Functional and Neuroplastic Effects of Cross-Education in Anterior Cruciate Ligament Rehabilitation: A Scoping Review with Bibliometric Analysis
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search Strategy
2.5. Selection and Data Collection Process
2.6. Risk of Bias Assessment
2.7. Bibliometric Analysis
3. Results
3.1. Study Selection
3.2. Risk of Bias Within Studies
3.3. Results of Individual Studies
3.4. Bibliometric Analysis
4. Discussion
4.1. Limitations and Future Directions
- Advanced neurophysiological techniques (fMRI, TMS, evoked potentials) in real-world ACLR rehabilitation settings;
- Standardized CE protocols tested across rehabilitation phases, graft types, and fitness levels;
- Larger samples with greater inclusion of women and recreational athletes, plus longitudinal designs to assess long-term effects;
4.2. Practical Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guenther, D.; Herbst, E.; Musahl, V. Anatomy and Biomechanics of the Anterior Cruciate Ligament. In Orthopaedic Biomechanics in Sports Medicine; Koh, J., Zaffagnini, S., Kuroda, R., Longo, U.G., Amirouche, F., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 287–295. [Google Scholar]
- Della Villa, F.; Tosarelli, F.; Ferrari, R.; Grassi, A.; Ciampone, L.; Nanni, G.; Zaffagnini, S.; Buckthorpe, M. Systematic Video Analysis of Anterior Cruciate Ligament Injuries in Professional Male Rugby Players: Pattern, Injury Mechanism, and Biomechanics in 57 Consecutive Cases. Orthop. J. Sports Med. 2021, 9, 23259671211048182. [Google Scholar] [CrossRef]
- Tosarelli, F.; Buckthorpe, M.; Di Paolo, S.; Grassi, A.; Rodas, G.; Zaffagnini, S.; Nanni, G.; Della Villa, F. Video Analysis of Anterior Cruciate Ligament Injuries in Male Professional Basketball Players: Injury Mechanisms, Situational Patterns, and Biomechanics. Orthop. J. Sports Med. 2024, 12, 23259671241234880. [Google Scholar] [CrossRef] [PubMed]
- Della Villa, F.; Stride, M.; Bortolami, A.; Williams, A.; Davison, M.; Buckthorpe, M. Systematic Video Analysis of ACL Injuries in Male Professional English Soccer Players: A Study of 124 Cases. Orthop. J. Sports Med. 2025, 13, 23259671251314642. [Google Scholar] [CrossRef]
- Chia, L.; De Oliveira Silva, D.; Whalan, M.; McKay, M.J.; Sullivan, J.; Fuller, C.W.; Pappas, E. Non-contact Anterior Cruciate Ligament Injury Epidemiology in Team-Ball Sports: A Systematic Review with Meta-analysis by Sex, Age, Sport, Participation Level, and Exposure Type. Sports Med. 2022, 52, 2447–2467. [Google Scholar] [CrossRef]
- Gornitzky, A.L.; Lott, A.; Yellin, J.L.; Fabricant, P.D.; Lawrence, J.T.; Ganley, T.J. Sport-Specific Yearly Risk and Incidence of Anterior Cruciate Ligament Tears in High School Athletes: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2016, 44, 2716–2723. [Google Scholar] [CrossRef]
- Sanders, T.L.; Maradit Kremers, H.; Bryan, A.J.; Larson, D.R.; Dahm, D.L.; Levy, B.A.; Stuart, M.J.; Krych, A.J. Incidence of Anterior Cruciate Ligament Tears and Reconstruction: A 21-Year Population-Based Study. Am. J. Sports Med. 2016, 44, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Mall, N.A.; Chalmers, P.N.; Moric, M.; Tanaka, M.J.; Cole, B.J.; Bach, B.R., Jr.; Paletta, G.A., Jr. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am. J. Sports Med. 2014, 42, 2363–2370. [Google Scholar] [CrossRef]
- Montalvo, A.M.; Schneider, D.K.; Webster, K.E.; Yut, L.; Galloway, M.T.; Heidt, R.S., Jr.; Kaeding, C.C.; Kremcheck, T.E.; Magnussen, R.A.; Parikh, S.N.; et al. Anterior Cruciate Ligament Injury Risk in Sport: A Systematic Review and Meta-Analysis of Injury Incidence by Sex and Sport Classification. J. Athl. Train. 2019, 54, 472–482. [Google Scholar] [CrossRef]
