Evaluating the Impact of Near-Natural Restoration Strategies on the Ecological Restoration of Landslide-Affected Areas Across Different Time Periods
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Plot Overview
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Plant Community Species Composition
3.2. Alpha Diversity of Plant Communities
3.3. Changes in Plant Community Functional Traits
3.4. Changes in Soil Properties of Landslide Plots
3.5. Correlation Between Plant Communities and Soil Physicochemical Properties in Landslide Plots
4. Discussion
4.1. Changes in Plant Communities Across Different Time Gradients in Landslide Plots
4.2. Changes in Soil Properties and Their Relationships with Plants Across Different Time Gradients in Landslide Plots
4.3. Practical Implications of Optimizing Near-Natural Restoration in Landslide Plots
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Restrepo, C.; Vitousek, P.; Neville, P. Landslides Significantly Alter Land Cover and the Distribution of Biomass: An Example from the Ninole Ridges of Hawai’i. Plant Ecol. 2003, 166, 131–143. [Google Scholar] [CrossRef]
- Sidle, R.C.; Bogaard, T.A. Dynamic Earth System and Ecological Controls of Rainfall-Initiated Landslides. Earth-Sci. Rev. 2016, 159, 275–291. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and Temporal Analysis of a Global Landslide Catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Lopes, L.F.; Oliveira, S.C.; Neto, C.; Zezere, J.L. Vegetation Evolution by Ecological Succession as a Potential Bioindicator of Landslides Relative Age in Southwestern Mediterranean Region. Nat. Hazards 2020, 103, 599–622. [Google Scholar] [CrossRef]
- Greenwood, J.R.; Norris, J.E.; Wint, J. Assessing the Contribution of Vegetation to Slope Stability. Proc. Inst. Civ. Eng.—Geotech. Eng. 2004, 157, 199–207. [Google Scholar] [CrossRef]
- Kumsar, H.; Aydan, Ö.; Ulusay, R. Dynamic and Static Stability Assessment of Rock Slopes against Wedge Failures. Rock Mech. Rock Eng. 2000, 33, 31–51. [Google Scholar] [CrossRef]
- Dahlquist, M.P.; West, A.J.; Li, G. Landslide-Driven Drainage Divide Migration. Geology 2018, 46, 403–406. [Google Scholar] [CrossRef]
- Rasigraf, O.; Wagner, D. Landslides: An Emerging Model for Ecosystem and Soil Chronosequence Research. Earth-Sci. Rev. 2022, 231, 104064. [Google Scholar] [CrossRef]
- Li, B.; Zeng, T.; Ran, J.; Yue, B.; Zhang, M.; Shang, T.; Zhu, D. Characteristics of the Early Secondary Succession after Landslides in a Broad-Leaved Deciduous Forest in the South Minshan Mountains. For. Ecol. Manag. 2017, 405, 238–245. [Google Scholar] [CrossRef]
- Haque, U.; da Silva, P.F.; Devoli, G.; Pilz, J.; Zhao, B.; Khaloua, A.; Wilopo, W.; Andersen, P.; Lu, P.; Lee, J.; et al. The Human Cost of Global Warming: Deadly Landslides and Their Triggers (1995–2014). Sci. Total Environ. 2019, 682, 673–684. [Google Scholar] [CrossRef]
- Restrepo, C.; Walker, L.R.; Shiels, A.B.; Bussmann, R.; Claessens, L.; Fisch, S.; Lozano, P.; Negi, G.; Paolini, L.; Poveda, G. Landsliding and Its Multiscale Influence on Mountainscapes. BioScience 2009, 59, 685–698. [Google Scholar] [CrossRef]
