Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,191)

Search Parameters:
Keywords = muscle strength training

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1483 KiB  
Systematic Review
Effectiveness of Virtual Reality-Based Training Versus Conventional Exercise Programs on Fall-Related Functional Outcomes in Older Adults with Various Health Conditions: A Systematic Review
by Krzysztof Kasicki, Ewa Klimek Piskorz, Łukasz Rydzik, Tadeusz Ambroży, Piotr Ceranowicz, Maria Belcarz Ciuraj, Paweł Król and Wiesław Błach
J. Clin. Med. 2025, 14(15), 5550; https://doi.org/10.3390/jcm14155550 - 6 Aug 2025
Abstract
Background/Objectives: The aim of this systematic review was to compare the effectiveness of virtual reality (VR)-based training with conventional exercise programs in improving functional outcomes related to fall risk among older adults with various health conditions. Methods: The review was conducted in accordance [...] Read more.
Background/Objectives: The aim of this systematic review was to compare the effectiveness of virtual reality (VR)-based training with conventional exercise programs in improving functional outcomes related to fall risk among older adults with various health conditions. Methods: The review was conducted in accordance with the PRISMA 2020 guidelines and registered in PROSPERO (registration number CRD42022345678). The databases Scopus, PubMed, Web of Science, and EBSCO were searched up to 31 March 2025. Randomized controlled trials (RCTs) were included if they involved participants aged ≥60 years, a VR intervention lasting ≥6 weeks, and a control group performing traditional exercises or receiving usual care. Methodological quality was assessed using the PEDro scale, and a narrative synthesis was performed across four outcome domains: balance, mobility, cognitive function, and fall risk. Results: Seven RCTs were included in the analysis (totaling 664 participants). VR training was found to be at least as effective as conventional exercise in improving balance (e.g., Berg Balance Scale) and mobility (e.g., Timed Up and Go), with some studies showing superior effects of VR. One RCT demonstrated that combining VR with balance exercises (MIX) yielded the greatest improvements in muscle strength and physical performance. Additionally, two studies reported cognitive benefits (e.g., MoCA) and a 42% reduction in fall incidence within six months following VR intervention. The methodological quality of the included studies was moderate to high (PEDro score 5–9/10). Conclusions: VR-based training represents a safe and engaging supplement to geriatric rehabilitation, effectively improving balance, mobility, and, in selected cases, cognitive function, while also reducing fall risk. Full article
(This article belongs to the Section Geriatric Medicine)
Show Figures

Figure 1

18 pages, 1351 KiB  
Review
Functional and Neuroplastic Effects of Cross-Education in Anterior Cruciate Ligament Rehabilitation: A Scoping Review with Bibliometric Analysis
by Jorge M. Vélez-Gutiérrez, Andrés Rojas-Jaramillo, Juan D. Ascuntar-Viteri, Juan D. Quintero, Francisco García-Muro San José, Bruno Bazuelo-Ruiz, Roberto Cannataro and Diego A. Bonilla
Appl. Sci. 2025, 15(15), 8641; https://doi.org/10.3390/app15158641 - 4 Aug 2025
Viewed by 165
Abstract
Anterior cruciate ligament reconstruction (ACLR) results in prolonged muscle weakness, impaired neuromuscular control, and delayed return to sport. Cross-education (CE), unilateral training of the uninjured limb, has been proposed as an adjunct therapy to promote bilateral adaptations. This scoping review evaluated the functional [...] Read more.
Anterior cruciate ligament reconstruction (ACLR) results in prolonged muscle weakness, impaired neuromuscular control, and delayed return to sport. Cross-education (CE), unilateral training of the uninjured limb, has been proposed as an adjunct therapy to promote bilateral adaptations. This scoping review evaluated the functional and neuroplastic effects of CE rehabilitation post-ACLR. Following PRISMA-ScR and JBI guidelines, PubMed, Scopus, Web of Science, and PEDro were searched up to February 2025. A bibliometric analysis was also conducted to report keyword co-occurrence and identify trends in this line of research. Of 333 screened references, 14 studies (price index: 43% and low-to-moderate risk of bias) involving 721 participants (aged 17–45 years) met inclusion criteria. CE protocols (6–12 weeks; 2–5 sessions/week) incorporating isometric, concentric, and eccentric exercises demonstrated strength gains (10–31%) and strength preservation, alongside improved limb symmetry (5–14%) and dynamic balance (7–18%). There is growing interest in neuroplasticity and corticospinal excitability, although neuroplastic changes were assessed heterogeneously across studies. Findings support CE as a feasible and low-cost strategy to complement early-stage ACLR rehabilitation, especially when direct loading of the affected limb is limited. Standardized protocols for clinical intervention and neurophysiological assessment are needed. Full article
(This article belongs to the Special Issue Novel Approaches of Physical Therapy-Based Rehabilitation)
Show Figures