- Montalvo, A.M.; Schneider, D.K.; Yut, L.; Webster, K.E.; Beynnon, B.; Kocher, M.S.; Myer, G.D. “What’s my risk of sustaining an ACL injury while playing sports?” A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1003–1012. [Google Scholar] [CrossRef]
- Joseph, A.M.; Collins, C.L.; Henke, N.M.; Yard, E.E.; Fields, S.K.; Comstock, R.D. A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics. J. Athl. Train. 2013, 48, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Herzog, M.M.; Marshall, S.W.; Lund, J.L.; Pate, V.; Mack, C.D.; Spang, J.T. Trends in Incidence of ACL Reconstruction and Concomitant Procedures Among Commercially Insured Individuals in the United States, 2002–2014. Sports Health 2018, 10, 523–531. [Google Scholar] [CrossRef]
- Bates, N.A.; McPherson, A.L.; Rao, M.B.; Myer, G.D.; Hewett, T.E. Sports Traumatology, Arthroscopy. Characteristics of inpatient anterior cruciate ligament reconstructions and concomitant injuries. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2778–2786. [Google Scholar] [CrossRef]
- Mazza, D.; Viglietta, E.; Monaco, E.; Iorio, R.; Marzilli, F.; Princi, G.; Massafra, C.; Ferretti, A. Impact of anterior cruciate ligament injury on European professional soccer players. Orthop. J. Sports Med. 2022, 10, 23259671221076865. [Google Scholar] [CrossRef]
- Culvenor, A.G.; Girdwood, M.A.; Juhl, C.B.; Patterson, B.E.; Haberfield, M.J.; Holm, P.M.; Bricca, A.; Whittaker, J.L.; Roos, E.M.; Crossley, K.M. Rehabilitation after anterior cruciate ligament and meniscal injuries: A best-evidence synthesis of systematic reviews for the OPTIKNEE consensus. Br. J. Sports Med. 2022, 56, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Rigg, J.D.; Panagodage Perera, N.K.; Toohey, L.A.; Cooke, J.; Hughes, D. Anterior cruciate ligament injury occurrence, return to sport and subsequent injury in the Australian High Performance Sports System: A 5-year retrospective analysis. Phys. Ther. Sport. 2023, 64, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Harput, G.; Ulusoy, B.; Yildiz, T.I.; Demirci, S.; Eraslan, L.; Turhan, E.; Tunay, V.B. Cross-education improves quadriceps strength recovery after ACL reconstruction: A randomized controlled trial. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 68–75. [Google Scholar] [CrossRef]
- Zult, T.; Gokeler, A.; van Raay, J.; Brouwer, R.W.; Zijdewind, I.; Farthing, J.P.; Hortobagyi, T. Cross-education does not accelerate the rehabilitation of neuromuscular functions after ACL reconstruction: A randomized controlled clinical trial. Eur. J. Appl. Physiol. 2018, 118, 1609–1623. [Google Scholar] [CrossRef]
- Glattke, K.E.; Tummala, S.V.; Chhabra, A. Anterior Cruciate Ligament Reconstruction Recovery and Rehabilitation: A Systematic Review. J. Bone Joint Surg. Am. 2022, 104, 739–754. [Google Scholar] [CrossRef]
- Ross, B.J.; Savage-Elliott, I.; Brown, S.M.; Mulcahey, M.K. Return to Play and Performance After Primary ACL Reconstruction in American Football Players: A Systematic Review. Orthop. J. Sports Med. 2020, 8, 2325967120959654. [Google Scholar] [CrossRef]
- Cigni, P.; Minuti, T.; Mannini, A.; Cucini, A.; Costagli, M.; Rapetti, S.; Alimonta, L.; Cione, E.; Cannataro, R.; Ricotti, L. Application of a Custom Device to Measure Isometric Knee Strength: Possible Injury Correlation in Professional Soccer (Football) Players. J. Funct. Morphol. Kinesiol. 2023, 8, 141. [Google Scholar] [CrossRef] [PubMed]
- Minuti, T.; Cigni, P.; Costagli, M.; Cucini, A.; Cione, E.; Melotto, S.; Rapetti, S.; Ricotti, L.; Cannataro, R. Reliability of a Custom Device Used to Measure Isometric Knee Flexor and Extensor Strength in Standing Position. Life 2023, 13, 458. [Google Scholar] [CrossRef] [PubMed]
