Current Narrative Review—Application of Blood Flow Restriction Exercise in Clinical Knee Problems
Abstract
1. Introduction
2. Principle and Application Methods of Blood Flow Restriction Training
3. Safety of Blood Flow Restriction Training
4. Analgesic Effects of Blood Flow Restriction Training
5. Application and Clinical Outcomes of Blood Flow Restriction Training in Patients with Anterior Cruciate Ligament Injuries
6. Application and Clinical Outcomes of Blood Flow Restriction Training in Patients with Knee Osteoarthritis
7. Current Methods and Recommendations of BFR Application Used by the Authors
8. Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Segal, N.A.; Glass, N.A.; Felson, D.T.; Hurley, M.; Yang, M.; Nevitt, M.; Lewis, C.E.; Torner, J.C. Effect of quadriceps strength and proprioception on risk for knee osteoarthritis. Med. Sci. Sports Exerc. 2010, 42, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; Cai, Y.; Sun, C.; Shi, X.; Liao, S.; Liu, J. Different Radiological Indices of Patellar Height Predict Patients’ Diverse Outcomes Following Total Knee Arthroplasty. Clin. Orthop. Surg. 2024, 16, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Ro, D.H.; Lee, M.C.; Han, H.S. Can individual functional improvements be predicted in osteoarthritic patients after total knee arthroplasty? Knee Surg. Relat. Res. 2024, 36, 31. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, K.W.; Link, L.; Lavin, P.; Schwarzkopf, R.; Rozell, J.C. Characterizing patient factors, perioperative interventions, and outcomes associated with inpatients falls after total knee arthroplasty. Knee Surg. Relat. Res. 2024, 36, 11. [Google Scholar] [CrossRef]
- Londhe, S.B.; Shetty, S.; Shetty, V.; Desouza, C.; Banka, P.; Antao, N. Comparison of Time Taken in Conventional versus Active Robotic-Assisted Total Knee Arthroplasty. Clin. Orthop. Surg. 2024, 16, 259–264. [Google Scholar] [CrossRef]
- Hughes, L.; Rosenblatt, B.; Haddad, F.; Gissane, C.; McCarthy, D.; Clarke, T.; Ferris, G.; Dawes, J.; Paton, B.; Patterson, S.D. Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post-Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial. Sports Med. 2019, 49, 1787–1805. [Google Scholar] [CrossRef]
- Harper, S.A.; Roberts, L.M.; Layne, A.S.; Jaeger, B.C.; Gardner, A.K.; Sibille, K.T.; Wu, S.S.; Vincent, K.R.; Fillingim, R.B.; Manini, T.M.; et al. Blood-Flow Restriction Resistance Exercise for Older Adults with Knee Osteoarthritis: A Pilot Randomized Clinical Trial. J. Clin. Med. 2019, 8, 265. [Google Scholar] [CrossRef]
- Ferraz, R.B.; Gualano, B.; Rodrigues, R.; Kurimori, C.O.; Fuller, R.; Lima, F.R.; DE Sá-Pinto, A.L.; Roschel, H. Benefits of Resistance Training with Blood Flow Restriction in Knee Osteoarthritis. Med. Sci. Sports Exerc. 2018, 50, 897–905. [Google Scholar] [CrossRef]
- Bryk, F.F.; dos Reis, A.C.; Fingerhut, D.; Araujo, T.; Schutzer, M.; Cury, R.d.P.L.; Duarte, A.; Fukuda, T.Y. Exercises with partial vascular occlusion in patients with knee osteoarthritis: A randomized clinical trial. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 1580–1586. [Google Scholar] [CrossRef]
