Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = multi-pumping flow system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6663 KB  
Article
Vortex-Induced Vibration of Deep-Sea Mining Riser Under Different Currents and Tension Conditions Using Wake Oscillator Model
by Liwen Deng, Haining Lu, Jianmin Yang, Rui Guo, Bei Zhang and Pengfei Sun
J. Mar. Sci. Eng. 2025, 13(8), 1565; https://doi.org/10.3390/jmse13081565 - 15 Aug 2025
Viewed by 381
Abstract
The vortex-induced vibration (VIV) dynamics of commercial-scale deep-sea mining risers with complex component arrangements (pumps, buffer stations, buoyancy modules) remain insufficiently explored, especially for 6000 m systems with nonlinear tension. This study investigates VIV control strategy by adjusting tension for a nonlinear riser [...] Read more.
The vortex-induced vibration (VIV) dynamics of commercial-scale deep-sea mining risers with complex component arrangements (pumps, buffer stations, buoyancy modules) remain insufficiently explored, especially for 6000 m systems with nonlinear tension. This study investigates VIV control strategy by adjusting tension for a nonlinear riser system using the Iwan-Blevins wake oscillator model integrated with Morison equation-based analysis. An analytical model incorporating four typical current profiles was established to quantify the dynamic response under different flow velocities, internal flow density, and structural parameters. Increased buffer station mass effectively suppressed drift distance (over 35% reduction under specific conditions) by regulating axial tension. Dynamic comparisons demonstrated distinct VIV energy distribution patterns under different current conditions. Spectral analysis revealed that the vibration follows Strouhal vortex shedding lock-in principles. Spatial modal differentiation was observed due to nonlinear variations in velocity profiles, pipe diameters, and axial tension, accompanied by multi-frequency resonance, coexistence of standing and traveling waves, and broadband resonance with amplitude surges under critical velocities (1.75 m/s in Current-B). This study proposes to control the VIV amplitude by adjusting internal flow density and buffer mass, which is proved effective for reducing vibrations in upper (0–2000 m) risers. It validates vibration amplitude and frequency control through current velocity, buffer mass and slurry density regulation in a nonlinear riser system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 7337 KB  
Article
The Study and Determination of Rational Hydraulic Parameters of a Prototype Multi-Gear Pump
by Olga Zharkevich, Alexandra Berg, Olga Reshetnikova, Andrey Berg, Oxana Nurzhanova, Asset Altynbayev, Darkhan Zhunuspekov and Oleg Stukach
Fluids 2025, 10(8), 211; https://doi.org/10.3390/fluids10080211 - 11 Aug 2025
Viewed by 331
Abstract
This article presents a comprehensive experimental and theoretical study and substantiation of the hydraulic parameters of a prototype multi-gear pump. The proposed pump design, which features one drive gear and four driven gears, aims to address the common disadvantages of traditional gear pumps, [...] Read more.
This article presents a comprehensive experimental and theoretical study and substantiation of the hydraulic parameters of a prototype multi-gear pump. The proposed pump design, which features one drive gear and four driven gears, aims to address the common disadvantages of traditional gear pumps, including radial force imbalance, uneven flow, high acoustic noise, and increased fluid leakage. Tests of the prototype multi-stage pump were conducted on a specialized test stand in the “Hydraulics” workshop of “Hansa-Flex Hydraulik Almaty” LLP. Experimental analysis, supported by theoretical calculations, established the optimal operating speed range for the prototype to be between 900 and 1450 rpm, with the volumetric efficiency remaining stable between 70% and 88% when using VMGZ hydraulic oil (45 cSt). A significant deterioration in performance, including a sharp drop in volumetric efficiency to 30% and a decrease in the pressure generated, was observed at rotational speeds below 900 rpm due to an increase in internal leaks. In addition, this study examined the effect of kinematic viscosity, which revealed a 15–20% decrease in performance and power when using a fluid with lower viscosity (15 cSt) with a slight increase in noise level. This study also examines in detail the linear relationship between useful power and pressure in the system and analyzes noise characteristics under various operating conditions. Full article
(This article belongs to the Section Non-Newtonian and Complex Fluids)
Show Figures

