Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (448)

Search Parameters:
Keywords = mountainous county

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 187
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

35 pages, 5094 KiB  
Article
Analysis of Influencing Factors on Spatial Distribution Characteristics of Traditional Villages in the Liaoxi Corridor
by Han Cao and Eunyoung Kim
Land 2025, 14(8), 1572; https://doi.org/10.3390/land14081572 - 31 Jul 2025
Viewed by 215
Abstract
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the [...] Read more.
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the historical heritage of multicultural intermingling. This study fills the gap in the spatial distribution of traditional villages in the Liaoxi Corridor and reveals their spatial distribution pattern, which is of great theoretical significance. Using Geographic Information System (GIS) spatial analysis and quantitative geography, this study analyzes the spatial pattern of traditional villages and the influencing factors. The results show that traditional villages in the Liaoxi Corridor are clustered, forming high-density settlement areas in Chaoyang County and Beizhen City. Most villages are located in hilly and mountainous areas and river valleys and are affected by the natural geographic environment (topography and water sources) and historical and human factors (immigration and settlement, border defense, ethnic integration, etc.). In conclusion, this study provides a scientific basis and practical reference for rural revitalization, cultural heritage protection, and regional coordinated development, aiming at revealing the geographical and cultural mechanisms behind the spatial distribution of traditional villages. Full article
Show Figures

Figure 1

24 pages, 861 KiB  
Article
Nutrition Security and Homestead Gardeners: Evidence from the Himalayan Mountain Region
by Nirmal Kumar Patra, Nich Nina, Tapan B. Pathak, Tanmoy Karak and Suresh Chandra Babu
Nutrients 2025, 17(15), 2499; https://doi.org/10.3390/nu17152499 - 30 Jul 2025
Viewed by 137
Abstract
Background: Addressing undernutrition and malnutrition requires a multi-pronged approach targeting different populations with appropriate interventions. Knowledge and perception (K&P) of Individuals and communities about nutrition to human health relationship/continuum is a prerequisite for addressing malnutrition in rural and mountain communities. Assessing K&P [...] Read more.
Background: Addressing undernutrition and malnutrition requires a multi-pronged approach targeting different populations with appropriate interventions. Knowledge and perception (K&P) of Individuals and communities about nutrition to human health relationship/continuum is a prerequisite for addressing malnutrition in rural and mountain communities. Assessing K&P is essential for developing strategic interventions to up-scaling K&P of communities and achieving nutrition security. Homestead gardens are a proven intervention for achieving nutrition security for all family members of gardeners. Methods: This paper includes homestead gardeners from the Himalayan Mountain Region (HMR) as respondents. We developed a scale to assess the K&P of respondents, based on ratings from 20 judges. A total of 134 issues/items have been retained in the scale from macronutrients, micronutrients, minerals, and vitamins. A framework has also been developed and adopted for the study. A knowledge and perception index (KPI) has been developed based on the respondents’ responses. We have reviewed and analysed the national policy interventions for augmenting the K&P of the study community to achieve nutrition security. Results: The nutrition K&P of respondents are inadequate and far from the desirable level. Policy review and analysis indicate that the creation of K&P in the community to contribute to self and family nutrition security was previously highly neglected. Conclusions: The policy process of national, state, and county/district-level development sectors in developing countries under the HMR may take the initiative to ensure self-nutrition security by creating K&P of the community on nutrition issues. The designed scale is prudent requires testing and validation for measuring farmers’ K&P on nutrition, which may be adopted in future studies and policymaking not only nationally but also from an international perspective. Full article
(This article belongs to the Section Nutritional Policies and Education for Health Promotion)
Show Figures