- Kong, D.H.; Jung, W.S.; Yang, S.J.; Kim, J.G.; Park, H.Y.; Kim, J. Effects of Neuromuscular Electrical Stimulation and Blood Flow Restriction in Rehabilitation after Anterior Cruciate Ligament Reconstruction. Int. J. Environ. Res. Public Health 2022, 19, 15041. [Google Scholar] [CrossRef]
- Gabler, C.; Kitzman, P.H.; Mattacola, C.G. Targeting quadriceps inhibition with electromyographic biofeedback: A neuroplastic approach. Crit. Rev. Biomed. Eng. 2013, 41, 125–135. [Google Scholar] [CrossRef]
- Sato, Y. The history and future of KAATSU Training. Int. J. KAATSU Train. Res. 2005, 1, 1–5. [Google Scholar] [CrossRef]
- Abe, T.; Kearns, C.F.; Sato, Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J. Appl. Physiol. 2006, 100, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L.; Paton, B.; Rosenblatt, B.; Gissane, C.; Patterson, S.D. Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Fry, C.S.; Glynn, E.L.; Drummond, M.J.; Timmerman, K.L.; Fujita, S.; Abe, T.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J. Appl. Physiol. 2010, 108, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Fujita, S.; Abe, T.; Drummond, M.J.; Cadenas, J.G.; Dreyer, H.C.; Sato, Y.; Volpi, E.; Rasmussen, B.B. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J. Appl. Physiol. 2007, 103, 903–910. [Google Scholar] [CrossRef]
- Hwang, P.S.; Willoughby, D.S. Mechanisms Behind Blood Flow-Restricted Training and its Effect Toward Muscle Growth. J. Strength Cond. Res. 2019, 33 (Suppl. S1), S167–S179. [Google Scholar] [CrossRef]
- Patterson, S.D.; Ferguson, R.A. Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. Eur. J. Appl. Physiol. 2010, 108, 1025–1033. [Google Scholar] [CrossRef]
- Bowman, E.N.; Elshaar, R.; Milligan, H.; Jue, G.; Mohr, K.; Brown, P.; Watanabe, D.M.; Limpisvasti, O. Proximal, Distal, and Contralateral Effects of Blood Flow Restriction Training on the Lower Extremities: A Randomized Controlled Trial. Sports Health 2019, 11, 149–156. [Google Scholar] [CrossRef]
- Dreyer, H.C.; Fujita, S.; Cadenas, J.G.; Chinkes, D.L.; Volpi, E.; Rasmussen, B.B. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J. Physiol. 2006, 576, 613–624. [Google Scholar] [CrossRef]
- Bani Asadi, M.; Sharifi, H.; Abedi, B.; Fatolahi, H. Acute Inflammatory Response to a Single Bout of Resistance Exercise with or Without Blood Flow Restriction. Int. J. Sport Stud. Health 2020, 3, e110594. [Google Scholar] [CrossRef]
- Ohta, H.; Kurosawa, H.; Ikeda, H.; Iwase, Y.; Satou, N.; Nakamura, S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop. Scand. 2003, 74, 62–68. [Google Scholar] [CrossRef]
- Segal, N.; Davis, M.D.; Mikesky, A.E. Efficacy of Blood Flow-Restricted Low-Load Resistance Training For Quadriceps Strengthening in Men at Risk of Symptomatic Knee Osteoarthritis. Geriatr. Orthop. Surg. Rehabil. 2015, 6, 160–167. [Google Scholar] [CrossRef]
- Segal, N.A.; Williams, G.N.; Davis, M.C.; Wallace, R.B.; Mikesky, A.E. Efficacy of blood flow-restricted, low-load resistance training in women with risk factors for symptomatic knee osteoarthritis. PM&R 2015, 7, 376–384. [Google Scholar]
- Zargi, T.; Drobnic, M.; Strazar, K.; Kacin, A. Short-Term Preconditioning With Blood Flow Restricted Exercise Preserves Quadriceps Muscle Endurance in Patients After Anterior Cruciate Ligament Reconstruction. Front. Physiol. 2018, 9, 1150. [Google Scholar] [CrossRef] [PubMed]