Figure 1

14 pages, 1747 KB  
Article
The Importance of Using Multi-Level Piezometers to Improve the Estimation of Aquifer Properties from Pumping Tests in Complex Heterogeneous Aquifers
by Majdi Mansour, Stephen Walthall and Andrew Hughes
Water 2025, 17(15), 2338; https://doi.org/10.3390/w17152338 - 6 Aug 2025
Viewed by 346
Abstract
Reliable estimates of aquifer properties are needed for groundwater resources management and for engineering applications. Pumping tests conducted in fractured aquifers using an open borehole may not produce a proper characterization of the aquifer properties leading to the failure of engineering solutions. In [...] Read more.
Reliable estimates of aquifer properties are needed for groundwater resources management and for engineering applications. Pumping tests conducted in fractured aquifers using an open borehole may not produce a proper characterization of the aquifer properties leading to the failure of engineering solutions. In this work, we apply a radial flow model to reproduce the time drawdown curves recorded at an observation borehole instrumented with multi-level piezometers drilled in the Permo-Triassic sandstone, which is a complex fractured hydraulic unit. The radial flow model and the optimization code PEST are used to estimate the aquifer hydraulic parameter values. The model is then used to investigate the implications of replacing the multi-level piezometers with an open borehole. The results show that the open borehole does not only significantly alter the groundwater head and flow patterns around the borehole, but the analysis of the time drawdown curve obtained would produce estimates of aquifer properties that bear no relationship with the actual hydraulic properties of the aquifer. For engineering control studies, the pumping test must be carefully designed to account for the presence of fractures, and these must be represented in the analysis tools to ensure the correct characterization of the hydraulic system. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 4352 KB  
Article
Research on Startup Characteristics of Parallel Axial-Flow Pump Systems
by Chao Yang, Chao Li, Lingling Deng and You Fu
Water 2025, 17(15), 2285; https://doi.org/10.3390/w17152285 - 31 Jul 2025
Viewed by 249
Abstract
This study takes four parallel axial-flow pumps (three in operation + one on standby) as the research object. Using a 1D–3D coupling method, it explores the flow characteristics of axial-flow pumps under different startup strategies during multi-pump parallel operation. Through comparative analysis, the [...] Read more.
This study takes four parallel axial-flow pumps (three in operation + one on standby) as the research object. Using a 1D–3D coupling method, it explores the flow characteristics of axial-flow pumps under different startup strategies during multi-pump parallel operation. Through comparative analysis, the following conclusions are drawn: when all three pumps start simultaneously, the internal pressure exceeds the rated head by 23.43%, and the reverse flow reaches 10.57% of the rated flow. When starting the pumps sequentially with 5 s intervals, the pressure can be reduced to 11.41% above the rated head, but the reverse flow increases to 13.87%. Further extending the startup interval to 15 s results in only minimal improvements compared to 5 s intervals: the maximum internal pressure and maximum reverse flow decrease by just 0.97% and 0.05%, respectively. When valve coordination is added to the 5 s sequential startup strategy (pre-opening the valve to 60% before pump startup), the pressure exceeds the rated head by 10.49%, and the reverse flow exceeds the rated flow by 6.04%. In this scenario, the high-pressure areas and high-turbulence zones on the blade back surfaces are significantly reduced, achieving optimal flow stability. Therefore, the parallel system startup should adopt a coordinated strategy combining moderate time intervals with 60% valve pre-opening. This approach can both avoid excessive pressure impact and effectively control reverse flow phenomena, providing an important basis for optimizing the startup of multi-pump parallel systems. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