- Lundgren, L. Studies of Soil and Vegetation Development on Fresh Landslide Scars in the Mgeta Valley, Western Uluguru Mountains, Tanzania. Geogr. Ann. Ser. A Phys. Geogr. 1978, 60, 91–127. [Google Scholar] [CrossRef]
- Restrepo, C.; Vitousek, P. Landslides, Alien Species, and the Diversity of a Hawaiian Montane Mesic Ecosystem1. Biotropica 2001, 33, 409–420. [Google Scholar] [CrossRef]
- Song, W.; Feng, Y.; Wang, Z. Ecological Restoration Programs Dominate Vegetation Greening in China. Sci. Total Environ. 2022, 848, 157729. [Google Scholar] [CrossRef]
- Neto, C.; Cardigos, P.; Oliveira, S.C.; Zezere, J.L. Floristic and Vegetation Successional Processes within Landslides in a Mediterranean Environment. Sci. Total Environ. 2017, 574, 969–981. [Google Scholar] [CrossRef]
- Kang, D.; Zou, S.; Ma, L.; Yin, C.; Zhu, D. Abiotic Regulation: Landslide Scale and Altitude Regulate Functional Traits of Regenerating Plant Communities After Earthquakes. Front. Ecol. Evol. 2022, 10, 846642. [Google Scholar] [CrossRef]
- Lin, Y.; Fang, L.; Zhou, W.; Qiao, Z.; Chang, Y.; Yu, X.; Li, Y.; Ren, P.; Xiao, J. Evaluating the Long-Term Effects of near-Natural Restoration on Post-Fire Forest Dynamics in a Wildland-Urban Interface Landscape. Ecol. Indic. 2024, 160, 111777. [Google Scholar] [CrossRef]
- Yang, T.; Jiang, J.; Shi, F.; Cai, R.; Jiang, H.; Sheng, L.; He, C. Combination of Plant Species and Water Depth Enhance Soil Quality in Near-Natural Restoration of Reclaimed Wetland. Ecol. Eng. 2024, 208, 107376. [Google Scholar] [CrossRef]
- Miyawaki, A. Restoration of Urban Green Environments Based on the Theories of Vegetation Ecology. Ecol. Eng. 1998, 11, 157–165. [Google Scholar] [CrossRef]
- Miyawaki, A. Creative Ecology Restoration of Native Forests by Native Trees. Plant Biotechnol. 1999, 16, 15–25. [Google Scholar] [CrossRef]
- Zhang, Y.; Shengzhe, E.; Wang, Y.; Su, S.; Bai, L.; Wu, C.; Zeng, X. Long-Term Manure Application Enhances the Stability of Aggregates and Aggregate-Associated Carbon by Regulating Soil Physicochemical Characteristics. Catena 2021, 203, 105342. [Google Scholar] [CrossRef]
- Auestad, I.; Rydgren, K.; Austad, I. Near-Natural Methods Promote Restoration of Species-Rich Grassland Vegetation-Revisiting a Road Verge Trial after 9 Years. Restor. Ecol. 2016, 24, 381–389. [Google Scholar] [CrossRef]
- He, G.; Liu, X.; Li, Y.; Xu, H.; Ji, T.; Yang, Z.; Qi, H.; Ma, C.; Wang, Y.; Zhang, D.; et al. Recovery in Soil Carbon Stocks but Reduced Carbon Stabilization after Near-Natural Restoration in Degraded Alpine Meadows. Sci. Rep. 2024, 14, 31124. [Google Scholar] [CrossRef] [PubMed]
- Blonska, E.; Lasota, J.; Zwydak, M.; Klamerus-Iwan, A.; Golab, J. Restoration of Forest Soil and Vegetation 15 Years after Landslides in a Lower Zone of Mountains in Temperate Climates. Ecol. Eng. 2016, 97, 503–515. [Google Scholar] [CrossRef]
- Blonska, E.; Lasota, J.; Piaszczyk, W.; Wiechec, M.; Klamerus-Iwan, A. The Effect of Landslide on Soil Organic Carbon Stock and Biochemical Properties of Soil. J. Soils Sediments 2018, 18, 2727–2737. [Google Scholar] [CrossRef]
- Hodacová, D.; Prach, K. Spoil Heaps from Brown Coal Mining: Technical Reclamation versus Spontaneous Revegetation. Restor. Ecol. 2003, 11, 385–391. [Google Scholar] [CrossRef]
