Enhancing Conservation Efforts in the Qinling Mountains Through Phenotypic Trait Diversity Optimization
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection of the Species Catalog and Distribution Data
2.2.1. Collection and Sources of Phenotypic Trait Diversity Species (PTDS) Data
2.2.2. Collection and Sources of Endemic Species (ES), Threatened Species (TS), and Protected Species (PS) Data
2.3. Distribution Patterns and Analysis of Hotspot Areas
2.4. Conservation Gap and Conservation Optimization
3. Results
3.1. Composition of Phenotypic Trait Diversity Species
3.2. Distribution Patterns of the Four Types of Plant Data
3.3. Distribution and Consistency of Hotspots for Phenotypic Trait Diversity Species Compared to the Other Three Hotspots
3.4. Priority Conservation Areas for Plant Species in the Qinling Mountains, Shaanxi
4. Discussion
4.1. Composition of Phenotypic Trait Diversity Species and Their Roles in Conservation Areas
4.2. Species Diversity, Hotspots, and Conservation Gaps in the Qinling Mountains of Shaanxi
4.3. Application of Phenotypic Trait Diversity in Hotspot Identification and Recognizing Conservation Gaps
4.4. Uncertainties
5. Conclusions
6. Suggestions and Outlook
- (1)
- Priority integration into national parks—incorporate contiguous gap areas into the boundary optimization plans of national parks, establishing peripheral buffer zones and ecological corridors to enhance habitat connectivity.
- (2)
- Community co-governance—implement an “ecological stewardship public welfare position” mechanism in fragmented conservation gap areas, encouraging local residents to participate in monitoring and patrolling, while promoting ecological planting (e.g., fungi and medicinal plants) as an alternative to traditional resource-dependent livelihoods.
- (3)
- Smart monitoring network—utilize GIS and remote sensing technologies to establish a biodiversity database for conservation gap areas, dynamically assessing the impacts of human disturbances and the effectiveness of ecological restoration.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PTDS | Phenotypic Trait Diversity Species |
ES | Endemic species |
TS | Threatened species |
PS | Protected species |
References
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; Garcia, A.; Pringle, R.M.; Palmer, T.M. Accelerated Modern Human-Induced Species Losses: Entering the Sixth Mass Extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef]
- Feehan, J.; Harley, M.; Minnen, J. Climate Change in Europe. 1. Impact on Terrestrial Ecosystems and Biodiversity. A Review. Agron. Sustain. Dev. 2009, 29, 409–421. [Google Scholar] [CrossRef]
- Wang, B.; Xu, G.; Li, P.; Li, Z.; Zhang, Y.; Cheng, Y.; Jia, L.; Zhang, J. Vegetation Dynamics and Their Relationships with Climatic Factors in the Qinling Mountains of China. Ecol. Indic. 2020, 108, 105719. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, L.; Spalink, D.; Sun, L.; Chen, J.; Sun, H. Spatial Phylogenetics of Two Topographic Extremes of the Hengduan Mountains in Southwestern China and Its Implications for Biodiversity Conservation. Plant Divers. 2021, 43, 181–191. [Google Scholar] [CrossRef]
- Maschinski, J.; Albrecht, M.A. Center for Plant Conservation’s Best Practice Guidelines for the Reintroduction of Rare Plants. Plant Divers. 2017, 39, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Brooks, T.M.; Mittermeier, R.A.; Fonseca, G.A.B.D.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.F.; Mittermeier, C.G.; Pilgrim, J.D.; Rodrigues, A.S.L. Global Biodiversity Conservation Priorities. Science 2006, 313, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Du, W.-B.; Jia, P.; Du, G.-Z. Current Patterns of Plant Diversity and Phylogenetic Structure on the Kunlun Mountains. Plant Divers. 2022, 44, 30–38. [Google Scholar] [CrossRef]
- Rands, M.R.W.; Adams, W.M.; Bennun, L.; Butchart, S.H.M.; Clements, A.; Coomes, D.; Entwistle, A.; Hodge, I.; Kapos, V.; Scharlemann, J.P.W.; et al. Biodiversity Conservation: Challenges Beyond 2010. Science 2010, 329, 1298–1303. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Fonseca, G.A.B.D.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Xie, H.; Tang, Y.; Fu, J.; Chi, X.; Du, W.; Dimitrov, D.; Liu, J.; Xi, Z.; Wu, J.; Xu, X. Diversity Patterns and Conservation Gaps of Magnoliaceae Species in China. Sci. Total Environ. 2022, 813, 152665. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, Y.; Zhang, J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.; Polasky, S.; et al. Strengthening Protected Areas for Biodiversity and Ecosystem Services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-B.; Svenning, J.-C.; Chen, G.-K.; Zhang, M.-G.; Huang, J.-H.; Chen, B.; Ordonez, A.; Ma, K.-P. Human Activities Have Opposing Effects on Distributions of Narrow-Ranged and Widespread Plant Species in China. Proc. Natl. Acad. Sci. USA 2019, 116, 26674–26681. [Google Scholar] [CrossRef]