27 pages, 6704 KB  
Article
Dynamic Characteristics of a Digital Hydraulic Drive System for an Emergency Drainage Pump Under Alternating Loads
by Yong Zhu, Yinghao Liu, Qingyi Wu and Qiang Gao
Machines 2025, 13(8), 636; https://doi.org/10.3390/machines13080636 - 22 Jul 2025
Viewed by 319
Abstract
With the frequent occurrence of global floods, the demand for emergency rescue equipment has grown rapidly. The development and technological innovation of digital hydraulic drive systems (DHDSs) for emergency drainage pumps (EDPs) have become key to improving rescue efficiency. However, EDPs are prone [...] Read more.
With the frequent occurrence of global floods, the demand for emergency rescue equipment has grown rapidly. The development and technological innovation of digital hydraulic drive systems (DHDSs) for emergency drainage pumps (EDPs) have become key to improving rescue efficiency. However, EDPs are prone to being affected by random and uncertain loads during operation. To achieve intelligent and efficient rescue operations, a DHDS suitable for EDPs was proposed. Firstly, the configuration and operation mode of the DHDS for EDPs were analyzed. Based on this, a multi-field coupling dynamic simulation platform for the DHDS was constructed. Secondly, the output characteristics of the system under alternating loads were simulated and analyzed. Finally, a test platform for the EDP DHDS was established, and the dynamic characteristics of the system under alternating loads were explored. The results show that as the load torque of the alternating loads increases, the amplitude of the pressure of the motor also increases, the output flow of the hydraulic-controlled proportional reversing valve (HCPRV) changes slightly, and the fluctuation range of the rotational speed of the motor increases. The fluctuation range of the pressure and the rotational speed of the motor are basically not affected by the frequency of alternating loads, but the fluctuation amplitude of the output flow of the HCPRV reduces with the increase in the frequency of alternating loads. This system can respond to changes in load relatively quickly under alternating loads and can return to a stable state in a short time. It has laudable anti-interference ability and output stability. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

15 pages, 5152 KB  
Article
Hydraulic Performance and Flow Characteristics of a High-Speed Centrifugal Pump Based on Multi-Objective Optimization
by Yifu Hou and Rong Xue
Fluids 2025, 10(7), 174; https://doi.org/10.3390/fluids10070174 - 2 Jul 2025
Cited by 1 | Viewed by 396
Abstract
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller [...] Read more.
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller size while maintaining hydraulic performance, thereby significantly decreasing the overall volume and mass. However, high-speed operation introduces considerable internal flow losses, placing stricter demands on the geometric design and flow-field compatibility of the impeller. In this study, a miniature high-speed centrifugal pump (MHCP) was investigated, and a multi-objective optimization of the impeller was carried out using response surface methodology (RSM) to improve internal flow characteristics and overall hydraulic performance. Numerical simulations demonstrated strong predictive capability, and experimental results validated the model’s accuracy. At the design condition (10,000 rpm, 4.8 m3/h), the pump achieved a head of 46.1 m and an efficiency of 49.7%, corresponding to its best efficiency point (BEP). Sensitivity analysis revealed that impeller outlet diameter and blade outlet angle were the most influential parameters affecting pump performance. Following the optimization, the pump head increased by 3.7 m, and the hydraulic efficiency improved by 4.8%. In addition, the pressure distribution and streamlines within the impeller exhibited better uniformity, while the turbulent kinetic energy near the blade suction surface and at the impeller outlet was markedly decreased. This work provides theoretical support and design guidance for the efficient application of MHCPs in UAV thermal management systems. Full article
Show Figures

Figure 1

15 pages, 1396 KB  
Article
Modeling and Key Parameter Interaction Analysis for Ship Central Cooling Systems
by Xin Wu, Ping Zhang, Pan Su and Jiechang Wu
Appl. Sci. 2025, 15(13), 7241; https://doi.org/10.3390/app15137241 - 27 Jun 2025
Viewed by 305
Abstract
To achieve efficient prediction and optimization of the energy consumption of ship central cooling systems, this paper first constructed and validated a high-precision multi-physical domain simulation model of the ship central cooling system based on fluid heat transfer principles and the physical network [...] Read more.
To achieve efficient prediction and optimization of the energy consumption of ship central cooling systems, this paper first constructed and validated a high-precision multi-physical domain simulation model of the ship central cooling system based on fluid heat transfer principles and the physical network method. Then, simulation experiments were designed using the Box–Behnken design (BBD) method to study the effects of five key parameters—main engine power, seawater temperature, seawater pump speed, low-temperature fresh water three-way valve opening, and low-temperature fresh water flow rate—on system energy consumption. Based on the simulation data, an energy consumption prediction model was constructed using response surface methodology (RSM). This prediction model exhibited excellent goodness of fit and prediction ability (coefficient of determination R2 = 0.9688, adjusted R2adj = 0.9438, predicted R2pred = 0.8752), with a maximum relative error of only 1.2% compared to the simulation data, confirming its high accuracy. Sensitivity analysis based on this prediction model indicated that main engine power, seawater pump speed, seawater temperature, and three-way valve opening were the dominant single factors affecting energy consumption. Further analysis revealed a significant interaction between main engine power and seawater pump speed. This interaction resulted in non-linear changes in system energy consumption, which were particularly prominent under operating conditions such as high power. This study provides an accurate prediction model and theoretical guidance on the influence patterns of key parameters for the simulation-driven design, operational optimization, and energy saving of ship central cooling systems. Full article
(This article belongs to the Special Issue Nonlinear Dynamics in Mechanical Engineering and Thermal Engineering)
Show Figures