- Minshull, C.; Gallacher, P.; Roberts, S.; Barnett, A.; Kuiper, J.H.; Bailey, A. Contralateral strength training attenuates muscle performance loss following anterior cruciate ligament (ACL) reconstruction: A randomised-controlled trial. Eur. J. Appl. Physiol. 2021, 121, 3551–3559. [Google Scholar] [CrossRef] [PubMed]
- Cuyul-Vasquez, I.; Alvarez, E.; Riquelme, A.; Zimmermann, R.; Araya-Quintanilla, F. Effectiveness of Unilateral Training of the Uninjured Limb on Muscle Strength and Knee Function of Patients With Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis of Cross-Education. J. Sport. Rehabil. 2022, 31, 605–616. [Google Scholar] [CrossRef]
- Barss, T.S.; Pearcey, G.E.; Zehr, E.P. Cross-education of strength and skill: An old idea with applications in the aging nervous system. Yale J. Biol. Med. 2016, 89, 81–86. [Google Scholar]
- Manca, A.; Dragone, D.; Dvir, Z.; Deriu, F. Cross-education of muscular strength following unilateral resistance training: A meta-analysis. Eur. J. Appl. Physiol. 2017, 117, 2335–2354. [Google Scholar] [CrossRef]
- Wang, K.; Cheng, L.; Wang, B.; He, B. Effect of isokinetic muscle strength training on knee muscle strength, proprioception, and balance ability in athletes with anterior cruciate ligament reconstruction: A randomised control trial. Front. Physiol. 2023, 14, 1237497. [Google Scholar] [CrossRef]
- Vélez-Gutiérrez, J.M.; Petro, J.L.; Aburto-Corona, J.A.; Vargas-Molina, S.; Kreider, R.B.; Bonilla, D.A. Cortical Changes as a Result of Sports Injuries: A Short Commentary. Cuerpo Cult. Y Mov. 2022, 12, 7884. [Google Scholar] [CrossRef]
- Lee, M.; Carroll, T.J. Cross education: Possible mechanisms for the contralateral effects of unilateral resistance training. Sports Med. 2007, 37, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kidgell, D.J.; Frazer, A.K.; Daly, R.M.; Rantalainen, T.; Ruotsalainen, I.; Ahtiainen, J.; Avela, J.; Howatson, G. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience 2015, 300, 566–575. [Google Scholar] [CrossRef]
- Sharma, N.; Classen, J.; Cohen, L.G. Neural plasticity and its contribution to functional recovery. Handb. Clin. Neurol. 2013, 110, 3–12. [Google Scholar]
- Lecce, E.; Conti, A.; Del Vecchio, A.; Felici, F.; Scotto di Palumbo, A.; Sacchetti, M.; Bazzucchi, I. Cross-education: Motor unit adaptations mediate the strength increase in non-trained muscles following 8 weeks of unilateral resistance training. Front. Physiol. 2025, 15, 1512309. [Google Scholar] [CrossRef]
- Manca, A.; Hortobagyi, T.; Carroll, T.J.; Enoka, R.M.; Farthing, J.P.; Gandevia, S.C.; Kidgell, D.J.; Taylor, J.L.; Deriu, F. Contralateral Effects of Unilateral Strength and Skill Training: Modified Delphi Consensus to Establish Key Aspects of Cross-Education. Sports Med. 2021, 51, 11–20. [Google Scholar] [CrossRef]
- Hendy, A.M.; Spittle, M.; Kidgell, D.J. Cross education and immobilisation: Mechanisms and implications for injury rehabilitation. J. Sci. Med. Sport. 2012, 15, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Ehrensberger, M.; Simpson, D.; Broderick, P.; Monaghan, K. Cross-education of strength has a positive impact on post-stroke rehabilitation: A systematic literature review. Top. Stroke Rehabil. 2016, 23, 126–135. [Google Scholar] [CrossRef]
- Fimland, M.S.; Helgerud, J.; Solstad, G.M.; Iversen, V.M.; Leivseth, G.; Hoff, J. Neural adaptations underlying cross-education after unilateral strength training. Eur. J. Appl. Physiol. 2009, 107, 723–730. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Peters, M.D.J.; Godfrey, C.; McInerney, P.; Munn, Z.; Tricco, A.C.; Khalil, H. Scoping Reviews. Available online: https://synthesismanual.jbi.global (accessed on 19 July 2025).