Graphical abstract

19 pages, 2255 KiB  
Article
Evaluating the Impact of Near-Natural Restoration Strategies on the Ecological Restoration of Landslide-Affected Areas Across Different Time Periods
by Sibo Chen, Jinguo Hua, Wanting Liu, Siyu Yang and Wenli Ji
Plants 2025, 14(15), 2331; https://doi.org/10.3390/plants14152331 - 28 Jul 2025
Viewed by 378
Abstract
Landslides are a common geological hazard in mountainous areas, causing significant damage to ecosystems and production activities. Near-natural ecological restoration is considered an effective strategy for post-landslide recovery. To investigate the impact of near-natural restoration strategies on the recovery of plant communities and [...] Read more.
Landslides are a common geological hazard in mountainous areas, causing significant damage to ecosystems and production activities. Near-natural ecological restoration is considered an effective strategy for post-landslide recovery. To investigate the impact of near-natural restoration strategies on the recovery of plant communities and soil in landslide-affected areas, we selected landslide plots in Lantian County at 1, 6, and 11 years post-landslide as study sites, surveyed plots undergoing near-natural restoration and adjacent undisturbed control plots (CK), and collected and analyzed data on plant communities and soil properties. The results indicate that vegetation succession followed a path from “human intervention to natural competition”: species richness peaked at 1 year post-landslide (Dm = 4.2). By 11 years, dominant species prevailed, with tree species decreasing to 4.1 ± 0.3, while herbaceous diversity increased by 200% (from 4 to 12 species). Soil recovery showed significant temporal effects: total nitrogen (TN) and dehydrogenase activity (DHA) exhibited the greatest increases after 1 year post-landslide (132% and 232%, respectively), and by 11 years, the available nitrogen (AN) in restored plots recovered to 98% of the CK levels. Correlations between plant and soil characteristics strengthened over time: at 1 year, only 6–9 pairs showed significant correlations (p < 0.05), increasing to 21–23 pairs at 11 years. Near-natural restoration drives system recovery through the “selection of native species via competition and activation of microbial functional groups”. The 6–11-year period post-landslide is a critical window for structural optimization, and we recommend phased dynamic regulation to balance biodiversity and ecological functions. Full article
Show Figures

Figure 1

22 pages, 24747 KiB  
Article
A Methodological Study on Improving the Accuracy of Soil Organic Matter Mapping in Mountainous Areas Based on Geo-Positional Transformer-CNN: A Case Study of Longshan County, Hunan Province, China
by Luming Shen, Yangfan Xie, Yangjun Deng, Yujie Feng, Qing Zhou and Hongxia Xie
Appl. Sci. 2025, 15(14), 8060; https://doi.org/10.3390/app15148060 - 20 Jul 2025
Viewed by 355
Abstract
The accurate prediction of soil organic matter (SOM) content is essential for promoting sustainable soil management and addressing global climate change. Due to multiple factors such as topography and climate, especially in mountainous areas, SOM spatial prediction faces significant challenges. The main novelty [...] Read more.
The accurate prediction of soil organic matter (SOM) content is essential for promoting sustainable soil management and addressing global climate change. Due to multiple factors such as topography and climate, especially in mountainous areas, SOM spatial prediction faces significant challenges. The main novelty of this study lies in proposing a geographic positional encoding mechanism that embeds geographic location information into the feature representation of a Transformer model. The encoder structure is further modified to enhance spatial awareness, resulting in the development of the Geo-Positional Transformer (GPTransformer). Furthermore, this model is integrated with a 1D-CNN to form a dual-branch neural network called the Geo-Positional Transformer-CNN (GPTransCNN). This study collected 1490 topsoil samples (0–20 cm) from cultivated land in Longshan County to develop a predictive model for mapping the spatial distribution of SOM across the entire cultivated area. Different models were comprehensively evaluated through ten-fold cross-validation, ablation experiments, and uncertainty analysis. The results show that GPTransCNN has the best performance, with an R2 improvement of approximately 43% over the Transformer, 19% over the GPTransformer, and 15% over the 1D-CNN. This study demonstrates that by incorporating geographic positional information, GPTransCNN effectively combines the global modeling capabilities of the GPTransformer with the local feature extraction strengths of the 1D-CNN, which can improve the accuracy of SOM mapping in mountainous areas. This approach provides data support for sustainable soil management and decision-making in response to global climate change. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