Figure 1

20 pages, 2832 KB  
Article
Short-Term Optimal Scheduling of Pumped-Storage Units via DDPG with AOS-LSTM Flow-Curve Fitting
by Xiaoyao Ma, Hong Pan, Yuan Zheng, Chenyang Hang, Xin Wu and Liting Li
Water 2025, 17(13), 1842; https://doi.org/10.3390/w17131842 - 20 Jun 2025
Viewed by 427
Abstract
The short-term scheduling of pumped-storage hydropower plants is characterised by high dimensionality and nonlinearity and is subject to multiple operational constraints. This study proposes an intelligent scheduling framework that integrates an Atomic Orbital Search (AOS)-optimised Long Short-Term Memory (LSTM) network with the Deep [...] Read more.
The short-term scheduling of pumped-storage hydropower plants is characterised by high dimensionality and nonlinearity and is subject to multiple operational constraints. This study proposes an intelligent scheduling framework that integrates an Atomic Orbital Search (AOS)-optimised Long Short-Term Memory (LSTM) network with the Deep Deterministic Policy Gradient (DDPG) algorithm to minimise water consumption during the generation period while satisfying constraints such as system load and safety states. Firstly, the AOS-LSTM model simultaneously optimises the number of hidden neurons, batch size, and training epochs to achieve high-precision fitting of unit flow–efficiency characteristic curves, reducing the fitting error by more than 65.35% compared with traditional methods. Subsequently, the high-precision fitted curves are embedded into a Markov decision process to guide DDPG in performing constraint-aware load scheduling. Under a typical daily load scenario, the proposed scheduling framework achieves fast inference decisions within 1 s, reducing water consumption by 0.85%, 1.78%, and 2.36% compared to standard DDPG, Particle Swarm Optimisation, and Dynamic Programming methods, respectively. In addition, only two vibration-zone operations and two vibration-zone crossings are recorded, representing a reduction of more than 90% compared with the above two traditional optimisation methods, significantly improving scheduling safety and operational stability. The results validate the proposed method’s economic efficiency and reliability in high-dimensional, multi-constraint pumped-storage scheduling problems and provide strong technical support for intelligent scheduling systems. Full article
Show Figures

Figure 1

20 pages, 2692 KB  
Article
Hydraulic Disconnection Between Aquifers: Assessing the Hydrogeologic Controls on Inter-Aquifer Exchange and Induced Recharge in Pumped, Multi-Aquifer Systems
by Kristen E. Cognac and Michael J. Ronayne
Water 2025, 17(11), 1635; https://doi.org/10.3390/w17111635 - 28 May 2025
Viewed by 552
Abstract
Unprecedented, long-term pumping is occurring in aquifers worldwide, necessitating a greater understanding of the impacts from significant water table drawdown. Drawdown-induced hydraulic disconnection can significantly alter rates of inter-aquifer exchange and recharge, yet it remains an understudied phenomenon in multi-aquifer systems. This study [...] Read more.
Unprecedented, long-term pumping is occurring in aquifers worldwide, necessitating a greater understanding of the impacts from significant water table drawdown. Drawdown-induced hydraulic disconnection can significantly alter rates of inter-aquifer exchange and recharge, yet it remains an understudied phenomenon in multi-aquifer systems. This study investigates the potential for drawdown-induced hydraulic disconnection and its impact on inter-aquifer fluxes between a perennially recharged alluvial aquifer and a heavily pumped bedrock aquifer. We employed three-dimensional, transient, variably saturated flow modeling, incorporating multiple realizations of varying sandstone channel fraction (20–75%), to simulate evolving saturation patterns and alluvium-to-bedrock (A-B) flow rates. The results demonstrate the initiation and propagation of inter-aquifer unsaturated zones within sandstone channels underlying thinner low-permeability mudstones, leading to a substantial reduction in A-B flow, with the normalized flow response function (ABRF) decreasing by up to 98%. Complex saturation patterns, dictated by sandstone–mudstone heterogeneity, emerged as controls for water table elevation, disconnection status, and flow pathways. Multiple linear regression (R2 up to 0.88) identified the bedrock aquifer sandstone fraction and the vertical span of saturated, connected channels as significant predictors of maximum A-B flow. Substantial variability in maximum A-B flow rates across scenarios with identical sandstone fractions (coefficient of variation 0.17 to 0.29) demonstrates the impact of geologic heterogeneity and saturation state on inter-aquifer exchange rates. The results of this study illustrate that hydraulic disconnection is not limited to near-surface environments and that geologic heterogeneity is a key factor controlling inter-aquifer fluxes in heavily pumped multi-aquifer systems. Full article
(This article belongs to the Special Issue Groundwater Flow and Transport Modeling in Aquifer Systems)
Show Figures