Figure 1

23 pages, 1799 KiB  
Systematic Review
Physical Training Protocols for Improving Dyspnea and Fatigue in Long COVID: A Systematic Review with Meta-Analysis
by Lisa Fernanda Mazzonetto, Jéssica Fernanda Correa Cordeiro, Igor Massari Correia, Alcivandro de Sousa Oliveira, Chimenny Moraes, Joana Brilhadori, Eurípedes Barsanulfo Gonçalves Gomide, Michal Kudlacek, Dalmo Roberto Lopes Machado, Jeferson Roberto Collevatti dos Anjos and André Pereira dos Santos
Healthcare 2025, 13(15), 1897; https://doi.org/10.3390/healthcare13151897 - 4 Aug 2025
Viewed by 103
Abstract
Objective: This study aimed to evaluate physical training protocols for alleviating long COVID symptoms, especially dyspnea and fatigue, through a systematic review with meta-analysis. Method: Data were collected from EMBASE, LILACS, PubMed, Scopus, CINAHL, Web of Science, and grey literature (Google Scholar, medRxiv). [...] Read more.
Objective: This study aimed to evaluate physical training protocols for alleviating long COVID symptoms, especially dyspnea and fatigue, through a systematic review with meta-analysis. Method: Data were collected from EMBASE, LILACS, PubMed, Scopus, CINAHL, Web of Science, and grey literature (Google Scholar, medRxiv). Studies evaluating dyspnea and/or fatigue before and after physical rehabilitation, using validated questionnaires, were included. Studies lacking pre- and post-assessments or physical training were excluded. Two reviewers independently extracted data on intervention type, duration, frequency, intensity, and assessment methods for dyspnea and fatigue. Bias risk was evaluated using the Cochrane tool. Results: Combined methods, such as respiratory muscle training with strength and aerobic exercise, were common for long COVID symptoms. Aerobic exercise notably improved dyspnea and/or fatigue. Among 25 studies, four had a low risk of bias. Meta-analysis of two studies found no significant reduction in fatigue. Conclusion: Combined training methods, particularly aerobic exercise, alleviate dyspnea and fatigue in long COVID. More high-quality studies are needed to confirm these findings. Full article
Show Figures

Figure 1

18 pages, 1467 KiB  
Article
Effects of a 16-Week Green Exercise Program on Body Composition, Sleep, and Nature Connection in Postmenopausal Women
by Helena Moreira, Chiara Tuccella, Emília Alves, Andreia Teixeira, Carlos Moreira, Irene Oliveira, Valerio Bonavolontà and Catarina Abrantes
Int. J. Environ. Res. Public Health 2025, 22(8), 1216; https://doi.org/10.3390/ijerph22081216 - 1 Aug 2025
Viewed by 263
Abstract
Physical activity, particularly when practiced in natural settings, has well-established benefits for overall health, sleep, and body composition. These effects are especially important for postmenopausal women, although research specifically targeting this population remains limited. The study evaluated a 16-week multicomponent outdoor exercise program [...] Read more.
Physical activity, particularly when practiced in natural settings, has well-established benefits for overall health, sleep, and body composition. These effects are especially important for postmenopausal women, although research specifically targeting this population remains limited. The study evaluated a 16-week multicomponent outdoor exercise program (cardiorespiratory, strength, balance, coordination, and flexibility training) in postmenopausal women, consisting of three 60 min sessions per week. Participants were non-randomly assigned to an experimental group (EG, n = 55) and a control group (CG, n = 20). Measurements were taken at baseline and after 16 weeks, including body composition, sleep (duration and quality), and connection with nature. No significant differences were observed between groups at baseline. After the intervention, the EG and CG presented significant differences (p ≤ 0.01) in the rates of change in body mass, fat mass (FM; −9.26% and −1.21%, respectively), and visceral fat level (VFL; −13.46 points and −3.80 points). These differences were also observed for the sleep fragmentation index (p ≤ 0.01), but not for connection with nature. A significant interaction effect (p < 0.01) of time × group was observed for %FM, VFL, and appendicular skeletal muscle mass. Exercise duration had an effect (p = 0.043) on participants’ personal and affective identification with nature, and the time × group × medication interaction significantly influenced sleep efficiency (p = 0.034). The exercise program proved effective in reducing total and central adiposity levels; however, it did not lead to improvements in sleep duration, sleep quality, or connection with nature. Full article
Show Figures