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B.; Group, P.-S. PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Cardozo, L.A.; Velez-Gutierrez, J.M.; Arevalo-Rodriguez, A.; Vargas-Molina, S.; Stout, J.R.; Kreider, R.B.; Petro, J.L. Exercise Selection and Common Injuries in Fitness Centers: A Systematic Integrative Review and Practical Recommendations. Int. J. Environ. Res. Public. Health 2022, 19, 12710. [Google Scholar] [CrossRef] [PubMed]
- Giraldo-Vallejo, J.E.; Cardona-Guzman, M.A.; Rodriguez-Alcivar, E.J.; Koci, J.; Petro, J.L.; Kreider, R.B.; Cannataro, R.; Bonilla, D.A. Nutritional Strategies in the Rehabilitation of Musculoskeletal Injuries in Athletes: A Systematic Integrative Review. Nutrients 2023, 15, 819. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, A.; Mohammadi, S.; Hesari, P.M.; Ghaemi, M.; Riazi, H.; Sheikhi-Mobarakeh, Z. Preliminary guideline for reporting bibliometric reviews of the biomedical literature (BIBLIO): A minimum requirements. Syst. Rev. 2023, 12, 239. [Google Scholar] [CrossRef]
- Payandeh, M.; Daneshmandi, H. Investigating the effect of a cross-training program on the intensity and quality of activity in selected muscles of athletes with anterior cruciate ligament (ACL) injury. J. Bodyw. Mov. Ther. 2025, 42, 265–273. [Google Scholar] [CrossRef]
- Lepley, L.K.; Grooms, D.R.; Burland, J.P.; Davi, S.M.; Mosher, J.L.; Cormier, M.L.; Lepley, A.S. Eccentric cross-exercise after anterior cruciate ligament reconstruction: Novel case series to enhance neuroplasticity. Phys. Ther. Sport. 2018, 34, 55–65. [Google Scholar] [CrossRef]
- Oliveira, M.; Junior, P.L.; Imoto, A.M.; Santos, T.; Borges, J.H.S.; Nunes, P.; Barin, F.R.; Damando, M.; Peccin, M.S. Unilateral Versus Bilateral Resistance Exercise in Postoperative Rehabilitation After ACL Reconstruction With Bone-Patellar Tendon-Bone Graft: A Randomized Controlled Trial. Orthop. J. Sports Med. 2022, 10, 23259671221088830. [Google Scholar] [CrossRef]
- Papandreou, M.G.; Billis, E.V.; Antonogiannakis, E.M.; Papaioannou, N.A. Effect of cross exercise on quadriceps acceleration reaction time and subjective scores (Lysholm questionnaire) following anterior cruciate ligament reconstruction. J. Orthop. Surg. Res. 2009, 4, 2. [Google Scholar] [CrossRef]
- Papandreou, M.; Billis, E.; Papathanasiou, G.; Spyropoulos, P.; Papaioannou, N. Cross-exercise on quadriceps deficit after ACL reconstruction. J. Knee Surg. 2013, 26, 51–58. [Google Scholar] [CrossRef]
- Karimijashni, M.; Sarvestani, F.K.; Yoosefinejad, A.K. The Effect of Contralateral Knee Neuromuscular Exercises on Static and Dynamic Balance, Knee Function, and Pain in Athletes Who Underwent Anterior Cruciate Ligament Reconstruction: A Single-Blind Randomized Controlled Trial. J. Sport. Rehabil. 2023, 32, 524–539. [Google Scholar] [CrossRef] [PubMed]
- Zult, T.; Gokeler, A.; van Raay, J.; Brouwer, R.W.; Zijdewind, I.; Farthing, J.P.; Hortobagyi, T. Cross-education does not improve early and late-phase rehabilitation outcomes after ACL reconstruction: A randomized controlled clinical trial. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, M.; Nikos, P.; Antonogiannakis, E.; Hlias, Z. The effect of cross exercise on quadriceps strength in different knee angles after the anterior cruciate ligament reconstruction. Braz. J. Biomotricity 2007, 1, 123–138. [Google Scholar]