Figure 1

28 pages, 5361 KB  
Article
Small-Disturbance Stability Analysis of Doubly Fed Variable-Speed Pumped Storage Units
by Xiangyang Yu, Yujie Cui, Hao Qi, Chunyang Gao, Ziming He and Haipeng Nan
Energies 2025, 18(11), 2796; https://doi.org/10.3390/en18112796 - 27 May 2025
Viewed by 322
Abstract
The variable-speed operation mode of pumped storage units improves the regulation performance and endows the units with characteristics such as isolation from the power grid, thereby affecting the system stability. This study establishes a detailed mathematical model for the connection of doubly fed [...] Read more.
The variable-speed operation mode of pumped storage units improves the regulation performance and endows the units with characteristics such as isolation from the power grid, thereby affecting the system stability. This study establishes a detailed mathematical model for the connection of doubly fed induction generator-based variable-speed pumped storage (DFIG-VSPS) to a single-machine infinite bus system under power generation conditions in the synchronous rotation direct-quadrature-zero coordinate system. The introduction of the eigenvalue method to analyze the small-disturbance stability of doubly fed variable-speed pumped storage units and the use of participation factors to calculate the degree of influence of each state variable on the small-disturbance stability of the units are innovations of this study. The participation factor enhances flexibility, continuity, and efficiency in doubly fed variable-speed pumped storage by optimizing dynamic power paths and enabling multi-objective control coordination. While eigenvalue analysis is not new, this study is the first to apply it with participation factors to DFIG-VSPS, addressing gaps in prior simplified models. Furthermore, based on the changes in the characteristic root trajectories, the influence of changes in the speed control system parameters and converter controller parameters on the system stability was determined. Finally, the conclusions obtained were verified through simulation. The results indicate that increasing the time constant of water flow inertia poses a risk of system instability, and the increase in proportional parameters and decrease in integral parameters of the power outer loop controller significantly affect the system stability. Full article
Show Figures

Figure 1

28 pages, 6148 KB  
Article
The Utilization of a 3D Groundwater Flow and Transport Model for a Qualitative Investigation of Groundwater Salinization in the Ca Mau Peninsula (Mekong Delta, Vietnam)
by Tran Viet Hoan, Karl-Gerd Richter, Felix Dörr, Jonas Bauer, Nicolas Börsig, Anke Steinel, Van Thi Mai Le, Van Cam Pham, Don Van Than and Stefan Norra
Hydrology 2025, 12(5), 126; https://doi.org/10.3390/hydrology12050126 - 20 May 2025
Viewed by 900
Abstract
The Ca Mau Peninsula (CMP), the southernmost region of the Mekong Delta, is increasingly threatened by groundwater salinization, posing severe risks to both the freshwater supply and land sustainability. This study develops a three-dimensional, density-dependent groundwater flow and salinity transport model to investigate [...] Read more.
The Ca Mau Peninsula (CMP), the southernmost region of the Mekong Delta, is increasingly threatened by groundwater salinization, posing severe risks to both the freshwater supply and land sustainability. This study develops a three-dimensional, density-dependent groundwater flow and salinity transport model to investigate salinization dynamics across the CMP’s complex multi-aquifer system. Unlike previous studies that largely rely on model calibration, this research introduces a novel approach by systematically deriving the spatial distribution of longitudinal dispersivity based on sediment characteristics. Moreover, detailed land use mapping is integrated to assign spatially and temporally variable Total Dissolved Solids (TDS) values to the uppermost layers, thereby enhancing the model realism in areas where monitoring data are limited. The model was utilized not only to simulate the regional salinity evolution, but also to critically evaluate conceptual hypotheses related to the mechanisms driving groundwater salinization. Results reveal a strong influence of seasonal and land use factors on salinity variability in the upper aquifers, while deeper aquifers remain largely stable, affected primarily by paleosalinity and localized pumping. This integrated modeling approach contributes to a better understanding of regional-scale groundwater salinization and highlights both the potential and the limitations of numerical modeling under data-scarce conditions. The findings provide a valuable scientific basis for adaptive water resource management in vulnerable coastal zones. Full article
(This article belongs to the Topic Advances in Hydrogeological Research)
Show Figures