Figure 1

21 pages, 1118 KiB  
Review
Vitamin D and Sarcopenia: Implications for Muscle Health
by Héctor Fuentes-Barría, Raúl Aguilera-Eguía, Lissé Angarita-Davila, Diana Rojas-Gómez, Miguel Alarcón-Rivera, Olga López-Soto, Juan Maureira-Sánchez, Valmore Bermúdez, Diego Rivera-Porras and Julio Cesar Contreras-Velázquez
Biomedicines 2025, 13(8), 1863; https://doi.org/10.3390/biomedicines13081863 - 31 Jul 2025
Viewed by 382
Abstract
Sarcopenia is a progressive age-related musculoskeletal disorder characterized by loss of muscle mass, strength, and physical performance, contributing to functional decline and increased risk of disability. Emerging evidence suggests that vitamin D (Vit D) plays a pivotal role in skeletal muscle physiology beyond [...] Read more.
Sarcopenia is a progressive age-related musculoskeletal disorder characterized by loss of muscle mass, strength, and physical performance, contributing to functional decline and increased risk of disability. Emerging evidence suggests that vitamin D (Vit D) plays a pivotal role in skeletal muscle physiology beyond its classical functions in bone metabolism. This review aims to critically analyze the relationship between serum Vit D levels and sarcopenia in older adults, focusing on pathophysiological mechanisms, diagnostic criteria, clinical evidence, and preventive strategies. An integrative narrative review of observational studies, randomized controlled trials, and meta-analyses published in the last decade was conducted. The analysis incorporated international diagnostic criteria for sarcopenia (EWGSOP2, AWGS, FNIH, IWGS), current guidelines for Vit D sufficiency, and molecular mechanisms related to Vit D receptor (VDR) signaling in muscle tissue. Low serum 25-hydroxyvitamin D levels are consistently associated with decreased muscle strength, reduced physical performance, and increased prevalence of sarcopenia. Although interventional trials using Vit D supplementation report variable results, benefits are more evident in individuals with baseline deficiency and when combined with protein intake and resistance training. Mechanistically, Vit D influences muscle health via genomic and non-genomic pathways, regulating calcium homeostasis, mitochondrial function, oxidative stress, and inflammatory signaling. Vit D deficiency represents a modifiable risk factor for sarcopenia and functional impairment in older adults. While current evidence supports its role in muscular health, future high-quality trials are needed to establish optimal serum thresholds and dosing strategies for prevention and treatment. An individualized, multimodal approach involving supplementation, exercise, and nutritional optimization appears most promising. Full article
(This article belongs to the Special Issue Vitamin D: Latest Scientific Discoveries in Health and Disease)
Show Figures

Figure 1

12 pages, 1143 KiB  
Review
Current Narrative Review—Application of Blood Flow Restriction Exercise in Clinical Knee Problems
by Saehim Kwon, Ki-Cheor Bae, Chang-Jin Yon and Du-Han Kim
Medicina 2025, 61(8), 1377; https://doi.org/10.3390/medicina61081377 - 30 Jul 2025
Viewed by 333
Abstract
Quadricep weakness is frequently observed in patients following anterior cruciate ligament (ACL) injury or in those with knee osteoarthritis, often contributing to functional impairments and persistent symptoms. While high-intensity resistance training has been shown to effectively improve muscle strength, its application may be [...] Read more.
Quadricep weakness is frequently observed in patients following anterior cruciate ligament (ACL) injury or in those with knee osteoarthritis, often contributing to functional impairments and persistent symptoms. While high-intensity resistance training has been shown to effectively improve muscle strength, its application may be limited in certain populations due to pain or the risk of surgical complications. In recent years, blood flow restriction (BFR) training has emerged as a promising alternative. Growing evidence indicates that low-load BFR exercise can significantly improve muscle strength, induce hypertrophy, and enhance knee function, with outcomes comparable to those of high-intensity resistance training. When implemented using appropriate protocols, BFR training appears to be a safe and efficacious rehabilitation strategy for individuals with knee pathology. Full article
(This article belongs to the Special Issue Cutting-Edge Concepts in Knee Surgery)
Show Figures

