade, N.; Cuccuini, W.; Bidet, A.; Gervais, C.; Lafage-Pochitaloff, M.; Roche-Lestienne, C. NUP98 Is Rearranged in 3.8% of Pediatric AML Forming a Clinical and Molecular Homogenous Group with a Poor Prognosis. Leukemia 2017, 31, 565–572. [Google Scholar] [CrossRef]
- Ostronoff, F.; Othus, M.; Gerbing, R.B.; Loken, M.R.; Raimondi, S.C.; Hirsch, B.A.; Lange, B.J.; Petersdorf, S.; Radich, J.; Appelbaum, F.R. NUP98/NSD1 and FLT3/ITD Coexpression Is More Prevalent in Younger AML Patients and Leads to Induction Failure: A COG and SWOG Report. Blood J. Am. Soc. Hematol. 2014, 124, 2400–2407. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kurata, K.; Kitao, A.; Sakai, R.; Matsumoto, S.; Matsumoto, H.; Saegusa, J.; Yakushijin, K.; Minami, H. Cryptic Insertion of CBFB into MYH11 Leading to a Type D Fusion in Acute Myeloid Leukemia with Normal Karyotype. Int. J. Lab. Hematol. 2022, 44, e36–e39. [Google Scholar] [CrossRef]
- Douet-Guilbert, N.; Chauveau, A.; Gueganic, N.; Guillerm, G.; Tous, C.; Le Bris, M.; Basinko, A.; Morel, F.; Ugo, V.; De Braekeleer, M. Acute Myeloid Leukaemia (FAB AML-M4Eo) with Cryptic Insertion of Cbfb Resulting in Cbfb-Myh11 Fusion. Hematol. Oncol. 2017, 35, 385–389. [Google Scholar] [CrossRef]
- Dawson, A.J.; Bal, S.; McTavish, B.; Tomiuk, M.; Schroedter, I.; Ahsanuddin, A.N.; Seftel, M.D.; Vallente, R.; Mai, S.; Cotter, P.D. Inversion and Deletion of 16q22 Defined by Array CGH, FISH, and RT-PCR in a Patient with AML. Cancer Genet. 2011, 204, 344–347. [Google Scholar] [CrossRef]
- Spencer, D.V.; Cavalier, M.; Kalpatthi, R.; Quigley, D.I. Inverted and Deleted Chromosome 16 with Deletion of 3’CBFB Identified by Fluorescence in Situ Hybridization. Cancer Genet. Cytogenet. 2007, 179, 82–84. [Google Scholar] [CrossRef]
- Hung, D.; St Heaps, L.; Benson, W.; Mirochnik, O.; Sharma, P.; Smith, A. Deletion of 3’CBFbeta in an Inv (16)(P13. Lq22) Ascertained by Fluorescence in Situ Hybridization and Reverse-Transcriptase Polymerase Chain Reaction. Cancer Genet. Cytogenet. 2007, 172, 92–94. [Google Scholar] [CrossRef]
- Kelly, J.; Foot, N.J.; Conneally, E.; Enright, H.; Humphreys, M.; Saunders, K.; Neat, M.J. 3′ CBFβ Deletion Associated with Inv (16) in Acute Myeloid Leukemia. Cancer Genet. Cytogenet. 2005, 162, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Zou, Y.; Wang, S.A.; Borthakur, G.; Toruner, G.; Hu, S.; Li, S.; Xu, J.; Medeiros, L.J.; Tang, Z. 3′ CBFB Deletion in CBFB-Rearranged Acute Myeloid Leukemia Retains Morphological Features Associated with Inv (16), but Patients Have Higher Risk of Relapse and May Require Stem Cell Transplant. Ann. Hematol. 2022, 101, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Holland, A.J.; Cleveland, D.W. Chromoanagenesis and Cancer: Mechanisms and Consequences of Localized, Complex Chromosomal Rearrangements. Nat. Med. 2012, 18, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Bochtler, T.; Granzow, M.; Stölzel, F.; Kunz, C.; Mohr, B.; Kartal-Kaess, M.; Hinderhofer, K.; Heilig, C.E.; Kramer, M.; Thiede, C. Marker Chromosomes Can Arise from Chromothripsis and Predict Adverse Prognosis in Acute Myeloid Leukemia. Blood J. Am. Soc. Hematol. 2017, 129, 1333–1342. [Google Scholar] [CrossRef]