Figure 1

22 pages, 4478 KB  
Article
Optimization Design of Drip Irrigation System Pipe Network Based on PSO-GA: A Case Study of Northwest China
by Meng Li, Dan Bai and Li Li
Processes 2025, 13(5), 1485; https://doi.org/10.3390/pr13051485 - 12 May 2025
Viewed by 758
Abstract
Implementing drip irrigation technology in water-scarce regions is a key development direction for modern agriculture. This paper proposes a multi-constraint optimization model based on a particle swarm optimization-genetic algorithm (PSO-GA) to minimize the annual cost of construction, energy consumption, and maintenance of a [...] Read more.
Implementing drip irrigation technology in water-scarce regions is a key development direction for modern agriculture. This paper proposes a multi-constraint optimization model based on a particle swarm optimization-genetic algorithm (PSO-GA) to minimize the annual cost of construction, energy consumption, and maintenance of a drip irrigation pipe network. This case study shows that the PSO-GA is significantly better than the traditional empirical method, particle swarm optimization (PSO), the genetic algorithm (GA), and an Atom Search Optimization (ASO) algorithm in the optimization of the pipeline’s network parameters, and the total annual cost is reduced by 21.2%, 15.9%, 7.5%, and 6.3%, respectively. The average total cost of the PSO-GA is 166,200 yuan/year, and the constraint satisfaction rate for the node pressure and flow rate is better than that with a single algorithm. After optimization, the diameter of the main pipe in the pipe network is gradually reduced from 200 mm to 160 mm, the number of branch pipes is reduced from five to four, the pump head is reduced by 25.7%, and the cost of energy consumption is reduced by 26.7%. This study provides a powerful optimization tool for drip irrigation system designers to achieve efficient optimization of the parameters and costs of drip irrigation systems. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

14 pages, 5265 KB  
Article
Research on Output Performance of Linear Motor Reciprocating Pump Based on Mechanical-Hydraulic-Load Coupling Model
by Jinbo Xiang, Zhiqiang Wang, Lihong Li, Ziwei Qi and Xiaopeng Yue
Machines 2025, 13(5), 381; https://doi.org/10.3390/machines13050381 - 30 Apr 2025
Viewed by 441
Abstract
To study the output performance of the multi-unit linear motor reciprocating pump group, a mechanical-hydraulic-load coupling model was established based on the electromagnetic output model of the linear oscillating motor and the load model of the hydraulic pump system. The dynamic characteristics of [...] Read more.
To study the output performance of the multi-unit linear motor reciprocating pump group, a mechanical-hydraulic-load coupling model was established based on the electromagnetic output model of the linear oscillating motor and the load model of the hydraulic pump system. The dynamic characteristics of the multi-unit linear motor reciprocating pump and the output performance under different input signal parameters were studied using the AMEsim-Simulink co-simulation method, and the validity of the simulation model was verified by the prototype output performance experiment. The analysis result indicates that the parameters of the input signal have a greater impact on the performance of the linear motor reciprocating pump. And the sine wave signal is more suitable as the control signal of the linear motor reciprocating pump, while the staggered parallel mode can greatly reduce the flow output pulsation rate of the even number pump group. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