Figure 1

13 pages, 582 KiB  
Article
Strength Training and Posture Correction of the Neck and Shoulder for Patients with Chronic Primary Headache: A Prospective Single-Arm Pilot Study
by Jordi Padrós-Augé, Henrik Winther Schytz, Karen Søgaard, Rafel Donat-Roca, Gemma Victoria Espí-López and Bjarne Kjeldgaard Madsen
J. Clin. Med. 2025, 14(15), 5359; https://doi.org/10.3390/jcm14155359 - 29 Jul 2025
Viewed by 576
Abstract
Background: Few studies have examined exercise-based treatments for migraine and tension-type headache (TTH), and even fewer have focused on strength training and chronic headache, as these present greater challenges. Objectives: This study aimed to evaluate the effectiveness of a group-based neck and [...] Read more.
Background: Few studies have examined exercise-based treatments for migraine and tension-type headache (TTH), and even fewer have focused on strength training and chronic headache, as these present greater challenges. Objectives: This study aimed to evaluate the effectiveness of a group-based neck and shoulder strength training intervention combined with postural correction for patients with chronic headache. Methods: This prospective, single-arm, uncontrolled pilot study with a pre–post design included patients with chronic migraine (n = 10) and TTH (n = 12) who participated in an 8-week group-based program consisting of neck and shoulder strength training three times per week, along with instructions for postural correction. The primary outcome was change in headache frequency. Secondary outcomes included changes in the intensity and duration of headache, number of days of analgesic use, and functionality. Results: In total, 22 patients completed the intervention and were included in the analysis. Headache frequency decreased at follow-up for the overall group (r = 0.531; p = 0.014). In-depth analysis showed that 45% of participants experienced an average reduction of 38% in headache frequency. Additionally, large to moderate effect sizes were observed for the secondary outcomes. Conclusions: This is the first study to introduce a group-based exercise program targeting the neck and shoulder muscles, combined with postural correction and standard pharmacological treatment, for patients with chronic primary headache. It was found to be a safe, well-tolerated, useful, and promising intervention for improving headache frequency, duration, and functionality. Full article
(This article belongs to the Special Issue Headache: Updates on the Assessment, Diagnosis and Treatment)
Show Figures

Graphical abstract

17 pages, 2003 KiB  
Article
Effect of Caffeinated Chewing Gum on Maximal Strength, Muscular Power, and Muscle Recruitment During Bench Press and Back Squat Exercises
by Li Ding, Jue Liu, Yixuan Ma, Tze-Huan Lei, Mathew Barnes, Li Guo, Bin Chen, Yinhang Cao and Olivier Girard
Nutrients 2025, 17(15), 2455; https://doi.org/10.3390/nu17152455 - 28 Jul 2025
Viewed by 504
Abstract
Background/Objectives: This study aims to investigate the effects of caffeinated chewing gum on maximal strength, muscular power, and neural drive to the prime movers during bench press and back squat in resistance-trained men. Methods: Sixteen resistance-trained males participated in a double-blind, [...] Read more.
Background/Objectives: This study aims to investigate the effects of caffeinated chewing gum on maximal strength, muscular power, and neural drive to the prime movers during bench press and back squat in resistance-trained men. Methods: Sixteen resistance-trained males participated in a double-blind, randomized trial, chewing either caffeinated gum (4 mg/kg) or placebo gum on two separate occasions, seven days apart. After chewing for 5 min, participants performed a maximal strength test followed by muscular power assessments at 25%, 50%, 75%, and 90% of their one-repetition maximum (1RM), completing with 3, 2, 1, and 1 repetition (s), respectively, for bench press and back squat. Surface electromyography data were recorded for each repetition. Results: Caffeinated gum did not significantly improve one-repetition maximum (1RM) for bench press (p > 0.05), but increased mean frequency (MF) and median frequency (MDF) in anterior deltoid, pectoralis major, and biceps brachii (all p < 0.05) compared to placebo. For back squat, 1RM increased with caffeinated gum, along with higher MF and MDF in vastus medialis (all p < 0.05). Caffeinated gum also improved mean and peak velocities, and mean and peak power outputs at 25–75% 1RM during the bench press (all p < 0.05), along with elevated MDF in pectoralis major and biceps brachii (all p < 0.05). Similar improvements were seen in mean and peak velocities during the back squat at 25–90% 1RM (all p < 0.05), along with higher MF and MDF in vastus medialis and increased normalized root mean square activity in gluteus maximus (all p < 0.05). Conclusions: Caffeinated chewing gum (4 mg/kg) enhanced muscular power (25–75% 1RM) in the bench press and improved maximal strength and muscular power (25–90% 1RM) in the back squat by increasing muscle recruitment in resistance-trained men. Full article
(This article belongs to the Special Issue Energy Drink Effectiveness on Human Health and Exercise Performance)
Show Figures