- Liu, C.; Li, S.; Li, J.; Zhang, H.; Li, G.; Jiang, X. The effects of contralateral limb cross-education training on post-surgical rehabilitation outcomes in patients with anterior cruciate ligament reconstruction: A randomized controlled trial. J. Orthop. Surg. Res. 2025, 20, 118. [Google Scholar] [CrossRef]
- Hsieh, C.-P.; Wei, T.-S.; Wu, C.-C. The early effects of isokinetic muscle training on knee joint muscle strength after modified double-bundle anterior cruciate ligament reconstruction. Int. J. Clin. Exp. Med. 2016, 9, 14461–14470. [Google Scholar]
- Irrgang, J.J.; Anderson, A.F.; Boland, A.L.; Harner, C.D.; Kurosaka, M.; Neyret, P.; Richmond, J.C.; Shelborne, K.D. Development and validation of the international knee documentation committee subjective knee form. Am. J. Sports Med. 2001, 29, 600–613. [Google Scholar] [CrossRef]
- Roos, E.M.; Roos, H.P.; Lohmander, L.S.; Ekdahl, C.; Beynnon, B.D. Knee Injury and Osteoarthritis Outcome Score (KOOS)—Development of a self-administered outcome measure. J. Orthop. Sports Phys. Ther. 1998, 28, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.M.; Morrissey, M.C.; Drechsler, W.I.; McDermott, M.; McAuliffe, T.B. Validation of the Hughston Clinic subjective knee questionnaire using gait analysis. Med. Sci. Sports Exerc. 2001, 33, 1456–1462. [Google Scholar] [CrossRef]
- Hendy, A.M.; Teo, W.-P.; Kidgell, D.J. Anodal tDCS prolongs the cross-education of strength and corticomotor plasticity. Med. Sci. Sports Exerc. 2015, 47, 1788–1797. [Google Scholar] [CrossRef]
- Ruddy, K.L.; Leemans, A.; Woolley, D.G.; Wenderoth, N.; Carson, R.G. Structural and functional cortical connectivity mediating cross education of motor function. J. Neurosci. 2017, 37, 2555–2564. [Google Scholar] [CrossRef]
- Stöckel, T.; Carroll, T.J.; Summers, J.J.; Hinder, M.R. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes. J. Neurophysiol. 2016, 116, 575–586. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Herrera-Gonzalez, E.; Bonilla, D.A. Sports injuries as reversible involution: A novel approach to rehabilitation and readaptation. Front. Sports Act. Living 2025, 7, 1519404. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, A.; Bjorklund, M.; Mikko, S.; Hager, C.K. Effects of neuromuscular training on knee proprioception in individuals with anterior cruciate ligament injury: A systematic review and GRADE evidence synthesis. BMJ Open 2021, 11, e049226. [Google Scholar] [CrossRef]
- Humes, C.; Aguero, S.; Chahla, J.; Foad, A. Blood Flow Restriction and Its Function in Post-Operative Anterior Cruciate Ligament Reconstruction Therapy: Expert Opinion. Arch. Bone Jt. Surg. 2020, 8, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Charles, D.; White, R.; Reyes, C.; Palmer, D. A Systematic Review of the Effects of Blood Flow Restriction Training on Quadriceps Muscle Atrophy and Circumference Post Acl Reconstruction. Int. J. Sports Phys. Ther. 2020, 15, 882–891. [Google Scholar] [CrossRef]
- Smith, M.J.; Hoffman, N.J.; Jose, A.J.S.; Burke, L.M.; Opar, D.A. Nutritional Interventions to Attenuate Quadriceps Muscle Deficits following Anterior Cruciate Ligament Injury and Reconstruction. Sports Med. 2025, 55, 569–596. [Google Scholar] [CrossRef] [PubMed]
- Greif, D.N.; Emerson, C.P.; Allegra, P.; Arizpe, A.; Mansour, K.L.; Cade, W.H., 2nd; Baraga, M.G. Supplement Use in Patients Undergoing Anterior Cruciate Ligament Reconstruction: A Systematic Review. Arthroscopy 2020, 36, 2537–2549. [Google Scholar] [CrossRef] [PubMed]
