Sex Differences in Bench Press Strength and Power: A Velocity-Based Analysis Adjusted for Body Composition
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Procedures
2.4. Measurement Equipment and Data Acquisition
2.5. Variables Analyzed
2.6. Statistical Analysis
3. Results
4. Discussion
5. Practical Implications
6. Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phillips, S.M. Short-term training: When do repeated bouts of resistance exercise become training? Can. J. Appl. Physiol. 2000, 25, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J. The mechanisms of muscle hypertrophy and their application to resistance training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef] [PubMed]
- Marín-Cascales, E.; Alcaraz, P.E.; Ramos-Campo, D.J.; Rubio-Arias, J.A. Effects of multicomponent training on lean and bone mass in postmenopausal and older women: A systematic review. Menopause 2018, 25, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Folland, J.P.; Williams, A.G. Morphological and neurological contributions to increased strength. Sports Med. 2007, 37, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L. Sex differences in skeletal muscle fiber types: A meta-analysis. Clin. Anat. 2024, 37, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Niering, M.; Wolf-Belala, N.; Seifert, J.; Tovar, O.; Coldewey, J.; Kuranda, J.; Muehlbauer, T. The Influence of Menstrual Cycle Phases on Maximal Strength Performance in Healthy Female Adults: A Systematic Review with Meta-Analysis. Sports. 2024, 12, 31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McNulty, K.L.; Elliott-Sale, K.J.; Dolan, E.; Swinton, P.A.; Ansdell, P.; Goodall, S.; Thomas, K.; Hicks, K.M. The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 1813–1827. [Google Scholar] [CrossRef] [PubMed]
- Elorduy-Terrado, A.; Torres-Luque, G.; Radesca, K.; Muñoz-Andradas, G.; Saenz-Bravo, M.; Domínguez-Balmaseda, D. Evaluation the Impact of Hormonal Fluctuations During the Menstrual Cycle on the Performance of Female Athletes—Systematic Review. Muscles 2025, 4, 15. [Google Scholar] [CrossRef]
- D’Souza, A.C.; Wageh, M.; Williams, J.S.; Colenso-Semple, L.M.; McCarthy, D.G.; McKay, A.K.A.; Elliott-Sale, K.J.; Burke, L.M.; Parise, G.; MacDonald, M.J.; et al. Menstrual cycle hormones and oral contraceptives: A multimethod systems physiology-based review of their impact on key aspects of female physiology. J. Appl. Physiol. 1985, 135, 1284–1299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Knuttgen, H.G.; Kraemer, W.J. Terminology and measurement in exercise performance. J. Appl. Sport Sci. Res. 1987, 1, 1–10. [Google Scholar]
- González-Badillo, J.J.; Marques, M.C.; Sánchez-Medina, L. The importance of movement velocity as a measure to control resistance training intensity. J. Hum. Kinet. 2011, 29, 15–19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jovanović, M.; Flanagan, E.P. Researched applications of velocity based strength training. J. Aust. Strength Cond. 2014, 22, 58–69. [Google Scholar]
- Haff, G.G.; Nimphius, S. Training principles for power. Strength Cond. J. 2012, 34, 2–12. [Google Scholar] [CrossRef]
- Miller, A.E.; MacDougall, J.D.; Tarnopolsky, M.A.; Sale, D.G. Gender differences in strength and muscle fiber characteristics. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 1–biological basis of maximal power production. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Hackett, D.A.; Johnson, N.A.; Chow, C.M. The effect of movement velocity during resistance training on muscle-specific hypertrophy: A systematic review. Eur. J. Appl. Physiol. 2013, 113, 2101–2118. [Google Scholar] [CrossRef] [PubMed]