- Maura, F.; Boyle, E.M.; Rustad, E.H.; Ashby, C.; Kaminetzky, D.; Bruno, B.; Braunstein, M.; Bauer, M.; Blaney, P.; Wang, Y. Chromothripsis as a Pathogenic Driver of Multiple Myeloma. In Proceedings of the Seminars in Cell & Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2022; Volume 123, pp. 115–123. [Google Scholar]
- Arniani, S.; Pierini, V.; Pellanera, F.; Matteucci, C.; Di Giacomo, D.; Bardelli, V.; Quintini, M.; Mavridou, E.; Lema Fernandez, A.G.; Nardelli, C. Chromothripsis Is a Frequent Event and Underlies Typical Genetic Changes in Early T-Cell Precursor Lymphoblastic Leukemia in Adults. Leukemia 2022, 36, 2577–2585. [Google Scholar] [CrossRef]
- Wei, Q.; Hu, S.; Loghavi, S.; Toruner, G.A.; Ravandi-Kashani, F.; Tang, Z.; Li, S.; Xu, J.; Daver, N.; Medeiros, L.J. Chromoanagenesis Is Frequently Associated With Highly Complex Karyotypes, Extensive Clonal Heterogeneity, and Treatment Refractoriness in Acute Myeloid Leukemia. Am. J. Hematol. 2025, 100, 417–426. [Google Scholar] [CrossRef]
- Guermouche, H.; Roynard, P.; Servoli, F.; Lestringant, V.; Quilichini, B.; Terré, C.; Defasque, S.; Roche-Lestienne, C.; Penther, D.; Daudignon, A. Deciphering Genomic Complexity of Multiple Myeloma Using Optimized Optical Genome Mapping. J. Mol. Diagn. 2025, 27, 306–322. [Google Scholar] [CrossRef]
- Rack, K.; De Bie, J.; Ameye, G.; Gielen, O.; Demeyer, S.; Cools, J.; De Keersmaecker, K.; Vermeesch, J.R.; Maertens, J.; Segers, H. Optimizing the Diagnostic Workflow for Acute Lymphoblastic Leukemia by Optical Genome Mapping. Am. J. Hematol. 2022, 97, 548–561. [Google Scholar] [CrossRef]
- You, M.J.; Medeiros, L.J.; Hsi, E.D. T-Lymphoblastic Leukemia/Lymphoma. Am. J. Clin. Pathol. 2015, 144, 411–422. [Google Scholar] [CrossRef]
- Bernard, O.; Barin, C.; Charrin, C.; Mathieu-Mahul, D.; Berger, R. Characterization of Translocation t (1; 14)(P32; Q11) in a T and in a B Acute Leukemia. Leukemia 1993, 7, 1509–1513. [Google Scholar]
- Wang, H.; Zhou, Y.; Huang, X.; Zhang, Y.; Qian, J.; Li, J.; Li, X.; Li, C.; Lou, Y.; Mai, W. CDKN2A Deletions Are Associated with Poor Outcomes in 101 Adults with T-cell Acute Lymphoblastic Leukemia. Am. J. Hematol. 2021, 96, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Zaliova, M.; Stuchly, J.; Winkowska, L.; Musilova, A.; Fiser, K.; Slamova, M.; Starkova, J.; Vaskova, M.; Hrusak, O.; Sramkova, L. Genomic Landscape of Pediatric B-Other Acute Lymphoblastic Leukemia in a Consecutive European Cohort. Haematologica 2019, 104, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Runjic, E.; Kadic, A.J.; Bastian, L.; Lozic, M.; Soda, M.B.; Petrovic, M.; Tudor, K.M.; Kuljis, D.; Armanda, V.; Lozic, B. Clinical and Cytogenetic Characteristics of Children with Leukemia 20-Year Retrospective Study. J. Pediatr. Hematol. Oncol. 2023, 45, e161–e166. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-H.; Wu, G.; Chang, C.-C.; Jou, S.-T.; Lu, M.-Y.; Lin, K.-H.; Chen, S.-H.; Wu, K.-H.; Huang, F.-L.; Cheng, C.-N. Sequential Approach to Improve the Molecular Classification of Childhood Acute Lymphoblastic Leukemia. J. Mol. Diagn. 2022, 24, 1195–1206. [Google Scholar] [CrossRef]