16 pages, 57657 KiB  
Article
InSAR Inversion of the Source Mechanism of the 23 January 2024 Xinjiang Wushi Mw7.0 Earthquake
by Mingyang Jin, Yongsheng Li and Yujiang Li
Remote Sens. 2025, 17(14), 2435; https://doi.org/10.3390/rs17142435 - 14 Jul 2025
Viewed by 286
Abstract
The Mw7.0 earthquake that occurred on 23 January 2024, in Wushi County, Xinjiang, China, was centered on the Maidan fault, located at the rear edge of the Kalpin reverse-thrust system in the southwestern Tianshan Mountains, at a depth of 13 km. [...] Read more.
The Mw7.0 earthquake that occurred on 23 January 2024, in Wushi County, Xinjiang, China, was centered on the Maidan fault, located at the rear edge of the Kalpin reverse-thrust system in the southwestern Tianshan Mountains, at a depth of 13 km. This event caused significant surface deformation and triggered a series of secondary geologic hazards. In this study, data from two satellites, Sentinel-1A and LuTan-1, were combined to obtain the coseismic deformation field of the earthquake. The two-step inversion method was applied to determine the geometrical parameters and slip characteristics of the mainshock fault. The results indicate that the seismicity is primarily driven by reverse faulting, with a contribution from sinistral strike–slip faulting, and the maximum dip–slip displacement is 4.2 m. Additionally, an aftershock of magnitude 5.7 occurring on January 30 was identified in the LT-1 data. This aftershock was controlled by a reverse fault dipping opposite to the mainshock fault, and its maximum slip is 0.65 m. Analysis of the Coulomb stress triggering effect suggests that the Wushi earthquake may have induced the aftershock. Full article
Show Figures

Figure 1

19 pages, 3537 KiB  
Article
Cultivated Land Suitability Prediction in Southern Xinjiang Typical Areas Based on Optimized MaxEnt Model
by Yilong Tian, Xiaohuang Liu, Hongyu Li, Run Liu, Ping Zhu, Chaozhu Li, Xinping Luo, Chao Wang and Honghui Zhao
Agriculture 2025, 15(14), 1498; https://doi.org/10.3390/agriculture15141498 - 12 Jul 2025
Viewed by 287
Abstract
To ensure food security in Xinjiang, scientifically conducting land suitability evaluation is of significant importance. This paper takes an arid and ecologically fragile region of southern Xinjiang—Qiemu County—as an example. Based on the optimized Maximum Entropy (MaxEnt) model, 14 multi-source environmental variables including [...] Read more.
To ensure food security in Xinjiang, scientifically conducting land suitability evaluation is of significant importance. This paper takes an arid and ecologically fragile region of southern Xinjiang—Qiemu County—as an example. Based on the optimized Maximum Entropy (MaxEnt) model, 14 multi-source environmental variables including climate, soil, hydrology, and topography are integrated. The ENMeval package is used to optimize the model parameters, and Spearman’s rank correlation analysis is employed to screen key variables. The spatial distribution of land suitability and the dominant factors are systematically assessed. The results show that the model AUC values for the mountainous and plain areas are 0.987 and 0.940, respectively, indicating high accuracy. In the plain area, land suitability is primarily influenced by the soil sand content, while in the mountainous region, the annual accumulated temperature plays a leading role. The highly suitable areas are mainly distributed in the northern plains and parts of the southern mountains. This study clarifies the suitable areas for land development and environmental thresholds, providing a scientific basis for the development of land resources in arid regions and the implementation of the “store grain in the land” strategy. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

22 pages, 3260 KiB  
Article
Evaluation of Habitat Quality in Karst Mountainous Areas of Guanling County Based on InVEST and MGWR Models
by Shuanglong Du, Zhongfa Zhou, Denghong Huang, Fei Dong, Xiandan Du, Yining Luo, Qingqing Dai and Yue Yang
Land 2025, 14(7), 1445; https://doi.org/10.3390/land14071445 - 10 Jul 2025
Viewed by 375
Abstract
As a core karst region in Southwest China, Guanling County plays a crucial role in regional ecological governance. This study integrates the InVEST model, landscape pattern index analysis, and the MGWR spatial model to systematically explore the dynamic mechanisms of habitat quality in [...] Read more.
As a core karst region in Southwest China, Guanling County plays a crucial role in regional ecological governance. This study integrates the InVEST model, landscape pattern index analysis, and the MGWR spatial model to systematically explore the dynamic mechanisms of habitat quality in Guanling’s karst mountains. Key findings include: (1) Landscape pattern alterations exhibit significant impacts on habitat quality, characterized by strong spatial heterogeneity; (2) Expansion of forest and grassland effectively buffers the negative effects of construction land expansion, forming an ecological compensation mechanism through enhanced landscape connectivity; (3) Between 2000 and 2020, the proportion of high-importance habitat quality zones increased from 54.79% to 56.16%, with moderate-importance zones stabilizing at approximately 7.80% and general-importance zones growing to 2.46%. The results provide a multi-scale analytical framework for habitat protection and land use optimization in fragile karst ecosystems. Full article
(This article belongs to the Topic Nature-Based Solutions-2nd Edition)
Show Figures