Type of Study | Design | Objectives | Intervention | Outcomes | Key Findings/Conclusions | References |
---|---|---|---|---|---|---|
RCT | 8 weeks, 48 post-ACLR patients (29.5 [6.8] years), n = 16/group (concentric CE, eccentric CE, CON); physically active | Evaluate effects of concentric and eccentric isokinetic contralateral limb training on QF recovery post-ACLR. | MVIC (IsoMed2000), SLHD, IKDC, Tegner. Unilateral isokinetic training (knee extension), 3 times/week, 3 × 12 reps at 60°/s, ROM 10–90°, concentric or eccentric mode. | MVIC (IsoMed2000), SLHD, IKDC | ↑ QF in CE groups vs. CON at week 12 (p = 0.04/0.03) and week 24 (p = 0.01/<0.001); concentric: +28%, eccentric: +31%; no differences in SLHD or IKDC. | Harput et al. (2019) [17] |
RCT | 26 weeks, 43 post-ACLR (EXP = 22, CON = 21; 24 males/19 females), 28 [9] years; physically active (Tegner 7–8); no prior strength training data | Evaluate if adding CE to standard post-ACLR rehabilitation improves subjective knee function and strength recovery through week 26. | EXP group performed unilateral leg press and extension (contralateral CEE), 2 times/week, 3 × 8–12RM, weeks 1–12. Both groups received standard rehabilitation. | KOOS, MVIC (Biodex), HOP, LSI, Tegner | No CE effects on KOOS, QF, HMF or HOP vs. CON. Both groups improved KOOS (−15%), QF (↑5–14%), HMF (↑7–18%) by week 26. | Tjerk Zult et al. (2018) [18] |
RCT | 8 weeks CE, assessed at 10 and 24 weeks, 44 post-ACLR (CE = 22, CON = 22; 25 males/19 females), 31.8 ± 9.7 years; recreational athletes | Investigate immediate (10 wk) and long-term (24 wk) effects of high-intensity CE on strength and function post-ACLR. | CE with knee extension, hamstring curl, and leg press (contralateral limb), 3 times/week, 3 × 3–5RM, 1.5–2 min rest; initiated 2 weeks post-op; CON: stretching | QF, HMF, RFD (custom dynamometer), HOP, IKDC | At 10 weeks: ↓QF operated limb CE = −16.6% vs. CON = −32% (p = 0.004); ↑QF non-operated limb (7% vs. −7%, p < 0.001). No HMF or HOP differences. Similar LSI between groups (QF = 0.86). | Minshull et al. (2021) [23] |
RCT | 26 weeks, 43 post-ACLR (EXP = 22, CON = 21; 24 males/19 females), 28 [9] years; recreational athletes | Examine whether adding CE to standard rehabilitation improves neuromuscular recovery post-ACLR. | EXP: unilateral leg press and extension (contralateral CEE), 2 times/week, 3 × 8–12RM, weeks 1–12; both groups received standard rehab. From weeks 24–36: power/agility training with unilateral jumps and direction changes. | MVIC (Biodex), CAR (IT), QF, HMF, HOP, SLS, SEBT, joint proprioception, Tegner | CE showed no strength/function benefits vs. CON. At week 12, CE ↓ CAR by 6% (p = 0.023) and impaired LSI by 9–10% (p < 0.05). Both groups improved force control (↑13–56%) and dynamic balance (~7%). | Tjerk Zult et al. (2019) [49] |
SR and MA | 7 RCTs included (5 in meta-analysis), 177 post-ACLR patients, 27.98 [2.23] years | Determine effectiveness of uninjured limb unilateral training on muscle strength and knee function post-ACLR. | Unilateral training of healthy limb. Isometric/isotonic/isokinetic strength, 2–5 times/week, 8–26 weeks vs. standard rehab. | MVIC (30–65°), LSI (Q), IKDC, LSI (SHT), self-reported questionnaires | CE improved QF MVIC (SMD = 0.60 to 0.58, p < 0.01); ↑ QF LSI (MD = 0.06, p = 0.01); no effect on HMF LSI (MD = −0.02, p = 0.48). | Iván Cuyúl-Vásquez et al. (2022) [24] |