- Mullighan, C.G. The Molecular Genetic Makeup of Acute Lymphoblastic Leukemia. Hematol. Am. Soc. Hematol. Educ. Program 2012, 2012, 389–396. [Google Scholar] [CrossRef]
- Waanders, E.; Gu, Z.; Dobson, S.M.; Antić, Ž.; Crawford, J.C.; Ma, X.; Edmonson, M.N.; Payne-Turner, D.; van de Vorst, M.; Jongmans, M.C.J. Mutational Landscape and Patterns of Clonal Evolution in Relapsed Pediatric Acute Lymphoblastic Leukemia. Blood Cancer Discov. 2020, 1, 96–111. [Google Scholar] [CrossRef]
- Pan, L.; Chen, Y.; Weng, K.; Guo, B.; Zhuang, S.; Huang, S.; Lian, Z.; Wang, X.; Li, N.; Zheng, Y. Prognostic Significance and Treatment Strategies for IKZF1 Deletion in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. BMC Cancer 2024, 24, 1070. [Google Scholar] [CrossRef]
- Stanulla, M.; Dagdan, E.; Zaliova, M.; Möricke, A.; Palmi, C.; Cazzaniga, G.; Eckert, C.; Te Kronnie, G.; Bourquin, J.-P.; Bornhauser, B. IKZF1 plus Defines a New Minimal Residual Disease–Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2018, 36, 1240–1249. [Google Scholar] [CrossRef]
- Lühmann, J.L.; Zimmermann, M.; Hofmann, W.; Bergmann, A.K.; Möricke, A.; Cario, G.; Schrappe, M.; Schlegelberger, B.; Stanulla, M.; Steinemann, D. Deciphering the Molecular Complexity of the IKZF1plus Genomic Profile Using Optical Genome Mapping. Haematologica 2023, 109, 1582–1587. [Google Scholar]
- Li, Y.; Schwab, C.; Ryan, S.L.; Papaemmanuil, E.; Robinson, H.M.; Jacobs, P.; Moorman, A.V.; Dyer, S.; Borrow, J.; Griffiths, M. Constitutional and Somatic Rearrangement of Chromosome 21 in Acute Lymphoblastic Leukaemia. Nature 2014, 508, 98–102. [Google Scholar] [CrossRef]
- Harrison, C.J.; Moorman, A.V.; Broadfield, Z.J.; Cheung, K.L.; Harris, R.L.; Reza Jalali, G.; Robinson, H.M.; Barber, K.E.; Richards, S.M.; Mitchell, C.D. Three Distinct Subgroups of Hypodiploidy in Acute Lymphoblastic Leukaemia. Br. J. Haematol. 2004, 125, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Puiggros, A.; Mallo, M.; Díaz-González, Á.; Avetisyan, G.; Cisneros, A.; Collado, R.; García-Hoyos, M.; García-Serra, R.; García-Ruiz, C.; Genescà, E.; et al. Optical Genome Mapping: Technical Basis and Applications in Hematological Malignancies. Rev. Sangre 2024, 42, 77–91. [Google Scholar] [CrossRef]
- Yang, X.; Lee, W.-P.; Ye, K.; Lee, C. One Reference Genome Is Not Enough. Genome Biol. 2019, 20, 104. [Google Scholar] [CrossRef] [PubMed]
Patient ID | Sex | Age | WHO 2022 Diagnosis | Gene Variant by NGS (VAF%) | Karyotype | FISH | SVs/CNVs Detected by OGM (ISCN 2024) |
---|---|---|---|---|---|---|---|