Figure 1

20 pages, 4768 KiB  
Article
Enhancing Conservation Efforts in the Qinling Mountains Through Phenotypic Trait Diversity Optimization
by Sibo Chen, Xin Fu, Kexin Chen, Jinguo Hua, Qian Rao, Xuewei Feng and Wenli Ji
Plants 2025, 14(14), 2130; https://doi.org/10.3390/plants14142130 - 10 Jul 2025
Viewed by 326
Abstract
The establishment of conservation areas is considered one of the most effective approaches to address biodiversity loss with limited resources. Identifying hotspots of plant diversity and conservation gaps has played a crucial role in optimizing conservation areas. Utilizing diverse types of research data [...] Read more.
The establishment of conservation areas is considered one of the most effective approaches to address biodiversity loss with limited resources. Identifying hotspots of plant diversity and conservation gaps has played a crucial role in optimizing conservation areas. Utilizing diverse types of research data can effectively enhance the recognition of hotspots and conservation gaps. Phenotypic trait diversity is a functional biogeography that analyzes the geographic distribution patterns, formation, and reasons for the development of specific or multiple phenotypic traits of organisms. Flower color and fruit color phenotypic traits are primary characteristics through which plants interact with other organisms, affecting their own survival and reproduction, and that of their offspring. This study utilized data from 1923 Phenotypic Trait Diversity Species (PTDS) with flower and fruit color characteristics to optimize conservation areas in the Shaanxi Qinling Mountains. Additionally, data from 1838 endemic species (ES), 190 threatened species (TS), and 119 protected species (PS) were used for validation. The data were primarily sourced from the Catalogue of Vascular Plants in Shaanxi, supplemented by the Chinese Virtual Herbarium and the Shaanxi Digital Herbarium. The results reveal that by comparing the existing conservation area boundaries with those determined by four types of data, conservation gaps are found in 14 counties in the Qinling Mountains of Shaanxi. The existing conservation area only accounts for 13.3% of the area determined by the four types of data. There are gaps in biodiversity conservation in the Qinling Mountains of Shaanxi, and the macroscopic use of plant phenotypic trait data contributes to optimizing these conservation gaps. Full article
Show Figures

Figure 1

20 pages, 11158 KiB  
Article
Fine-Grained Land Use Remote Sensing Mapping in Karst Mountain Areas Using Deep Learning with Geographical Zoning and Stratified Object Extraction
by Bo Li, Zhongfa Zhou, Tianjun Wu and Jiancheng Luo
Remote Sens. 2025, 17(14), 2368; https://doi.org/10.3390/rs17142368 - 10 Jul 2025
Viewed by 374
Abstract
Karst mountain areas, as complex geological systems formed by carbonate rock development, possess unique three-dimensional spatial structures and hydrogeological processes that fundamentally influence regional ecosystem evolution, land resource assessment, and sustainable development strategy formulation. In recent years, through the implementation of systematic ecological [...] Read more.
Karst mountain areas, as complex geological systems formed by carbonate rock development, possess unique three-dimensional spatial structures and hydrogeological processes that fundamentally influence regional ecosystem evolution, land resource assessment, and sustainable development strategy formulation. In recent years, through the implementation of systematic ecological restoration projects, the ecological degradation of karst mountain areas in Southwest China has been significantly curbed. However, the research on the fine-grained land use mapping and quantitative characterization of spatial heterogeneity in karst mountain areas is still insufficient. This knowledge gap impedes scientific decision-making and precise policy formulation for regional ecological environment management. Hence, this paper proposes a novel methodology for land use mapping in karst mountain areas using very high resolution (VHR) remote sensing (RS) images. The innovation of this method lies in the introduction of strategies of geographical zoning and stratified object extraction. The former divides the complex mountain areas into manageable subregions to provide computational units and introduces a priori data for providing constraint boundaries, while the latter implements a processing mechanism with a deep learning (DL) of hierarchical semantic boundary-guided network (HBGNet) for different geographic objects of building, water, cropland, orchard, forest-grassland, and other land use features. Guanling and Zhenfeng counties in the Huajiang section of the Beipanjiang River Basin, China, are selected to conduct the experimental validation. The proposed method achieved notable accuracy metrics with an overall accuracy (OA) of 0.815 and a mean intersection over union (mIoU) of 0.688. Comparative analysis demonstrated the superior performance of advanced DL networks when augmented with priori knowledge in geographical zoning and stratified object extraction. The approach provides a robust mapping framework for generating fine-grained land use data in karst landscapes, which is beneficial for supporting academic research, governmental analysis, and related applications. Full article
Show Figures