- He, J.S.; Bu, H.; Hu, X.; Feng, Y.; Li, S.; Zhu, J.; Liu, G.H.; Wang, Y.R.; Nan, Z.B. Close-to-Nature Restoration of Degraded Alpine Grasslands: Theoretical Basis and Technical Approach. Chin. Sci. Bull. 2020, 65, 3898–3908. [Google Scholar] [CrossRef]
- Peng, X.; Dai, Q.; Ding, G.; Shi, D.; Li, C. Impact of Vegetation Restoration on Soil Properties in Near-Surface Fissures Located in Karst Rocky Desertification Regions. Soil Tillage Res. 2020, 200, 104620. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Q.; Huang, Y.; Wu, D.; Zhou, A. Vegetation Response to Holocene Climate Change in the Qinling Mountains in the Temperate-Subtropical Transition Zone of Central-East China. Front. Ecol. Evol. 2021, 9, 734011. [Google Scholar] [CrossRef]
- Chen, S.; Hua, J.; Liu, W.; Yang, S.; Wang, X.; Ji, W. Effects of Artificial Restoration and Natural Recovery on Plant Communities and Soil Properties across Different Temporal Gradients after Landslides. Forests 2023, 14, 1974. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Lv, Z.; Zhao, X.; Yang, X.; Jia, X.; Sun, W.; He, X.; He, B.; Cai, Q.; et al. Animal Diversity Responding to Different Forest Restoration Schemes in the Qinling Mountains, China. Ecol. Eng. 2019, 136, 23–29. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, S.; Hu, C.; Lin, Y.; Zhang, B.; Luo, M.; Peng, H. Ecological Species Groups and Interspecific Association of Vegetation in Natural Recovery Process at Xiejiadian Landslide after 2008 Wenchuan Earthquake. J Mt. Sci. 2016, 13, 1609–1620. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Dane, J.H.; Topp, C.G. Methods of Soil Analysis, Part 4: Physical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Page, A.L. Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties; ASA: Monroe, MI, USA, 1982. [Google Scholar]
- Zhang, Q.; Jia, X.; Zhao, C.; Shao, M. Revegetation with Artificial Plants Improves Topsoil Hydrological Properties but Intensifies Deep-Soil Drying in Northern Loess Plateau, China. J. Arid Land 2018, 10, 335–346. [Google Scholar] [CrossRef]
- Yang, Y.; Tilman, D.; Furey, G.; Lehman, C. Soil Carbon Sequestration Accelerated by Restoration of Grassland Biodiversity. Nat. Commun. 2019, 10, 718. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Li, X.; Yang, W.; Jiang, C.; Rabiei, M. Use of Local Plants for Ecological Restoration and Slope Stability: A Possible Application in Yan?An, Loess Plateau, China. Geomat. Nat. Hazards Risk 2019, 10, 2106–2128. [Google Scholar] [CrossRef]
- Wang, S.; Meng, X.; Chen, G.; Guo, P.; Xiong, M.; Zeng, R. Effects of Vegetation on Debris Flow Mitigation: A Case Study from Gansu Province, China. Geomorphology 2017, 282, 64–73. [Google Scholar] [CrossRef]
- Gairola, S.U.; Bahuguna, R.; Bhatt, S.S. Correction to: Native Plant Species: A Tool for Restoration of Mined Lands. J. Soil Sci. Plant Nutr. 2023, 23, 2892. [Google Scholar] [CrossRef]
- Hua, J.; Wang, W.; Huo, J.; Wu, L.; Huang, L.; Zhong, H. Effects of Ecosystem Recovery Types on Soil Phosphorus Bioavailability, Roles of Plant and Microbial Diversity: A Meta-Analysis. Ecol. Evol. 2025, 15, e71172. [Google Scholar] [CrossRef]