1 | M | 83 | AML myelodysplasia-related | BCOR p.E1030Kfs*25 (82.9%) U2AF1 p.S34F (42.3%) DNMT3A p.R882H (45.5%) TET2 p.E1879Gfs*13 (43.1%) TET2 p.M695Vfs*16 (43.6%) KRAS p.G12A (10.3%) | Normal | Normal | Clinically relevant/recurrent alteration: KMT2A-PTD (ogm[GRCh38] dup(11)(q23.3q23.3)(118,450,866_118,479,068)[0.86]) |
2 | M | 81 | MDS with low blasts | SF3B1 p.K700E (28.7%) EZH2 c.1673-1G>A (26.5%) ZBTB7A )x3p.N532Kfs*8 (19.8%) | 46.XY.add(20)(p1?)[21]/46.XY[15] | Normal | Clinically relevant/recurrent alteration: 7q22 deletion (ogm[GRCh38] 7q22.1(100,242,336_102,318,833)x1[0.28],9p24.3p12(14,566_39,703,663 [0.53],20p13p11.1(70,156_26,271,555)x1[0.47]) |
3 | M | 25 | AML with CBFB::MYH11 fusion | NRAS p.Q61R (45%) | 46,XY,del(16)(q22)[19]/46,XY[1] | del16q22.1 (CBFB) | Clinically relevant/recurrent alteration: MYH11::CBFB fusión ogm[GRCh38](16:16)(p13.11;q22.1)(15,709,259;67,079,181) (MYH11::CBFB)[VAF0.44],16q22.1(67,071,398_68,041,480)x1[0.68] |
4 | F | 5 | AML with NUP98 rearrangement | WT1 p.S381Lfs*71 (42.8%) FLT3 p.G613_L656ins14 (8.6%) FLT3 p.Y597_E598ins98 (4.8%) FLT3 p.D835H (11.6%) KRAS p.G12V (9.9%) | Normal | Normal | Clinically relevant/recurrent alteration: NUP98::NSD1 fusion (ogm[GRCh38]t(5;11)(q35.3;p15.4)(177,215,724;3,743,680)(NUP98::NSD1)[VAF0.34]) |
5 | F | 80 | MDS with low blasts | TP53 p.Y234C (3.4%) | Normal | 5q31 deletion (EGR1) monosomy 7 | Chromoanagenesis involving interchromosomal translocations among chromosomes 4, 7, 12, and 21, accompanied by monosomy 7, deletion of 5q, and TP53 deletion. (ogm[GRCh38] 4p16.3q27(1,848,033_121,936,972)x1[0.26], t(4;7)(q12;q21.11)(52,586,829;82,653,107)[0.14],t(4;21)(q12;q11.2) (58,287,437;14,614,511)[0.11],t(4;7)(q27;p14.1)(121,923,635;37,112,066)[0.12], 5q21.3q34(106,610,421_161,853,587)x1[0.24],(7)x1[0.25],t(7;12)(p14.2;q24.33) (36,347,679;130,801,616)[0.15],t(7;10)(q22.1;q24.1)(102,171,679;97,476,480)[0.1], t(7;21)(q34;q21.1)(141,134,229;15,771,635)[0.15],t(12;21)(q23.3;q21.1) (104,794,507;15,528,087)[0.16],12q23.3q24.33(104,987,455_130,581,372)x1[0.24], 17p13.1(7,642,059_8,781,416)x1[0.19]) |
6 | M | 12 | Early T-ALL | KRAS p.G12V (39.4%) NOTCH1 p.Q1584Pfs*33 (14.4%) NOTCH1 p.R1586Afs*24 (14.5%) NOTCH1 p.F1592S (10.6%) | Normal | Normal | Clinically relevant/recurrent alteration: CDKN2A/B deletion, TAL1::TRD fusion (ogm[GRCh37] t(1;14)(p33;q11.2)(47,693,608;22,897,900)[0.58], 9p21.3p13.1(21,763,632_38,783,625)x1[0.9],t(9;16)(p21.3;q23.1) (21,763,632;75,644,791)[0.73],9p24.3p23(14,566_ 12,148,131)x1[0.9], 9q21.11q34.3(70,321,158_138,832,483)x3[0.8],16q21q24.2 (65,347,021_88,205,172)x3[0.9],t(16;17)(q21;q25.3)(65,359,297;81,194,161)[0.58]) |
7 | M | 6 | B-ALL with high hyperdiploidy | PTPN11 p.A72T (4.6%) | No dividing cells | Normal | Clinically relevant/recurrent alterations: IKZF1 deletion, hyperdiploidy (ogm[GRCh38] (X)x2[0.7],1q21.1q44(144,201,874_ 248,943,333)x3[0.7], (4-6)x3[0.7],7p22.3p11.2(2,496,413_58,027,799)x1[0.74], 7q11.1q36.3(61,875,656_ 158,250,255)x3[0.78],(8)x3[0.7], 9p24.3p12(14,566_39,918,350)x3)[0.8],(10)x4[0.4],(11,14,17)x[0.7],(18,21)x4[0.4]) |