Figure 1

17 pages, 4432 KiB  
Article
Modeling the Future of a Wild Edible Fern Under Climate Change: Distribution and Cultivation Zones of Pteridium aquilinum var. latiusculum in the Dadu–Min River Region
by Yi Huang, Jingtian Yang, Guanghua Zhao, Zixi Shama, Qingsong Ge, Yang Yang and Jian Yang
Plants 2025, 14(14), 2123; https://doi.org/10.3390/plants14142123 - 9 Jul 2025
Viewed by 538
Abstract
Under the pressures of global climate change, the sustainable management of plant resources in alpine gorge regions faces severe challenges. P. aquilinum var. latiusculum is widely harvested and utilized by residents in the upper reaches of the Dadu River–Min River basin due to [...] Read more.
Under the pressures of global climate change, the sustainable management of plant resources in alpine gorge regions faces severe challenges. P. aquilinum var. latiusculum is widely harvested and utilized by residents in the upper reaches of the Dadu River–Min River basin due to its high edible and medicinal value. This study employed ensemble models to simulate the potential distribution of P. aquilinum var. latiusculum in this region, predicting the impacts of future climate change on its distribution, the centroid migration of suitable habitats, and niche dynamics. A production dynamics model was also constructed to identify current and future potential cultivation areas by integrating ecological suitability and nutritional component synergies. The results show that current high-suitability areas and core cultivation zones of P. aquilinum var. latiusculum are predominantly distributed in patchy, fragmented patterns across the Wenchuan, Li, Mao, Luding, and Xiaojin Counties and Kangding City. Under climate change, the “mountain-top trap effect” drives a significant increase in high-suitability areas and core cultivation zones, while moderate-to-low-suitability areas and marginal cultivation zones decrease substantially. Meanwhile, suitable habitats and cultivation areas exhibit a northward migration trend toward higher latitudes. The most significant changes in suitable area and cultivation zone extent, as well as the most pronounced niche shifts, occur under high-emission climate scenarios. This research facilitates the development of suitability-based management strategies for P. aquilinum var. latiusculum in the study region and provides scientific references for the sustainable utilization of montane plant resources in the face of climate change. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