- Aedo-Muñoz, E.; Miarka, B. Eccentric resistance training: A methodological proposal of eccentric muscle exercise classification based on exercise complexity, training objectives, methods, and intensity. Appl. Sci. 2023, 13, 7969. [Google Scholar] [CrossRef]
- Franchi, M.V.; Reeves, N.D.; Narici, M.V. Skeletal muscle remodeling in response to eccentric vs. concentric loading: Morphological, molecular, and metabolic adaptations. Front. Physiol. 2017, 8, 447. [Google Scholar] [CrossRef] [PubMed]
- Siff, M.C. Biomechanical foundations of strength and power training. In Biomechanics in Sport: Performance Enhancement and Injury Prevention; Zatsiorsky, V.M., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2003; pp. 103–139. [Google Scholar]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Gołaś, A.; Maszczyk, A.; Pietraszewski, P.; Wilk, M.; Stastny, P.; Strońska, K.; Studencki, M.; Zając, A. Muscular activity patterns of female and male athletes during the flat bench press. Biol. Sport 2018, 35, 175–179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nuzzo, J.L. Narrative Review of Sex Differences in Muscle Strength, Endurance, Activation, Size, Fiber Type, and Strength Training Participation Rates, Preferences, Motivations, Injuries, and Neuromuscular Adaptations. J. Strength Cond. Res. 2023, 37, 494–536. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Greenhall, M.; Taipale, R.S.; Ihalainen, J.K.; Hackney, A.C. Influence of the Menstrual Cycle Phase on Marathon Performance in Recreational Runners. Int. J. Sports Physiol. Perform. Hum. Kinet. 2021, 16, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Joo, M.H.; Maehata, E.; Adachi, T.; Ishida, A.; Murai, F.; Mesaki, N. The relationship between exercise-induced oxidative stress and the menstrual cycle. Eur. J. Appl. Physiol. 2004, 93, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Solli, G.S.; Sandbakk, S.B.; Noordhof, D.A.; Ihalainen, J.K.; Sandbakk, Ø. Changes in Self-Reported Physical Fitness, Performance, and Side Effects Across the Phases of the Menstrual Cycle Among Competitive Endurance Athletes. Int. J. Sports Physiol. Perform. 2020, 15, 1324–1333. [Google Scholar] [CrossRef] [PubMed]
- Kalytka, S.; Roda, O.; Ierko, I.; Panasiuk, O.; Kasarda, O.; Hrebik, O.; Faidevych, V.; Liannoi, M. Comparative analysis of functional capabilities and special working ability of men and women, specializing in 800 m and 1500 m running. J. Phys. Educ. Sport 2018, 18, 2389–2396. [Google Scholar] [CrossRef]
- Middleton, L.E.; Wenger, H.A. Effects of menstrual phase on performance and recovery in intense intermittent activity. Eur. J. Appl. Physiol. 2006, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Sánchez-Medina, L.; Pérez, C.E.; De La Cruz-Sánchez, E.; Mora-Rodriguez, R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J. Sports Sci. 2014, 32, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Torres, O.; Fernandez-Elias, V.E.; Li, J.; Gomez-Ruano, M.A.; Guadalupe-Grau, A. Validity and Reliability of A New Low-Cost Linear Position Transducer to Measure Mean Propulsive Velocity: The ADR device. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2022, 239, 126–134. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Alcazar, J.; Rodriguez-Lopez, C.; Ara, I.; Alfaro-Acha, A.; Mañas-Bote, A.; Guadalupe-Grau, A.; García-García, F.J.; Alegre, L.M. The Force-Velocity Relationship in Older People: Reliability and Validity of a Systematic Procedure. Int. J. Sports Med. 2017, 38, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Serresse, O.; Ama, P.F.; Simoneau, J.A.; Lortie, G.; Bouchard, C.; Boulay, M.R. Anaerobic performances of sedentary and trained subjects. Can. J. Sport Sci. 1989, 14, 46–52. [Google Scholar] [PubMed]