- Macdonald, D.W.; Chiaverini, L.; Bothwell, H.M.; Kaszta, Ż.; Ash, E.; Bolongon, G.; Can, Ö.E.; Campos-Arceiz, A.; Channa, P.; Clements, G.R.; et al. Predicting Biodiversity Richness in Rapidly Changing Landscapes: Climate, Low Human Pressure or Protection as Salvation? Biodivers. Conserv. 2020, 29, 4035–4057. [Google Scholar] [CrossRef]
- Chang, C.; Todd, P.A. Reduced Predation Pressure as a Potential Driver of Prey Diversity and Abundance in Complex Habitats. npj Biodivers. 2023, 2, 1. [Google Scholar] [CrossRef]
- Zhu, F.; Li, Y.; Cheng, J. Variability in the Hydrological Processes of Six Typical Woodlands Based on Stable Isotopes in Subtropical Regions in Central China. Forests 2023, 14, 1296. [Google Scholar] [CrossRef]
- Wang, L.; Xue, F.; Gao, W.; Shi, J.; Sun, S.; Liu, J.; Su, R.; Xie, Y.; Hai, C.; Xiaojia, L. The Effects of Enclosing Cultivated Land on the Physical Properties of Soil in the Loess Hill Region of Ordos. Transylv. Rev. Syst. Ecol. Res. 2016, 18, 1–14. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Z.; Jin, G.; Tang, H.; Zhang, S.; Zhang, Q. Effects of Periodic Fluctuation of Water Level on Solute Transport in Seasonal Lakes in Poyang Floodplain System. Water Resour. Res. 2023, 59, e2023WR034739. [Google Scholar] [CrossRef]
- Chen, C.; Fang, X.; Xiang, W.; Lei, P.; Ouyang, S.; Kuzyakov, Y. Soil-Plant Co-Stimulation during Forest Vegetation Restoration in a Subtropical Area of Southern China. For. Ecosyst. 2020, 7, 32. [Google Scholar] [CrossRef]
- Mo, Y.; Xu, J.; Wang, K.; Xu, B.; Wu, J.; Jiang, Q.; Jin, G.; Li, L. Effects of Seawater Salinity Variations on Nitrogen Transport in the Coastal Reservoir and Adjacent Aquifer. J. Hydrol. 2025, 661, 133539. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Li, P.; Li, Z.; Yu, K.; Ren, Z.; Xu, G.; Cheng, S.; Wang, F.; Ma, Y. Distribution of Soil Organic Carbon Impacted by Land-Use Changes in a Hilly Watershed of the Loess Plateau, China. Sci. Total Environ. 2019, 652, 505–512. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, B.; Zheng, X.; Liu, G. Plant Biomass, Soil Water Content and Soil N:P Ratio Regulating Soil Microbial Functional Diversity in a Temperate Steppe: A Regional Scale Study. Soil Biol. Biochem. 2010, 42, 445–450. [Google Scholar] [CrossRef]
- Jia, X.; Shao, M.; Zhu, Y.; Luo, Y. Soil Moisture Decline Due to Afforestation across the Loess Plateau, China. J. Hydrol. 2017, 546, 113–122. [Google Scholar] [CrossRef]
- Masi, E.B.; Segoni, S.; Tofani, V. Root Reinforcement in Slope Stability Models: A Review. Geosciences 2021, 11, 212. [Google Scholar] [CrossRef]
- Wubs, E.R.J.; van der Putten, W.H.; Bosch, M.; Bezemer, T.M. Soil Inoculation Steers Restoration of Terrestrial Ecosystems. Nat. Plants 2016, 2, 16107. [Google Scholar] [CrossRef]
- Jin, G.; Tang, H.; Gibbes, B.; Li, L.; Barry, D.A. Transport of Nonsorbing Solutes in a Streambed with Periodic Bedforms. Adv. Water Resour. 2010, 33, 1402–1416. [Google Scholar] [CrossRef]
- Fu, S.; de Jong, S.M.M.; Deijns, A.; Geertsema, M.; de Haas, T. The SWADE Model for Landslide Dating in Time Series of Optical Satellite Imagery. Landslides 2023, 20, 913–932. [Google Scholar] [CrossRef]