- Jack, R.A., 2nd; Lambert, B.S.; Hedt, C.A.; Delgado, D.; Goble, H.; McCulloch, P.C. Blood Flow Restriction Therapy Preserves Lower Extremity Bone and Muscle Mass After ACL Reconstruction. Sports Health 2023, 15, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Karampampa, C.; Papasoulis, E.; Hatzimanouil, D.; Koutras, G.; Totlis, T. The Effects of Exercise with Blood Flow Restriction (BFR) in the Post Operative Rehabilitation of Anterior Cruciate Ligament (ACL) Reconstruction Patients: A Case Series. J. Orthop. Res. Ther. 2023, 8, 1314. [Google Scholar] [CrossRef]
- Lambert, B.; Hedt, C.A.; Jack, R.A.; Moreno, M.; Delgado, D.; Harris, J.D.; McCulloch, P.C. Blood Flow Restriction Therapy Preserves Whole Limb Bone and Muscle Following ACL Reconstruction. Orthop. J. Sports Med. 2019, 7, 2325967119S00196. [Google Scholar] [CrossRef]
- Vieira de Melo, R.F.; Komatsu, W.R.; Freitas, M.S.; Vieira de Melo, M.E.; Cohen, M. Comparison of Quadriceps and Hamstring Muscle Strength after Exercises with and without Blood Flow Restriction following Anterior Cruciate Ligament Surgery: A Randomized Controlled Trial. J. Rehabil. Med. 2022, 54, 2550. [Google Scholar] [CrossRef]
- Mattocks, K.T.; Jessee, M.B.; Counts, B.R.; Buckner, S.L.; Mouser, J.G.; Dankel, S.J.; Laurentino, G.C.; Loenneke, J.P. The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiol. Behav. 2017, 171, 181–186. [Google Scholar] [CrossRef]
- Hughes, L.; Patterson, S.D. The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation. J. Appl. Physiol. 2020, 128, 914–924. [Google Scholar] [CrossRef]
- Neto, G.R.; Sousa, M.S.; Costa e Silva, G.V.; Gil, A.L.; Salles, B.F.; Novaes, J.S. Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion. Clin. Physiol. Funct. Imaging 2016, 36, 53–59. [Google Scholar] [CrossRef]
- Nielsen, J.L.; Aagaard, P.; Prokhorova, T.A.; Nygaard, T.; Bech, R.D.; Suetta, C.; Frandsen, U. Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage. J. Physiol. 2017, 595, 4857–4873. [Google Scholar] [CrossRef]
- Mouser, J.G.; Dankel, S.J.; Jessee, M.B.; Mattocks, K.T.; Buckner, S.L.; Counts, B.R.; Loenneke, J.P. A tale of three cuffs: The hemodynamics of blood flow restriction. Eur. J. Appl. Physiol. 2017, 117, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Manini, T.M.; Clark, B.C. Blood flow restricted exercise and skeletal muscle health. Exerc. Sport Sci. Rev. 2009, 37, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.C.; Manini, T.M.; Hoffman, R.L.; Williams, P.S.; Guiler, M.K.; Knutson, M.J.; McGlynn, M.L.; Kushnick, M.R. Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand. J. Med. Sci. Sports 2011, 21, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Takano, H.; Morita, T.; Iida, H.; Asada, K.-I.; Kato, M.; Uno, K.; Hirose, K.; Matsumoto, A.; Takenaka, K.; Hirata, Y.; et al. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur. J. Appl. Physiol. 2005, 95, 65–73. [Google Scholar] [CrossRef]
- Hughes, L.; Paton, B.; Haddad, F.; Rosenblatt, B.; Gissane, C.; Patterson, S.D. Comparison of the acute perceptual and blood pressure response to heavy load and light load blood flow restriction resistance exercise in anterior cruciate ligament reconstruction patients and non-injured populations. Phys. Ther. Sport 2018, 33, 54–61. [Google Scholar] [CrossRef]