- Nindl, B.C.; Mahar, M.T.; Harman, E.A.; Patton, J.F. Lower and upper body anaerobic performance in male and female adolescent athletes. Med. Sci. Sports Exerc. 1995, 27, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Bartolomei, S.; Grillone, G.; Di Michele, R.; Cortesi, M. A Comparison between Male and Female Athletes in Relative Strength and Power Performances. J. Funct. Morphol. Kinesiol. 2021, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Brechue, W.F.; Abe, T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur. J. Appl. Physiol. 2002, 86, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Walker, S.; Häkkinen, K. Validity of using velocity to estimate intensity in resistance exercises in men and women. Int. J. Sports Med. 2020, 41, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernández, C.; García Ramos, A.; Jimenez-Reyes, P. Load–velocity profiling in the military press exercise: Effects of gender and training. Int. J. Sports Sci. Coach. 2017, 13, 743–750. [Google Scholar] [CrossRef]
- García-Ramos, A.; Suzovic, D.; Pérez-Castilla, A. The load-velocity profiles of three upper-body pushing exercises in men and women. Sport Biomech. 2021, 20, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Acevedo, R.; Romero-Moraleda, B.; Montalvo-Pérez, A.; García-Sánchez, C.; Marquina-Nieto, M.; Mon-López, D. Sex Differences in the Load–Velocity Profiles of Three Different Row Exercises. Sport 2023, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Acevedo, R.; Romero-Moraleda, B.; Díaz-Lara, F.J.; Rubia, A.; González-García, J.; Mon-López, D. A Systematic Review and Meta-Analysis of the Differences in Mean Propulsive Velocity between Men and Women in Different Exercises. Sports 2023, 11, 118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Izadi, M.; Pillitteri, G.; Thomas, E.; Battaglia, G.; Bianco, A.; Bellafiore, M. Sex differences in the determination of prescribed load in ballistic bench press. Front. Physiol. 2024, 15, 1293044. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.K. Sex differences in human fatigability: Mechanisms and insight to physiological responses. Acta Physiol. 2014, 210, 768–789. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomas, G.A.; Kraemer, W.J.; Spiering, B.A.; Volek, J.S.; Anderson, J.M.; Maresh, C.M. Maximal power at different percentages of one repetition maximum: Influence of resistance and gender. J. Strength Cond. Res. 2007, 21, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Aubin, D.A.; Chulvi-Medrano, I.; Cortell-Tormo, J.M.; Picón-Martínez, M.; Rial Rebullido, T.; Faigenbaum, A.D. Squat and bench press force-velocity profiling in male and female adolescent rugby players. J. Strength Cond. Res. 2019, 35, S44–S50. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, J.L.; Hancock, K.; Rollison, L.; Ball, T.E.; Bowen, J.C. Contributions of strength and body composition to the gender difference in anaerobic power. J. Sports Med. Phys. Fit. 2001, 41, 33–38. [Google Scholar]
- Perez-Gomez, J.; Rodriguez, G.V.; Ara, I.; Olmedillas, H.; Chavarren, J.; González-Henriquez, J.J.; Dorado, C.; Calbet, J.A. Role of muscle mass on sprint performance: Gender differences? Eur. J. Appl. Physiol. 2008, 102, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Torrejón, A.; Balsalobre-Fernández, C.; Haff, G.G.; García-Ramos, A. The load-velocity profile differs more between men and women than between individuals with different strength levels. Sports Biomech. 2019, 18, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, P.T. Age- and sex-related differences in force-velocity characteristics of upper and lower limbs in competitive adolescent swimmers. J. Hum. Kinet. 2012, 32, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Bešević, J.; Conroy, M.; Omiyale, W.; Lacey, B.; Allen, N. Comparison of body composition measures assessed by bioelectrical impedance analysis versus dual-energy X-ray absorptiometry in the United Kingdom Biobank. Clin. Nutr. ESPEN 2024, 63, 214–225. [Google Scholar] [CrossRef] [PubMed]