- Ren, Y.; Lu, Y.; Fu, B.; Zhang, K. Biodiversity and Ecosystem Functional Enhancement by Forest Restoration: A Meta-Analysis in China. Land Degrad. Dev. 2017, 28, 2062–2073. [Google Scholar] [CrossRef]
- Reis, A.; Bechara, F.C.; Tres, D.R. Nucleation in Tropical Ecological Restoration. Sci. Agric. 2010, 67, 244–250. [Google Scholar] [CrossRef]
- Stokes, A.; Douglas, G.B.; Fourcaud, T.; Giadrossich, F.; Gillies, C.; Hubble, T.; Kim, J.H.; Loades, K.W.; Mao, Z.; McIvor, I.R.; et al. Ecological Mitigation of Hillslope Instability: Ten Key Issues Facing Researchers and Practitioners. Plant Soil 2014, 377, 1–23. [Google Scholar] [CrossRef]
Sample Group | Sample Areas | Slide Time (Year) | Slope Aspect | Gradient (°) | Altitude (m) | Coordinate | Sample Plot Details |
---|---|---|---|---|---|---|---|
1 | 1N (and NN) | 2021 | East | 21~39 | 960 | 109.566717, 33.935510 | Near-natural restoration |
1NCK (and 1NNCK) | / | South-east | 16~38 | 938 | 109.555941, 33.923931 | No landslides (CK) | |
2 | 2N (and 2NN) | 2016 | East | 24~45 | 644 | 109.511463, 33.895653 | Near-natural restoration |
2NCK (and 2NNCK) | / | South-east | 16~34 | 620 | 109.517740, 33.887608 | No landslides (CK) | |
3 | 3N (and 3NN) | 2011 | East | 29~54 | 1084 | 109.498817, 33.906126 | Near-natural restoration |
3NCK (and 3NNCK) | / | East | 22~39 | 1065 | 109.498433, 33.905727 | No landslides (CK) |
Number | Title | Index | Formula | Parameter |
---|---|---|---|---|
1 | Importance value | : relative coverage; : relative height; : relative frequency. | ||
2 | Margalef richness index | : number of community species; : total individuals | ||
3 | Simpson advantage degree index | : number of individuals of species ; : total individuals | ||
4 | Pielou evenness index | : number of community species; : Shannon–Wiener diversity index | ||
5 | Shannon–Wiener diversity index | : number of community species; : Number of species as a proportion of all species |
Vegetation Type | Sample Plot | Name | Importance Value IV% | Sample Plot | Name | Importance Value IV% | ||||
---|---|---|---|---|---|---|---|---|---|---|
Tree IV% | Shrub IV% | Herb IV% | Tree IV% | Shrub IV% | Herb IV% | |||||
Tree | 1N | Pinus armandii | 22.42 | 1NN | Toona sinensis | 23.74 | ||||
Zanthoxylum bungeanum | 21.14 | Zanthoxylum bungeanum | 23.01 | |||||||
Toona sinensis | 15.07 | Pinus armandii | 19.96 | |||||||
Quercus robur | 14.40 | Quercus robur | 12.29 | |||||||
Salix alba | 11.27 | Salix alba | 8.72 | |||||||
Shrub | 1N | Euonymus alatus | 50.34 | 1NN | Lonicera caerulea | 55.77 | ||||
Kerria japonica | 21.76 | Cornus alba | 18.39 | |||||||
Lonicera caerulea | 27.90 | Kerria japonica | 15.12 | |||||||
Euonymus alatus | 10.72 | |||||||||
Herb | 1N | Artemisia annua | 30.54 | 1NN | Artemisia annua | 23.20 | ||||
Artemisia lavandulifolia | 23.41 | Artemisia lavandulifolia | 23.12 | |||||||
Duchesnea indica | 16.19 | Duchesnea indica | 13.80 | |||||||
Achnatherum chinense | 7.36 | Chrysanthemum lavandulifolium | 9.29 | |||||||
Phedimus aizoon | 6.89 | Phedimus aizoon | 8.68 |
Vegetation Type | Sample Plot | Name | Importance Value IV% | Sample Plot | Name | Importance Value IV% | ||||
---|---|---|---|---|---|---|---|---|---|---|
Tree IV% | Shrub IV% | Herb IV% | Tree IV% | Shrub IV% | Herb IV% | |||||