- Tennent, D.J.; Hylden, C.M.; Johnson, A.E.; Burns, T.C.; Wilken, J.M.; Owens, J.G. Blood Flow Restriction Training After Knee Arthroscopy: A Randomized Controlled Pilot Study. Clin. J. Sport Med. 2017, 27, 245–252. [Google Scholar] [CrossRef]
- Calatayud, J.; Ogrezeanu, D.C.; Carrasco, J.J.; Martinez-Valdes, E.; Pérez-Alenda, S.; Cruz-Montecinos, C.; Andersen, L.L.; Aagaard, P.; Suso-Martí, L.; Casaña, J. Safety, feasibility, and neuromuscular activity of acute low-load resistance exercise with or without blood flow restriction in patients with severe hemophilia. Eur. J. Haematol. 2023, 111, 47–56. [Google Scholar] [CrossRef]
- Madarame, H.; Kurano, M.; Fukumura, K.; Fukuda, T.; Nakajima, T. Haemostatic and inflammatory responses to blood flow-restricted exercise in patients with ischaemic heart disease: A pilot study. Clin. Physiol. Funct. Imaging 2013, 33, 11–17. [Google Scholar] [CrossRef]
- de Queiros, V.S.; Dantas, M.; Neto, G.R.; da Silva, L.F.; Assis, M.G.; Almeida-Neto, P.F.; Dantas, P.M.S.; Cabral, B.G.D.A.T. Application and side effects of blood flow restriction technique: A cross-sectional questionnaire survey of professionals. Medicine 2021, 100, e25794. [Google Scholar] [CrossRef] [PubMed]
- Hollander, D.B.; Reeves, G.V.; Clavier, J.D.; Francois, M.R.; Thomas, C.; Kraemer, R.R. Partial occlusion during resistance exercise alters effort sense and pain. J. Strength Cond. Res. 2010, 24, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Martín-Hernández, J.; Ruiz-Aguado, J.; Herrero, A.J.; Loenneke, J.P.; Aagaard, P.; Cristi-Montero, C.; Menéndez, H.; Marín, P.J. Adaptation of Perceptual Responses to Low-Load Blood Flow Restriction Training. J. Strength Cond. Res. 2017, 31, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Sinsurin, K.; Kiratisin, P.; Irawan, D.S.; Vachalathiti, R.; Richards, J. Residual deficits of knee and hip joint coordination and clinical performance after return to sports in athletes with anterior cruciate ligament reconstruction. Knee Surg. Relat. Res. 2024, 36, 22. [Google Scholar] [CrossRef]
- Yoon, K.H.; Lee, S.M.; Park, J.Y.; Lee, H.S.; Hwang, S.H. A Comparison of Results in Older, Middle-aged, and Younger Patients after Primary Anterior Cruciate Ligament Reconstruction: Minimum 10-Year Follow-up. Clin. Orthop. Surg. 2024, 16, 57–65. [Google Scholar] [CrossRef]
- Gupta, R.; Singhal, A.; Malhotra, A.; Soni, A.; Masih, G.D.; Raghav, M. Predictors for Anterior Cruciate Ligament (ACL) Re-injury after Successful Primary ACL Reconstruction (ACLR). Malays. Orthop. J. 2020, 14, 50–56. [Google Scholar] [CrossRef]
- Takarada, Y.; Takazawa, H.; Ishii, N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med. Sci. Sports Exerc. 2000, 32, 2035–2039. [Google Scholar] [CrossRef]
- McAlindon, T.E.; Cooper, C.; Kirwan, J.R.; Dieppe, P.A. Determinants of disability in osteoarthritis of the knee. Ann. Rheum. Dis. 1993, 52, 258–262. [Google Scholar] [CrossRef]
- Scott, B.R.; Loenneke, J.P.; Slattery, K.M.; Dascombe, B.J. Exercise with blood flow restriction: An updated evidence-based approach for enhanced muscular development. Sports Med. 2015, 45, 313–325. [Google Scholar] [CrossRef]