37 pages, 8933 KB  
Review
Integrated Energy Storage Systems for Enhanced Grid Efficiency: A Comprehensive Review of Technologies and Applications
by Raphael I. Areola, Abayomi A. Adebiyi and Katleho Moloi
Energies 2025, 18(7), 1848; https://doi.org/10.3390/en18071848 - 6 Apr 2025
Cited by 2 | Viewed by 2903
Abstract
The rapid global shift toward renewable energy necessitates innovative solutions to address the intermittency and variability of solar and wind power. This study presents a comprehensive review and framework for deploying Integrated Energy Storage Systems (IESSs) to enhance grid efficiency and stability. By [...] Read more.
The rapid global shift toward renewable energy necessitates innovative solutions to address the intermittency and variability of solar and wind power. This study presents a comprehensive review and framework for deploying Integrated Energy Storage Systems (IESSs) to enhance grid efficiency and stability. By leveraging a Multi-Criteria Decision Analysis (MCDA) framework, this study synthesizes techno-economic optimization, lifecycle emissions, and policy frameworks to evaluate storage technologies such as lithium-ion batteries, pumped hydro storage, and vanadium flow batteries. The framework prioritizes hybrid storage systems (e.g., battery–supercapacitor configurations), demonstrating 15% higher grid stability in high-renewable penetration scenarios, and validates findings through global case studies, including the Hornsdale Power Reserve (90–95% round-trip efficiency) and Kauai Island Utility Cooperative (15,000+ cycles for flow batteries). Regionally tailored strategies, such as Kenya’s fast-track licensing and Germany’s H2Global auctions, reduce deployment timelines by 30–40%, while equity-focused policies like India’s SAUBHAGYA scheme cut energy poverty by 25%. This study emphasizes circular economy principles, advocating for mandates like the EU’s 70% lithium recovery target to reduce raw material costs by 40%. Despite reliance on static cost projections and evolving regulatory landscapes, the MCDA framework’s dynamic adaptation mechanisms, including sensitivity analysis for carbon taxes (USD 100/ton CO2-eq boosts hydrogen viability by 25%), ensure scalability across diverse grids. This work bridges critical gaps in renewable energy integration, offering actionable insights for policymakers and grid operators to achieve resilient, low-carbon energy systems. Full article
Show Figures

Figure 1

15 pages, 1984 KB  
Article
A Numerical Simulation Study of Complex Multi-Source Groundwater Based on PKAN
by Lei Feng and Jun Wang
Water 2025, 17(7), 1075; https://doi.org/10.3390/w17071075 - 3 Apr 2025
Viewed by 522
Abstract
Groundwater flow problems involve complex nonlinear and spatiotemporal characteristics, where traditional numerical methods (e.g., finite element, finite difference) often encounter challenges such as low computational efficiency and insufficient accuracy when dealing with complex boundary conditions and heterogeneous media. To address these issues, this [...] Read more.
Groundwater flow problems involve complex nonlinear and spatiotemporal characteristics, where traditional numerical methods (e.g., finite element, finite difference) often encounter challenges such as low computational efficiency and insufficient accuracy when dealing with complex boundary conditions and heterogeneous media. To address these issues, this study proposes a novel physics-informed Kolmogorov–Arnold network (PKAN) framework that combines the unique variable decomposition mechanism of KAN networks with physical constraints. The framework introduces three key innovations: (1) implementing KAN network’s univariate function decomposition to enhance the network’s ability to express nonlinear features; (2) designing a pre-training network mechanism to effectively handle complex boundary conditions; and (3) innovatively incorporating a distance function to achieve natural transition from boundary to interior solutions. The results demonstrate that in one-dimensional heterogeneous medium transient simulation, PKAN achieves superior prediction accuracy (R2 = 0.9966, RMSE = 0.0313) compared to traditional PINN (R2 = −0.7194, RMSE = 0.7001). In two-dimensional multi-well pumping system simulations, PKAN (R2 = 0.917, RMSE = 0.077) similarly exhibits exceptional performance (PINN: R2 = −0.3043, RMSE = 0.3067). Notably, in handling local strong gradient problems, PKAN accurately captures cone of depression characteristics and precisely reproduces inter-well interference effects, with maximum error only one-fourth that of traditional PINN. Sensitivity analysis reveals that a configuration of 50 × 50 uniform sampling points combined with four hidden layers and 64 neurons per layer achieves optimal balance between computational efficiency and simulation accuracy. These findings demonstrate PKAN’s breakthrough in groundwater numerical simulation, offering a novel approach for the efficient solution of complex hydrogeological problems. Full article
Show Figures

Figure 1

Back to TopTop