Figure 1

14 pages, 1543 KiB  
Article
Inspiratory Muscle Training Improves Respiratory Muscle Strength and Cardiovascular Autonomic Regulation in Obese Young Men
by Zhe Ren, Zeyu Zhou, Jikai Yang, Dongyue Wei and Hao Wu
Life 2025, 15(8), 1191; https://doi.org/10.3390/life15081191 - 27 Jul 2025
Viewed by 480
Abstract
Objective: To investigate the effect of an 8-week inspiratory muscle training (IMT) intervention on respiratory muscle strength and cardiovascular autonomic regulation in obese young men. Methods: The study included 36 obese young men who met the inclusion and exclusion criteria. Participants were randomly [...] Read more.
Objective: To investigate the effect of an 8-week inspiratory muscle training (IMT) intervention on respiratory muscle strength and cardiovascular autonomic regulation in obese young men. Methods: The study included 36 obese young men who met the inclusion and exclusion criteria. Participants were randomly divided into two groups: the IG (inspiratory muscle training group, n = 17), which underwent high-intensity IMT intervention for 8 weeks, 5 times a week, and the CG (control group, n = 18), which was not given any additional intervention. Assessed parameters included maximum inspiratory pressure (MIP), maximum expiratory pressure (MEP), systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR), as well as heart rate variability metrics such as the standard deviation of normal-to-normal intervals (SDNN), root mean square of successive differences (RMSSD), standard deviation of successive differences (SDSD), low-frequency power component (LF), high-frequency power component (HF), and LF/HF ratio. These measurements were taken both at baseline and following the completion of the 8-week intervention period. Results: After 8 weeks of IMT, the MIP and MEP of the IG increased by 31.8% and 26.5%, respectively (p < 0.01). In addition, SBP, DBP, and HR decreased by 2.2%, 3.2%, and 2.1%, respectively (p < 0.01). In the HRV time domain, SDNN and RMSSD increased by 54.1% and 33.5%, respectively (p < 0.01), and there was no significant improvement in SDSD (p > 0.05); in the HRV frequency domain, LF decreased by 40.5%, HF increased by 59.4% (p < 0.01), and the LF/HF ratio decreased by 58.2% (p < 0.05). Conclusion: An 8-week 80%MIP IMT intervention significantly improves respiratory muscle strength and cardiovascular autonomic regulation in obese young men, suggesting that IMT is a promising non-pharmacological strategy for mitigating obesity-related cardiovascular risk. Full article
Show Figures