8 | M | 1 | B-ALL with other defined genetic abnormalities | SH2B3 p.R195Qfs*57 (37.9%) PAX5 p.T75R (35.1%) | 46,XY,del(9)(p21),+10,−20[4]/46,XY[36] | Normal | Clinically relevant/recurrent alteration: CDKN2A/B deletion (ogm[GRCh38]9p24.3p13.1(14566_38,885,219)x1[0.88],(10)x3[0.4], 20q11.21q13.33(32,666,049_61,861,320)x1[0.9]) |
9 | M | 9 | ALL with iAMP21 | SH2B3 p.D231Gfs*39 (92.9%) PTPN11 p.A27T (45.3%) | Normal | 21q22 amplification (RUNX1) | Clinically relevant/recurrent alterations: iAMP21, deletions of CDKN2A/2B, ETV6, and ERG. ogm[GRCh38] 8p23.3p12(61,805_33,511,396)x1, 9p24.3p13.2(14,566_36,586,614)x1[0.1],9q21.11q34.2(67,387,240_133,526,602)x3[0.4], 12p13.2p13.1(11,654,206_14,580,564)x1[0.9],21q21.1q22.3(20,026,617_42,737,810) amp[0.5],21q22.2(38,410,326_38,585,696)x1[0.15]) |
10 | F | 6 | Li-Fraumeni syndrome/ B-ALL with high hyperdiploidy | FLT3 p.D835H (13.1%) KRAS p.G13D (14.2%) KRAS p.G12D (9.3%) KRAS p.Q61H (5.1%) Germline TP53 p.T125M (48%) | 56.XX.+X.+4.+6.+8.+10.+12.+17.+18.+19. +21[4]/46.XX[46] | Normal | Clinically relevant/recurrent alterations: Hyperdiploidy, CDKN2A/2B deletion ogm[GRCh38] (X)x3[0.9],(4)x3[0.8],(6,8)x3[0.9], 9p21.3(21,960,511_22,019,278)x1[0.82],(10,14,17,18)x3[0.9],(21)x4[0.9] |
Diagnosis | Women (%) | Men (%) | Age; Median Years (Range) |
---|---|---|---|
SMD | 20 (37) | 34 (63) | 65.1 (15–90) |
AML | 21 (49) | 22 (51) | 62.9(13–91) |
Pediatric B-cell ALL | 2 (33.3) | 4 (66.6) | 5.2 (1–9) |
Adult B-cell ALL | 2 (40) | 3 (60) | 35.6 (15–68) |
T-cell ALL | 0 | 2 (100) | 18 (12–24) |
APL | 2 (50) | 2 (50) | 45.5 (13–67) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballesta-Alcaraz, L.; Bernal, M.; Vilchez, J.R.; Palacios, J.A.; Jiménez, P.; Garrido, P.; Gutiérrez-Bautista, J.F.; Ruiz-Cabello, F. Application of Optical Genome Mapping for the Diagnosis and Risk Stratification of Myeloid and Lymphoid Malignancies. Int. J. Mol. Sci. 2025, 26, 5763. https://doi.org/10.3390/ijms26125763
Ballesta-Alcaraz L, Bernal M, Vilchez JR, Palacios JA, Jiménez P, Garrido P, Gutiérrez-Bautista JF, Ruiz-Cabello F. Application of Optical Genome Mapping for the Diagnosis and Risk Stratification of Myeloid and Lymphoid Malignancies. International Journal of Molecular Sciences. 2025; 26(12):5763. https://doi.org/10.3390/ijms26125763
Chicago/Turabian StyleBallesta-Alcaraz, Lucía, Mónica Bernal, Jose Ramón Vilchez, Jorge Antonio Palacios, Pilar Jiménez, Pilar Garrido, Juan Francisco Gutiérrez-Bautista, and Francisco Ruiz-Cabello. 2025. "Application of Optical Genome Mapping for the Diagnosis and Risk Stratification of Myeloid and Lymphoid Malignancies" International Journal of Molecular Sciences 26, no. 12: 5763. https://doi.org/10.3390/ijms26125763
APA StyleBallesta-Alcaraz, L., Bernal, M., Vilchez, J. R., Palacios, J. A., Jiménez, P., Garrido, P., Gutiérrez-Bautista, J. F., & Ruiz-Cabello, F. (2025). Application of Optical Genome Mapping for the Diagnosis and Risk Stratification of Myeloid and Lymphoid Malignancies. International Journal of Molecular Sciences, 26(12), 5763. https://doi.org/10.3390/ijms26125763