Technology | Linear velocity transducer |
Support APP on mobile | No |
Software version | 3.6 |
Indirect outcome calculation | Velocity; Time |
Maximal Sampling frequency | 1000 Hz |
Mechanic’s parameters | Peak force, mean velocity, mean power, time to peak power, propulsive phase’s duration, estimated load (%1RM), 1RM prediction, number of repetitions, velocity loss (%), and velocity alerts. Automatically computed and presented numerically and graphically. |
Screen | OLED Screen |
Export to Excel | Yes |
Bluetooth/WIFI connection | No |
External power supply required | Yes |
Installation and calibration time before the first execution | 2.4 min |
Time to obtain the measure after execution | Real time |
Number of lost repetitions per each 100 cases | 0.8 |
Price | 2600 € |
Mean ± SD n Total | Mean ± SD Males | Mean ± SD Females | |
---|---|---|---|
Age (n = 29) | 21.9 ± 4.5 | 21.3 ± 4.1 | 22.6 ± 5.0 |
Height (cm) | 171.9 ± 8.9 | 176.67.2 | 165.8 ± 7.1 |
Weight (kg) | 67.8 ± 12.8 | 75.9 ± 10.1 | 57.9 ± 7.9 |
BMI (kgּ·m−2) | 22.8 ± 2.7 | 24.3 ± 2.7 | 21.0 ± 1.3 |
Fat Mass (%) | 16.1 ± 4.8 | 13.3 ± 2.7 | 19.5 ± 4.6 |
FFM (kg) | 57.3 ± 11.8 | 66.1 ± 7.8 | 46.4 ± 4.4 |
1RM (kg) | 73.1 ± 26.3 | 92.0 ± 19.7 | 49.7 ± 8.1 |
Variable | Males | Females |
---|---|---|
45%1RM (m·s−1) | 0.79 ± 0.06 | 0.73 ± 0.15 |
55%1RM (m·s−1) | 0.66 ± 0.05 | 0.61 ± 0.12 |
65%1RM (m·s−1) | 0.54 ± 0.04 | 0.47 ± 0.05 |
75%1RM (m·s−1) | 0.46 ± 0.05 | 0.41 ± 0.04 |
85%1RM (m·s−1) | 0.34 ± 0.04 | 0.32 ± 0.05 |
V0 (m·s−1) | 1.36 ± 0.11 | 1.20 ± 0.27 |
F0 (N) | 1.036.47 ± 185.38 | 568.18 ± 107.15 |
Vopt (m·s−1) | 0.68 ± 0.06 | 0.60 ± 0.13 |
Pmax (W) | 349.73 ± 64.29 | 166.66 ± 26.76 |
%RM | 57.18 ± 1.56 | 58.61 ± 3.42 |
Opt. Load (kg) | 52.83 ± 9.44 | 28.96 ± 5.41 |
Variable | Adjusted by Body Mass | Adjusted by FFM | ||||||
---|---|---|---|---|---|---|---|---|
F | p | η2 | 95%CI | F | p | η2 | 95%CI | |
45%1RM | 3.309 | 0.080 | 0.113 | 0.713–0.796 | 5.906 | 0.022 | 0.185 | 0.716–0.797 |
55%1RM | 3.529 | 0.072 | 0.120 | 0.596–0.666 | 5.190 | 0.031 | 0.166 | 0.597–0.667 |
65%1RM | 5.971 | 0.022 | 0.187 | 0.491–0.525 | 16.118 | 0.001 | 0.383 | 0.493–0.526 |
75%1RM | 4.394 | 0.046 | 0.145 | 0.417–0.452 | 7.449 | 0.011 | 0.223 | 0.417–0.453 |
85%1RM | 1.390 | 0.249 | 0.051 | 0.309–0.345 | 1.664 | 0.208 | 0.060 | 0.308–0.346 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Torres, O.; Nieto-Acevedo, R.; Guadalupe-Grau, A.; Elías, V.E.F. Sex Differences in Bench Press Strength and Power: A Velocity-Based Analysis Adjusted for Body Composition. J. Funct. Morphol. Kinesiol. 2025, 10, 284. https://doi.org/10.3390/jfmk10030284
López-Torres O, Nieto-Acevedo R, Guadalupe-Grau A, Elías VEF. Sex Differences in Bench Press Strength and Power: A Velocity-Based Analysis Adjusted for Body Composition. Journal of Functional Morphology and Kinesiology. 2025; 10(3):284. https://doi.org/10.3390/jfmk10030284
Chicago/Turabian StyleLópez-Torres, Olga, Raúl Nieto-Acevedo, Amelia Guadalupe-Grau, and Valentín Emilio Fernández Elías. 2025. "Sex Differences in Bench Press Strength and Power: A Velocity-Based Analysis Adjusted for Body Composition" Journal of Functional Morphology and Kinesiology 10, no. 3: 284. https://doi.org/10.3390/jfmk10030284
APA StyleLópez-Torres, O., Nieto-Acevedo, R., Guadalupe-Grau, A., & Elías, V. E. F. (2025). Sex Differences in Bench Press Strength and Power: A Velocity-Based Analysis Adjusted for Body Composition. Journal of Functional Morphology and Kinesiology, 10(3), 284. https://doi.org/10.3390/jfmk10030284