Author | Study Design | Population | Method | Outcomes |
---|---|---|---|---|
Ohta et al. [22] (2003) * | RCT | BFR (n = 22, mean age 30) -non BFR (n = 22, mean age 28) | 180 mmHg, 16 weeks | -Knee extensor and flexor strength: BFR > Control CC60 86 ± 14: 84 ± 13 CC180 90 ± 9: 84 ± 14 IM60 94 ± 21: 92 ± 19 -CSA ratio of knee extensor: BFR (101 ± 11) > Control (92 ± 12) |
Lambert et al. [28] † (2019) | RCT | BFR (n = 7) vs. non BFR (n = 7) | 12 weeks, 20% 1RM | -Thigh lean muscle mass: BFR > Control -Similar improvements in single leg squat distance, Y-balance |
Zargi et al. [25] † (2018) | RCT | BFR (n = 10) vs. non BFR (n = 10) | 12 weeks, 150 mmHg, 14 cm, 30% 1RM | -Isometric endurance: BFR > control -Muscle blood flow: BFR > control |
Hughes et al. [6] (2019) L | RCT | BFR (n = 12) vs. non BFR (n = 12) | 8 weeks -BFR: 80% LOP 11.5 cm, 30% 1RM -non BFR: 70% 1RM | -10RM and Isokinetic strength: increased in both groups (104% and 106%) -Muscle thickness: increased in both groups (5.8% and 6.7%) -Self-reported function, Quality of life and Y-balance performance(18–59 > 18–33): BFR > HL-RT -Joint pain and effusion: HL-RT > BFR |
Vieira de Melo et al. [29] (2022) L | RCT | BFR (n = 12) vs. non BFR (n = 12) | 12 weeks -BFR: LOP 80% 30% 1RM -non BFR: 70% 1RM | -Isometric strength: BFR > control -Lysholm, IKDC and KOOS questionnaires: BFR > control -Quality of life improvement: BFR > control |
Karampampa et al. [27] (2023) † | RCT | BFR (n = 8) vs. non BFR (n = 8) | 12–18 w -BFR: LOP 60–80% 10–20% 1RM -non BFR: 10–20% 1RM | Thigh circumference: BFR > control Isokinetic strength: BFR (13.4) > control (9.6) No significant difference in quality of life |
Robert A Jack 2nd et al. [26] (2023) L | RCT | BFR (n = 17) vs. non BFR (n = 15) | 12 weeks -BFR: LOP 80% 20% 1RM -non BFR: 20% 1RM | LE-LM: BFR (−0.39) > control (−4.67) LE bone mass: BFR (−2.58) > control (−16.95) Similar improvement in single-leg squat, single-leg eccentric step-down, Y-balance Return to sports time: BFR group < control |
Randomization Process | Deviations from Intended Interventions | Measurement of the Outcome | Missing Outcome Data | Selection of the Reported Result | Overall Risk of Bias | |
---|---|---|---|---|---|---|
Ohta et al. [22] (2003) | Some concerns | High risk | High risk | Low risk | Low risk | High risk |
Lambert et al. [28] (2019) | Low risk | Some concerns | Low risk | Low risk | Low risk | Some concerns |
Zargi et al. [25] (2018) | Some concerns | High risk | Some concerns | Low risk | Low risk | Some concerns |
Hughes et al. [6] (2019) | Low risk | Some concerns | Low risk | Low risk | Low risk | Low risk |
Vieira de Melo et al. [29] (2022) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Karampampa et al. [27] (2023) | Low risk | Some concerns | Low risk | Low risk | Low risk | Some concerns |
Robert A Jack 2nd et al. [26] (2023) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Author | Study Design | Population | Method | Outcomes |
---|---|---|---|---|
Segal et al. [23] (2015) L | RCT | BFR (n = 19, 58.4 years) vs. non BFR (n = 22, 56.1 years) | 160–200 mmHg, 4 weeks 30% 1RM | -Bilateral leg press 1RM: Increased significantly in both groups -Isokinetic strength: BFR (3.1) < control (4.7) -KOOS scores: BFR (4.9) < control (14.2) |