Figure 1

14 pages, 960 KiB  
Article
Backward Chaining Method for Teaching Long-Term Care Residents to Stand Up from the Floor: A Pilot Randomized Controlled Trial
by Anna Zsófia Kubik, Zsigmond Gyombolai, András Simon and Éva Kovács
J. Clin. Med. 2025, 14(15), 5293; https://doi.org/10.3390/jcm14155293 - 26 Jul 2025
Viewed by 394
Abstract
Objectives: Older adults who worry about not being able to stand up from the floor after a fall, reduce their physical activity, which leads to a higher risk of falling. The Backward Chaining Method (BCM) was developed specifically for this population to [...] Read more.
Objectives: Older adults who worry about not being able to stand up from the floor after a fall, reduce their physical activity, which leads to a higher risk of falling. The Backward Chaining Method (BCM) was developed specifically for this population to safely teach and practice the movement sequence required to stand up from the floor. Our aim is to evaluate the effectiveness of using the BCM to teach older adults how to stand up from the floor, and to determine whether this training has an impact on functional mobility, muscle strength, fear of falling, and life-space mobility. Methods: A total of 26 residents of a long-term care facility were randomly allocated to two groups. Residents in the intervention group (IG, n = 13) participated in a seven-week training program to learn how to stand up from the floor with BCM, in addition to the usual care generally offered in long-term care facilities. The participants in the control group (CG, n = 13) received the usual care alone. The primary outcome measure was functional mobility, assessed by the Timed Up and Go test. Secondary outcome measures included functional lower limb strength, grip strength, fear of falling, and life-space mobility. The outcomes were measured at baseline and after the seven-week intervention period. Results: We found no significant between-group differences in functional mobility, lower limb strength and grip strength; however, IG subjects demonstrated significantly lower fear of falling scores, and significantly higher life-space mobility and independent life-space mobility scores compared to CG subjects after the training program. Conclusions: This study demonstrates that the Backward Chaining Method is a feasible, well-tolerated intervention in a long-term care setting and it may have meaningful benefits, particularly in lessening fear of falling and improving life-space mobility and independent life-space mobility when incorporated into the usual physiotherapy interventions. Full article
(This article belongs to the Section Geriatric Medicine)
Show Figures

Figure 1

10 pages, 409 KiB  
Article
Electromyographic Analysis of Lower Limb Muscles During Multi-Joint Eccentric Isokinetic Exercise Using the Eccentron Dynamometer
by Brennan J. Thompson, Merrill Ward, Brayden Worley and Talin Louder
Appl. Sci. 2025, 15(15), 8280; https://doi.org/10.3390/app15158280 - 25 Jul 2025
Viewed by 235
Abstract
Eccentric muscle actions are integral to human movement, rehabilitation, and performance training due to their characteristic high force output (overload) and low energy cost and perceived exertion. Despite the growing use of eccentric devices, a gap in the research exists exploring multi-muscle activation [...] Read more.
Eccentric muscle actions are integral to human movement, rehabilitation, and performance training due to their characteristic high force output (overload) and low energy cost and perceived exertion. Despite the growing use of eccentric devices, a gap in the research exists exploring multi-muscle activation profiles during multi-joint eccentric-only, isokinetic exercise. This study aimed to quantify and compare surface electromyographic (EMG) activity of four leg muscles—vastus lateralis (VL), tibialis anterior (TA), biceps femoris (BF), and medial gastrocnemius (GM)—during a standardized (isokinetic) submaximal eccentric multi-joint exercise using the Eccentron dynamometer. Eighteen healthy adults performed eccentric exercise at 40% of their maximal eccentric strength. Surface EMG data were analyzed using root mean square (RMS) and integrated EMG (iEMG) variables. Repeated-measures ANOVAs and effect sizes (ES) were used to evaluate within-subject differences across muscles. Results showed significantly greater activation in the VL compared to all other muscles (p < 0.05; and ES of 1.28–3.17 versus all other muscles), with the TA also demonstrating higher activation than the BF (p < 0.05). The BF exhibited the lowest activation, suggesting limited hamstring engagement. These findings highlight the effectiveness of the multi-joint isokinetic eccentric leg press movement (via an Eccentron machine) in targeting the quadriceps and dorsiflexors, while indicating the possible need for supplementary hamstring and plantar flexor exercises when aiming for a comprehensive lower body training routine. This study provides important insights for optimizing eccentric training protocols and rehabilitation strategies. Full article
Show Figures