19 pages, 6909 KiB  
Article
Heterogeneous Changes and Evolutionary Characteristics of Cultivated Land Fragmentation in Mountainous Counties and Townships in Southwest China: A Case Study of Beichuan Qiang Autonomous County
by Mengqin Liu, Fengqiang Wu, Caijian Mo, Rongjian Xiao, Huailiang Yu and Meimei Wang
Land 2025, 14(7), 1395; https://doi.org/10.3390/land14071395 - 3 Jul 2025
Viewed by 255
Abstract
As a core element of comprehensive land consolidation, cultivated land serves as both a fundamental resource and strategic platform for driving rural revitalization and advancing ecological civilization development. Based on the five periods of remote sensing monitoring data of land use from the [...] Read more.
As a core element of comprehensive land consolidation, cultivated land serves as both a fundamental resource and strategic platform for driving rural revitalization and advancing ecological civilization development. Based on the five periods of remote sensing monitoring data of land use from the 1980 to 2020 in Beichuan Qiang Autonomous County, this study systematically examines cultivated land transfer dynamics and quantitatively assesses fragmentation levels through landscape metrics analysis, with the ultimate objective of informing strategic land consolidation planning at the county scale. The results indicate that (1) the cultivated land transformation in Beichuan Qiang Autonomous County exhibited distinct temporal patterns demarcated by 2010. During the initial phase, limited land transfers predominantly involved woodland transfers, characterized by cross-regional occupation–compensation dynamics and a northwest-oriented spatial shift. The subsequent phase witnessed substantial transfer intensification, incorporating grassland and construction land transfers alongside woodland. This period demonstrated balanced intra-township occupation–compensation mechanisms and a marked southeastward migration of transfer concentration; (2) cultivated land transfer dynamics demonstrated greater intensity in topographically moderate townships, whereas northwestern mountainous townships characterized by elevated altitudes and pronounced gradients maintained comparative spatial stability in transfer patterns; (3) cultivated land fragmentation exhibited topographic modulation, with reduced spatial disaggregation in low-lying plains contrasting elevated indices across northwestern highland terrains; and (4) the cultivated land area showed a predominant reduction in low-elevation and gentle-slope regions, accompanied by a decrease in landscape fragmentation. Conversely, in areas with higher elevations and steeper slopes, expansions in both cultivated land area and fragmentation were observed. Full article
(This article belongs to the Special Issue Coupled Man-Land Relationship for Regional Sustainability)
Show Figures

Figure 1

12 pages, 1060 KiB  
Article
Diversity of the Soil Bacterial Community of Abandoned Jujube Land in the Loess Area of Northern Shaanxi in Different Years
by Ning Ai, Menghuan Zou, Xuejiao Yu and Jie Gao
Diversity 2025, 17(7), 462; https://doi.org/10.3390/d17070462 - 30 Jun 2025
Viewed by 283
Abstract
This research aimed to study changes in the diversity of the soil bacterial community in a jujube forest with different years of abandonment. To this end, we took the mountain jujube forest with different abandoned years (1 a, 3 a, 6a and 20 [...] Read more.
This research aimed to study changes in the diversity of the soil bacterial community in a jujube forest with different years of abandonment. To this end, we took the mountain jujube forest with different abandoned years (1 a, 3 a, 6a and 20 a) in the Qijiashan jujube experimental demonstration base in Yanchuan County as the research object; we used Illumina Miseq high-throughput sequencing technology to analyze the changes in the soil bacterial community structure and reveal the key environmental drivers of bacterial community variation in the abandoned jujube forest in the study area. The results showed the following findings: (1) Phylum Actinomycetota (34%), Proteobacteria (29%), and Acidobacteriota (13%) were the dominant phyla of the soil bacterial community in the abandoned jujube forest. (2) Abandonment altered the composition of soil bacteria at the OTU level in jujube plantations. (3) There are differences in the soil bacterial community structure across different periods of abandonment in the jujube forest. (4) Soil water content is the main factor affecting the bacterial community structure of the abandoned jujube forest. There are differences in the soil water content of abandoned woodlands, which affects the community structure of soil microorganisms. Full article
Show Figures