Segal et al. [24] (2015) L | RCT | BFR (n = 19) vs. non BFR (n = 21) | 160–200 mmHg, 4 weeks 30% 1RM | -Bilateral leg press 1RM: BFR (28.3) > control (15.6) -Isokinetic strength: BFR (0.07) > control (−0.05) -Quadriceps volume: no significant group differences -Knee pain: no significant group differences |
Bryk et al. [9] (2016) † | RCT | BFR (n = 17) vs. non BFR (n = 17) | 6 weeks -BFR: 200 mmHg 30% 1RM -non BFR: Pressure not described; 70% 1RM | -Improved strength, function, pain in both groups -Anterior knee discomfort: BFR < control |
Ferraz et al. [8] (2018) † | RCT | BFR with LIRT (n = 16, 60.7 years) non BFR HI-RT (n = 16, 59.9 years) non BFR LI-RT (n = 16, 60.3 years) | 12 weeks -BFR with LIRT: LOP 70%, 20–30% 1RM -non BFR HI-RT: 50–80% 1RM -non BFR LI-RT: 20–30% 1RM | -Significant leg press (26% and 33%) and knee extension 1RM (23% and 22%) increase in BFR and HI-RT but not in LI-RT -Quadriceps CSA (7% and 8%) increase in BFR and HI-RT but not in LI-RT -TST improvement in HI-RT and BFR but not significant with TUG -WOMAC physical function (−42% and −49%) improved in HI-RT and BFRT -WOMAC pain (−49% and −42%) improved in BFRT and LI-RT -No difference in quality of life among the three groups |
Harper et al. [7] (2019) L | RCT | BFR (n = 19) vs. non BFR (n = 16) | 12 weeks -BFR: [Pressure = 0.5 × SBP + 2(thigh circumference) + 5] 20% 1RM -non BFR MI-RT: 60% 1RM | -Isokinetic strength: improvement in both groups -Function (400 m walk, SPPB, LLFDI) improvement in both groups -Pain (WOMAC and NPRS) improvement in both groups -No significant difference in Serum P3NP, TWEAK, IGF-1 levels |
Randomization Process | Deviations from Intended Interventions | Measurement of the Outcome | Missing Outcome Data | Selection of the Reported Result | Overall Risk of Bias | |
---|---|---|---|---|---|---|
Segal et al. [23] (2015) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Segal et al. [24] (2015, Men) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Harper et al. [7] (2019) | Low risk | Some concerns | Low risk | Low risk | Low risk | Some concerns |
Bryk et al. [9] (2016) | Low risk | Some concerns | Low risk | Low risk | Low risk | Some concerns |
Ferraz et al. [8] (2018) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Bae, K.-C.; Yon, C.-J.; Kim, D.-H. Current Narrative Review—Application of Blood Flow Restriction Exercise in Clinical Knee Problems. Medicina 2025, 61, 1377. https://doi.org/10.3390/medicina61081377
Kwon S, Bae K-C, Yon C-J, Kim D-H. Current Narrative Review—Application of Blood Flow Restriction Exercise in Clinical Knee Problems. Medicina. 2025; 61(8):1377. https://doi.org/10.3390/medicina61081377
Chicago/Turabian StyleKwon, Saehim, Ki-Cheor Bae, Chang-Jin Yon, and Du-Han Kim. 2025. "Current Narrative Review—Application of Blood Flow Restriction Exercise in Clinical Knee Problems" Medicina 61, no. 8: 1377. https://doi.org/10.3390/medicina61081377
APA StyleKwon, S., Bae, K.-C., Yon, C.-J., & Kim, D.-H. (2025). Current Narrative Review—Application of Blood Flow Restriction Exercise in Clinical Knee Problems. Medicina, 61(8), 1377. https://doi.org/10.3390/medicina61081377