Figure 1

9 pages, 284 KiB  
Article
Can Conditioning Activity with Blood Flow Restriction Impact Neuromuscular Performance and Perceptual Responses to Exercise?
by Robson Conceição Silva, Leandro Lima Sousa, Hugo de Luca Correa, Thailson Fernandes Silva, Lucas de Souza Martins, Pedro Felix, Martim Bottaro, Denis César Leite Vieira and Carlos Ernesto
Sports 2025, 13(8), 243; https://doi.org/10.3390/sports13080243 - 24 Jul 2025
Viewed by 265
Abstract
Low-load conditioning activity with blood flow restriction has been addressed as an efficient method to enhance an individual’s performance during their main exercise activity. However, the optimal degree of blood flow restriction remains unclear. Therefore, this study investigated the acute effects of low-load [...] Read more.
Low-load conditioning activity with blood flow restriction has been addressed as an efficient method to enhance an individual’s performance during their main exercise activity. However, the optimal degree of blood flow restriction remains unclear. Therefore, this study investigated the acute effects of low-load conditioning activity with different degrees of blood flow restriction on muscle strength, power, and perceived exertion. Twenty recreationally trained men (20.9 ± 2.3 years) participated in a randomized crossover design including three conditions: control, low-load blood flow restriction at 50%, and 75% of total arterial occlusion pressure. Participants performed squats (three sets of ten reps) followed by isokinetic assessments of the knee flexor and extensor performance at 7 and 10-min post-exercise. The session rating of perceived exertion (SRPE) was recorded 30 min after each session. No significant effects were observed for condition, time, or their interaction on peak torque, total work, or average power (p < 0.05). However, SRPE was significantly higher in the 75% BFR condition compared to both the 50% BFR and control conditions (p < 0.05), with no difference between the 50% BFR and control. These findings suggest that low-load conditioning activity with blood flow restriction does not acutely enhance neuromuscular performance. However, a higher degree of restriction increases perceived exertion. Full article
(This article belongs to the Special Issue Neuromechanical Adaptations to Exercise and Sports Training)
Show Figures

Figure 1

12 pages, 262 KiB  
Article
Sex Differences in Bench Press Strength and Power: A Velocity-Based Analysis Adjusted for Body Composition
by Olga López-Torres, Raúl Nieto-Acevedo, Amelia Guadalupe-Grau and Valentín Emilio Fernández Elías
J. Funct. Morphol. Kinesiol. 2025, 10(3), 284; https://doi.org/10.3390/jfmk10030284 - 24 Jul 2025
Viewed by 794
Abstract
Background: Resistance training (RT) promotes muscle hypertrophy and strength gains in both men and women. However, sex differences in neuromuscular performance, muscle fiber composition, and the hormonal environment influence strength and power adaptations. While men generally exhibit greater absolute and relative strength, it [...] Read more.
Background: Resistance training (RT) promotes muscle hypertrophy and strength gains in both men and women. However, sex differences in neuromuscular performance, muscle fiber composition, and the hormonal environment influence strength and power adaptations. While men generally exhibit greater absolute and relative strength, it remains unclear to what extent these differences persist across various load intensities. A better understanding of sex-specific strength and power profiles may help optimize training strategies. The aim of this study was to compare strength and power performance during the bench press exercise in physically active males and females, relative to body mass and fat-free mass (FFM). Methods: Twenty-nine physically active individuals (16 men: 21.3 ± 4.1 years, 13 women: 22.6 ± 4.9 years) performed a one-repetition maximum (1RM) test and an incremental velocity-based assessment at 45%, 55%, 65%, 75%, and 85% of the 1RM using a Smith machine. The barbell velocity was measured via a linear transducer, with the mean propulsive velocity (MPV) recorded for each load. Power-related variables (e.g., peak force [F0], maximal velocity [V0], and maximal power [Pmax]) were analyzed. To account for differences in body composition, data were adjusted for body mass and FFM. Results: Men exhibited significantly greater strength and power than women across most loads when adjusted for both body mass and fat-free mass (FFM) (p < 0.05). These differences were particularly pronounced when normalized to FFM (45–75%1RM; p = 0.001–0.031), with large effect sizes observed (ηp2 = 0.185–0.383). Notably, sex differences in mean propulsive velocity (MPV) disappeared at 85%1RM (p = 0.208; ηp2 = 0.06), suggesting that maximal neuromuscular recruitment may minimize sex-related disparities at higher intensities. Furthermore, men demonstrated significantly higher values in six of the seven power-related variables, with no significant differences in the %1RM required to achieve an optimal power output. Conclusions: These findings confirm that men exhibit greater strength and power than women, even after adjusting for body composition. However, at high relative loads (≥85%1RM), sex differences in movement velocity appear to diminish, likely due to similar recruitment patterns of high-threshold motor units. These results highlight the importance of sex-specific resistance training programs, particularly in relation to load prescription and the application of velocity-based training methods. Full article
17 pages, 2002 KiB  
Article
Passive Blood-Flow-Restriction Exercise’s Impact on Muscle Atrophy Post-Total Knee Replacement: A Randomized Trial
by Alexander Franz, Luisa Heiß, Marie Schlotmann, Sanghyeon Ji, Andreas Christian Strauss, Thomas Randau and Frank Sebastian Fröschen
J. Clin. Med. 2025, 14(15), 5218; https://doi.org/10.3390/jcm14155218 - 23 Jul 2025
Viewed by 353
Abstract
Background/Objectives: Total knee arthroplasty (TKA) is commonly associated with postoperative muscle atrophy and weakness, while traditional rehabilitation is often limited by pain and patient compliance. Passive blood flow restriction (pBFR) training may offer a safe, low-threshold method to attenuate muscle loss in [...] Read more.
Background/Objectives: Total knee arthroplasty (TKA) is commonly associated with postoperative muscle atrophy and weakness, while traditional rehabilitation is often limited by pain and patient compliance. Passive blood flow restriction (pBFR) training may offer a safe, low-threshold method to attenuate muscle loss in this early phase. This pilot study examined the feasibility, safety, and early effects of pBFR initiated during hospitalization on muscle mass, swelling, and functional recovery after TKA. Methods: In a prospective, single-blinded trial, 26 patients undergoing primary or aseptic revision TKA were randomized to either a control group (CON: sham BFR at 20 mmHg) or intervention group (INT: pBFR at 80% limb occlusion pressure). Both groups received 50 min daily in-hospital rehabilitation sessions for five consecutive days. Outcomes, including lean muscle mass (DXA), thigh/knee circumference, 6 min walk test (6 MWT), handgrip strength, and patient-reported outcomes, were assessed preoperatively and at discharge, six weeks, and three months postoperatively. Linear mixed models with Bonferroni correction were applied. Results: The INT group showed significant preservation of thigh circumference (p = 0.002), reduced knee swelling (p < 0.001), and maintenance of lean muscle mass (p < 0.01), compared with CON, which exhibited significant declines. Functional performance improved faster in INT (e.g., 6 MWT increase at T3: +23.7%, p < 0.001; CON: −7.2%, n.s.). Quality of life improved in both groups, with greater gains in INT (p < 0.05). No adverse events were reported. Conclusions: Initiating pBFR training on the first postoperative day is feasible, safe, and effective in preserving muscle mass and reducing swelling after TKA. These findings extend prior BFR research by demonstrating its applicability in older, surgical populations. Further research is warranted to evaluate its integration with standard rehabilitation programs and long-term functional benefits. Full article
Show Figures