Clinical trial | 8 weeks, 30 athletes with ACLR (EXP = 15, CON = 15; no sex data), 18–40 years | Investigate CE program effects on muscle activation and movement control in ACLR athletes (≥6 months post-op). | EXP: 3 times/week unilateral strength training (healthy leg) for TA, gas, RF, VM, BF, GM, RA, ES. CON: no structured exercise. | sEMG synchronized with force plate. GRF and COP oscillation analysis, MVIC | ↑ EMG activation in TA, RF, GM during swing; ↑ TA, VM, RF, BF, GM during stance (p < 0.05). ↓ vertical/posterior GRF, ↓ lateral/anterior COP (p < 0.05). | Mostafa Payandeh & Daneshmandi (2025) [43] |
RCT | 6 weeks, 40 post-ACLR (EXP = 20, CON = 20; 22 males/18 females), 33.7 [5.6] years; no strength training data | Assess CE effects on knee function, kinematic parameters, dynamic balance, and plantar pressure post-ACLR. | EXP: CE (healthy limb) + conventional rehab, 3 times/week, progressing unilateral balance/functional tasks. CON: conventional rehab only. | SLS, ROM (goniometer), sEMG (Noraxon), HOP, GRF/COP (Zebris), Lysholm | EXP outperformed CON in Lysholm, ROM, RF activation, step length, ML control, forefoot/rearfoot pressure (p < 0.05); no midfoot/velocity differences. | Liu et al. (2025) [51] |
RCT | 8 weeks, 88 post-ACLR (EXP = 44, CON = 44; 59 males/29 females), 28–29 years, active ≥3x/week | Compare unilateral vs. bilateral isotonic exercises for functional/strength symmetry post-ACLR with contralateral BPTB graft. | EXP: unilateral strength (donor leg) 2 times/week, 3 × 12 reps (press, terminal extension, leg ext., SLR, lunge). CON: bilateral equivalent. | MVIC (Biodex, 60°/s), H:Q, ROM (goniometer), laxity (KT-1000), HOP, Lysholm | EXP showed ↑ interlimb symmetry in peak torque, H:Q, HOP (p < 0.001). Greater donor-leg gains. CON improved reconstructed leg more. | Marcio Oliveira et al. (2022) [45] |
RCT | 8 weeks, 30 male athletes post-ACLR (EXP = 15, CON = 15), 27.5 [4.6] years; no strength training data | Evaluate contralateral neuromuscular exercises on static/dynamic balance, knee function, and pain post-ACLR. | EXP: CE 4 times/week, 30 min/session (unilateral balance on stable/unstable surfaces with arm tasks). CON: conventional PT. | SEBT, BESS, Stork test, Lysholm | EXP improved SEBT (ant/post/med/lat; p < 0.05), BESS (4 stances; p < 0.05), Stork (p = 0.044), ↓ VAS (p = 0.014). No Lysholm changes (p = 0.71). | Motahareh Karimijashni et al. (2023) [48] |
Case Study | 8 weeks, 5 post-ACLR (3 males/2 females), 16–21 years | Describe eccentric CE effects on neuroplasticity/perceived outcomes post-ACLR. | 24 sessions (3 times/week), 4 × 10 eccentric isokinetic contractions at 60°/s (0–90° ROM) in healthy leg (≥60% 1RM); ACLR-free. | fMRI (brain activation), H-reflex (SRE), TMS (CSE), KOOS, TSK, IKDC, Tegner, qualitative interviews | ↑ spinal (H:M ratio +57%) and cortical excitability (MEP +235%); ↓ frontal activity (fMRI); ↑ KOOS QOL (163%), ADL (136%), Sport (3076%). | Lepley et al. (2018) [44] |
RCT | 8 weeks, 42 soldiers post-ACLR (3 groups: 14 each; males only), 20–25 years; no strength training data | Compare 3 vs. 5 days/week CEE effects on CLL deficit post-ACLR. | CEE (healthy leg ext.) at 3x/week (G1) or 5 times/week (G2); 5 × 6 reps at 80% 1RM, 2 min rest. CON: standard rehab. | Isometric MVIC (KinCom AT+) at 60°; QF and QD pre/post. | CLL deficit post-CEE: G1 = 27.95%, G2 = 29.82%, CON = 53% (p < 0.05); G1/G2 ↑ healthy-leg CLL (22.7%/18%), ↓ injured-leg CLL (16.25%/6.3%). | Papandreou et al. (2013) [47] |