Figure 1

20 pages, 9366 KiB  
Article
Evolution of Potential Distribution Areas and Cultivation Zones of Morchella esculenta (L.) Pers. Under Climate Warming: Application of Ensemble Models and Production Dynamics Models
by Yi Huang, Guanghua Zhao, Jingtian Yang, Liyong Yang, Yang Yang, Wuzhi Jiaba, Zixi Shama and Jian Yang
J. Fungi 2025, 11(7), 475; https://doi.org/10.3390/jof11070475 - 22 Jun 2025
Cited by 1 | Viewed by 542
Abstract
Under global climate change, sustainable management of plant resources in alpine canyon regions faces severe challenges. M. esculenta, highly valued for its edible and medicinal properties, is widely harvested for consumption by residents in the upper Dadu River–Minjiang River region. This study [...] Read more.
Under global climate change, sustainable management of plant resources in alpine canyon regions faces severe challenges. M. esculenta, highly valued for its edible and medicinal properties, is widely harvested for consumption by residents in the upper Dadu River–Minjiang River region. This study employs ensemble models to simulate the potential distribution of M. esculenta in this region, predicting the impacts of future climate change on its distribution, centroid migration of suitable habitats, and niche dynamics. Additionally, a production dynamics model integrating ecological suitability and nutritional components was developed to delineate current and future potential cultivation zones for M. esculenta. The results indicate that current high-suitability areas and core cultivation zones of M. esculenta are predominantly distributed in a patchy and fragmented pattern. The high-suitability habitats in the upper Dadu River–Minjiang River region have three distribution centers: the largest spans southern Danba County, southern Jinchuan County, and northeastern Kangding City, while the other two are located in northeastern Li County, southwestern Aba County, and northwestern Ma’erkang City, with sporadic distributions in Heishui County, Maoxian County, and Wenchuan County. First-level cultivation areas are primarily concentrated in Kangding City, Danba County, Ma’erkang City, Li County, and surrounding regions. Under climate change, low-suitability areas and third-level cultivation zones for M. esculenta in the region have increased significantly, while high- and medium-suitability areas, along with first- and second-level cultivation zones, have decreased notably. Concurrently, suitable habitats and cultivation zones exhibit a migration trend toward higher northern latitudes. The most pronounced changes in suitable areas and cultivation zones, as well as the largest niche migration, occur under the high-emission climate scenario. This study facilitates the formulation of suitability-based management strategies for M. esculenta in the upper Dadu River–Minjiang River region and provides a scientific reference for the sustainable utilization of mountain plant resources under climate change. Full article
Show Figures

Figure 1

21 pages, 2875 KiB  
Article
A Study on the Optimization of Ecological Spatial Structure Based on Landscape Risk Assessment: A Case Study of Wensu County, Xinjiang, China
by Qian Li, Junjie Yan, Junhui Cheng, Yan Xu, Yincheng Gong, Guangpeng Zhang, Hongbo Ling and Ruyi Pan
Land 2025, 14(7), 1323; https://doi.org/10.3390/land14071323 - 21 Jun 2025
Viewed by 453
Abstract
Ecological network construction has been widely accepted and applied to guide regional ecological conservation and restoration. For arid regions, ecological networks proposed based on ecological risk assessments are better aligned with the sensitive and fragile characteristics of local ecosystems. This study assesses landscape [...] Read more.
Ecological network construction has been widely accepted and applied to guide regional ecological conservation and restoration. For arid regions, ecological networks proposed based on ecological risk assessments are better aligned with the sensitive and fragile characteristics of local ecosystems. This study assesses landscape ecological risk in Wensu County, located on the southern slope of the Tianshan Mountains in the arid region of northwestern China, and it further proposes an optimized ecological network. A multidimensional framework composed of the natural environment, human society, and landscape patterns was employed to construct an ecological risk assessment system. Spatial principal component analysis (SPCA) was applied to identify the spatial pattern of ecological risk. Morphological spatial pattern analysis (MSPA) and a minimum cumulative resistance (MCR) model integrated with circuit theory were used to extract the ecological sources and delineate the ecological corridors. The results reveal significant spatial heterogeneity in terms of ecological risk: Low-risk zones (16.26%) are concentrated in the southwestern forest and water areas. In comparison, high-risk zones (28.27%) are mainly distributed in the northern mountainous mining region. A total of 24 ecological source patches (4105.24 km2), 44 ecological corridors (313.6 km), 39 ecological pinch points, and 38 ecological barriers were identified. Following optimization, the Integral Index of Connectivity (IIC) increased by 89.04%, and the Landscape Coherence Probability (LCP) rose by 105.23%, indicating markedly enhanced ecological connectivity. The current ecological network exhibits weak connectivity in the south and fragmentation in the central region. Targeted restoration of critical nodes, optimization of corridor configurations, and expansion of ecological sources are recommended to improve landscape connectivity and promote biodiversity conservation. Full article
Show Figures

Figure 1

Back to TopTop