Figure 1

34 pages, 800 KiB  
Review
The Role of miRNAs and Extracellular Vesicles in Adaptation After Resistance Exercise: A Review
by Dávid Csala, Zoltán Ádám and Márta Wilhelm
Curr. Issues Mol. Biol. 2025, 47(8), 583; https://doi.org/10.3390/cimb47080583 - 23 Jul 2025
Viewed by 412
Abstract
Resistance exercise can enhance or preserve muscle mass and/or strength. Modifying factors are secreted following resistance exercise. Biomarkers like cytokines and extracellular vesicles, especially small extracellular vesicles, are released into the circulation and play an important role in cell-to-cell and inter-tissue communications. There [...] Read more.
Resistance exercise can enhance or preserve muscle mass and/or strength. Modifying factors are secreted following resistance exercise. Biomarkers like cytokines and extracellular vesicles, especially small extracellular vesicles, are released into the circulation and play an important role in cell-to-cell and inter-tissue communications. There is increasing evidence that physical activity itself promotes the release of extracellular vesicles into the bloodstream, suggesting the importance of vesicles in mediating systemic adaptations following exercise. Extracellular vesicles contain proteins, nucleic acids like miRNAs, and other molecules targeting different cell types and tissues of distant organs. Therefore, extracellular vesicles and encapsulated miRNAs are fine tuners of protein synthesis and are important in the adaptation after resistance training. However, there is a lack of strong data supporting the precise mechanisms of these processes. In this literature review, we collected publications related to miRNA and extracellular vesicle profile changes induced by resistance exercise. To the best of our knowledge, the changes in human extracellular vesicle and microRNA profiles following resistance exercise have not been reviewed yet. We aimed to assess the shortcomings and difficulties characterizing this research area, to summarize the existing results to date, and to propose possible solutions that could help standardize the implementation of future investigations. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

Back to TopTop