Tree | 2N | Pinus massoniana | 39.26 | 2NN | Cotinus coggygria var. cinereus | 20.39 | ||||
Quercus variabilis | 24.89 | Pinus massoniana | 33.59 | |||||||
Cotinus coggygria var. cinereus | 14.38 | Quercus variabilis | 23.77 | |||||||
Fraxinus stylosa | 12.75 | Fraxinus stylosa | 13.07 | |||||||
Quercus robur | 8.72 | Quercus robur | 9.18 | |||||||
Shrub | 2N | Pueraria montana var. lobata | 62.98 | 2NN | Pueraria montana var. lobata | 54.97 | ||||
Wikstroemia pilosa | 23.11 | Wikstroemia pilosa | 19.62 | |||||||
Akebia trifoliata | 13.91 | Akebia trifoliata | 12.27 | |||||||
Lespedeza bicolor | 7.74 | |||||||||
Berberis feddeana | 5.40 | |||||||||
Herb | 2N | Elsholtzia ciliata | 14.57 | 2NN | Elsholtzia ciliata | 12.10 | ||||
Humulus scandens | 11.63 | Humulus scandens | 10.39 | |||||||
Lagopsis supina | 5.67 | Lagopsis supina | 6.46 | |||||||
Artemisia argyi | 5.58 | Artemisia argyi | 5.77 | |||||||
Stellaria vestita | 5.43 | Artemisia lavandulifolia | 4.89 |
Vegetation Type | Sample Plot | Name | Importance Value IV% | Sample Plot | Name | Importance Value IV% | ||||
---|---|---|---|---|---|---|---|---|---|---|
Tree IV% | Shrub IV% | Herb IV% | Tree IV% | Shrub IV% | Herb IV% | |||||
Tree | 3N | Pinus bungeana | 32.23 | 3NN | Gleditsia sinensis | 35.26 | ||||
Gleditsia sinensis | 31.17 | Pinus bungeana | 28.76 | |||||||
Robinia pseudoacacia | 16.52 | Robinia pseudoacacia | 14.26 | |||||||
Juglans regia | 13.42 | Juglans regia | 10.91 | |||||||
Prunus davidiana | 6.66 | Prunus davidiana | 10.80 | |||||||
Shrub | 3N | Spiraea × vanhouttei | 53.82 | 3NN | Spiraea × vanhouttei | 57.95 | ||||
Euonymus alatus | 29.74 | Euonymus alatus | 25.88 | |||||||
Lespedeza bicolor | 16.44 | Lespedeza bicolor | 16.17 | |||||||
Herb | 3N | Carex breviculmis | 16.87 | 3NN | Carex breviculmis | 14.20 | ||||
Chrysanthemum lavandulifolium | 13.11 | Chrysanthemum lavandulifolium | 12.13 | |||||||
Artemisia argyi | 9.54 | Artemisia argyi | 8.33 | |||||||
Phedimus aizoon | 7.56 | Phedimus aizoon | 7.90 | |||||||
Artemisia eriopoda | 7.50 | Artemisia eriopoda | 6.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Hua, J.; Liu, W.; Yang, S.; Ji, W. Evaluating the Impact of Near-Natural Restoration Strategies on the Ecological Restoration of Landslide-Affected Areas Across Different Time Periods. Plants 2025, 14, 2331. https://doi.org/10.3390/plants14152331
Chen S, Hua J, Liu W, Yang S, Ji W. Evaluating the Impact of Near-Natural Restoration Strategies on the Ecological Restoration of Landslide-Affected Areas Across Different Time Periods. Plants. 2025; 14(15):2331. https://doi.org/10.3390/plants14152331
Chicago/Turabian StyleChen, Sibo, Jinguo Hua, Wanting Liu, Siyu Yang, and Wenli Ji. 2025. "Evaluating the Impact of Near-Natural Restoration Strategies on the Ecological Restoration of Landslide-Affected Areas Across Different Time Periods" Plants 14, no. 15: 2331. https://doi.org/10.3390/plants14152331
APA StyleChen, S., Hua, J., Liu, W., Yang, S., & Ji, W. (2025). Evaluating the Impact of Near-Natural Restoration Strategies on the Ecological Restoration of Landslide-Affected Areas Across Different Time Periods. Plants, 14(15), 2331. https://doi.org/10.3390/plants14152331