RCT | 8 weeks, 42 soldiers post-ACLR (CE 3x/week = 14, CE 5x/week = 14, CON = 14; males only), 20–25 | Investigate CEE (3 vs. 5 days/week) effects on ART and Lysholm early post-ACLR. | CEE (unilateral leg ext.) at 3 or 5 days/week, 5 × 6 reps at 80% 1RM; all groups received conventional rehab. | Isometric MVIC (KinCom AT+), ART at 45°/60°/90°, Lysholm | CE 3 times/week improved ART at 90° vs. CON (p = 0.01); no differences at 45°/60°. Lysholm ↑ in CE 3 times/week (Δ+7.5, p < 0.01) and CE 5 times/week (Δ+3.78, p = 0.03) vs. CON. | Papandreou et al. (2009) [46] |
RCT | 8 weeks, 42 soldiers post-ACLR (CE 3x/week = 14, CE 5x/week = 14, CON = 14; males only), 20–25 years | Assess CEE effects on isometric QF at 45°/90° early post-ACLR, comparing 3 vs. 5 days/week. | CEE (healthy-leg unilateral ext.) at 3 or 5 times/week, 5 × 6 reps at 80% 1RM. Both groups received standard rehab. | Isometric MVIC (KinCom AT+) at 45°/90° | CE 3 times/week showed ↑ QF vs. CON at 45° (Δ98.4 Nm, p = 0.02) and 90° (Δ119.8 Nm, p < 0.01); no differences between CE groups. | Papandreou et al. (2007) [50] |
RCT | 10 weeks (6 weeks conventional rehab + 4 weeks intervention), 46 post-ACLR (EXP = 26, CON = 20), 30.9 [9.3] years | Determine if added isokinetic training improves knee strength/function post-arthroscopic ACLR. | EXP: 2 times/week, 3 × 20 reps at 180°/s (concentric), operated leg. H:Q torque. Both groups completed the initial 6-week conventional rehab. | MVIC (Biodex 3), ROM (Biodex), VAS, Lysholm, time-to-peak torque, torque variance, H:Q | EXP ↑ extension/flexion torque (30°/60°), ↓ extension torque variance, ↓ H:Q (30°); ↑ flexion ROM (Δ32°, p = 0.026), ↑ extension ROM (Δ−4.58°, p = 0.044); no Lysholm/VAS differences | Cheng-Pu Hsieh et al., (2016) [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vélez-Gutiérrez, J.M.; Rojas-Jaramillo, A.; Ascuntar-Viteri, J.D.; Quintero, J.D.; García-Muro San José, F.; Bazuelo-Ruiz, B.; Cannataro, R.; Bonilla, D.A. Functional and Neuroplastic Effects of Cross-Education in Anterior Cruciate Ligament Rehabilitation: A Scoping Review with Bibliometric Analysis. Appl. Sci. 2025, 15, 8641. https://doi.org/10.3390/app15158641
Vélez-Gutiérrez JM, Rojas-Jaramillo A, Ascuntar-Viteri JD, Quintero JD, García-Muro San José F, Bazuelo-Ruiz B, Cannataro R, Bonilla DA. Functional and Neuroplastic Effects of Cross-Education in Anterior Cruciate Ligament Rehabilitation: A Scoping Review with Bibliometric Analysis. Applied Sciences. 2025; 15(15):8641. https://doi.org/10.3390/app15158641
Chicago/Turabian StyleVélez-Gutiérrez, Jorge M., Andrés Rojas-Jaramillo, Juan D. Ascuntar-Viteri, Juan D. Quintero, Francisco García-Muro San José, Bruno Bazuelo-Ruiz, Roberto Cannataro, and Diego A. Bonilla. 2025. "Functional and Neuroplastic Effects of Cross-Education in Anterior Cruciate Ligament Rehabilitation: A Scoping Review with Bibliometric Analysis" Applied Sciences 15, no. 15: 8641. https://doi.org/10.3390/app15158641
APA StyleVélez-Gutiérrez, J. M., Rojas-Jaramillo, A., Ascuntar-Viteri, J. D., Quintero, J. D., García-Muro San José, F., Bazuelo-Ruiz, B., Cannataro, R., & Bonilla, D. A. (2025). Functional and Neuroplastic Effects of Cross-Education in Anterior Cruciate Ligament Rehabilitation: A Scoping Review with Bibliometric Analysis. Applied Sciences, 15(15), 8641. https://doi.org/10.3390/app15158641