- Barwell, L.J.; Isaac, N.J.B.; Kunin, W.E. Measuring Beta-Diversity with Species Abundance Data. J. Anim. Ecol. 2015, 84, 1112–1122. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, M.; Bussmann, W.R.; Liu, H.; Liu, Y.; Peng, Y.; Zu, K.; Zhao, Y.; Liu, Z.; Yu, S. Species Richness and Conservation Gap Analysis of Karst Areas: A Case Study of Vascular Plants from Guizhou, China. Glob. Ecol. Conserv. 2018, 16, e00460. [Google Scholar] [CrossRef]
- Zhang, M.-G.; Slik, J.W.F.; Ma, K.-P. Priority Areas for the Conservation of Perennial Plants in China. Biol. Conserv. 2017, 210, 56–63. [Google Scholar] [CrossRef]
- Zhang, W.; Bussmann, R.W.; Li, J.; Liu, B.; Xue, T.; Yang, X.; Qin, F.; Liu, H.; Yu, S. Biodiversity Hotspots and Conservation Efficiency of a Large Drainage Basin: Distribution Patterns of Species Richness and Conservation Gaps Analysis in the Yangtze River Basin, China. Conserv. Sci. Pract. 2022, 4, e12653. [Google Scholar] [CrossRef]
- Myers, N. Threatened Biotas: “Hot Spots” in Tropical Forests. Environmentalist 1988, 8, 187–208. [Google Scholar] [CrossRef]
- Shrestha, N.; Wang, Z. Selecting Priority Areas for Systematic Conservation of Chinese Rhododendron: Hotspot versus Complementarity Approaches. Biodivers. Conserv. 2018, 27, 3759–3775. [Google Scholar] [CrossRef]
- Prendergast, J.R.; Wood, S.N.; Lawton, J.H.; Eversham, B.C. Correcting for Variation in Recording Effort in Analyses of Diversity Hotspots. Biodivers. Lett. 1993, 1, 39–53. [Google Scholar] [CrossRef]
- Chi, X.; Zhang, Z.; Xu, X.; Zhang, X.; Zhao, Z.; Liu, Y.; Wang, Q.; Wang, H.; Li, Y.; Yang, G.; et al. Threatened Medicinal Plants in China: Distributions and Conservation Priorities. Biol. Conserv. 2017, 210, 89–95. [Google Scholar] [CrossRef]
- Liu, Q.; Xue, T.-T.; Zhang, X.-X.; Yang, X.-D.; Qin, F.; Zhang, W.-D.; Wu, L.; Bussmann, R.W.; Yu, S.-X. Distribution and Conservation of near Threatened Plants in China. Plant Divers. 2023, 45, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Gadagkar, S.R.; Albright, T.P.; Yang, X.; Li, J.; Xia, C.; Wu, J.; Yu, S. Prioritizing Conservation of Biodiversity in an Alpine Region: Distribution Pattern and Conservation Status of Seed Plants in the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 2021, 32, e01885. [Google Scholar] [CrossRef]
- Canadas, E.M.; Fenu, G.; Penas, J.; Lorite, J.; Mattana, E.; Bacchetta, G. Hotspots within Hotspots: Endemic Plant Richness, Environmental Drivers, and Implications for Conservation. Biol. Conserv. 2014, 170, 282–291. [Google Scholar] [CrossRef]
- Gehrke, B.; Linder, H.P. Species Richness, Endemism and Species Composition in the Tropical Afroalpine Flora. Alp. Bot. 2014, 124, 165–177. [Google Scholar] [CrossRef]
- Yang, X.; Qin, F.; Xue, T.; Xia, C.; Gadagkar, S.R.; Yu, S. Insights into Plant Biodiversity Conservation in Large River Valleys in China: A Spatial Analysis of Species and Phylogenetic Diversity. Ecol. Evol. 2022, 12, e8940. [Google Scholar] [CrossRef]
- Ye, P.; Zhang, G.; Wu, J. Hotspots and Conservation Gaps: A Case Study of Key Higher Plant Species from Northwest Yunnan, China. Glob. Ecol. Conserv. 2020, 23, e01005. [Google Scholar] [CrossRef]
- Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the Concept of Trait Be Functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Samantha Baltazar; Rodolfo Solano Diversidad y Rasgos Funcionales de Orquídeas Terrestres En Bosques de Un Área Natural Protegida Del Noreste de México. Bot. Sci. 2020, 98, 468–485. [CrossRef]
- Violle, C.; Reich, P.B.; Pacala, S.W.; Enquist, B.J.; Kattge, J. The Emergence and Promise of Functional Biogeography. Proc. Natl. Acad. Sci. USA 2014, 111, 13690–13696. [Google Scholar] [CrossRef]
- Dawson, S.K.; Carmona, C.P.; Gonzalez-Suarez, M.; Jonsson, M.; Chichorro, F.; Mallen-Cooper, M.; Melero, Y.; Moor, H.; Simaika, J.P.; Duthie, A.B. The Traits of “Trait Ecologists”: An Analysis of the Use of Trait and Functional Trait Terminology. Ecol. Evol. 2021, 11, 16434–16445. [Google Scholar] [CrossRef]
- Garnier, E.; Navas, M.-L. A Trait-Based Approach to Comparative Functional Plant Ecology: Concepts, Methods and Applications for Agroecology. A Review. Agron. Sustain. Dev. 2012, 32, 365–399. [Google Scholar] [CrossRef]
- Barnagaud, J.; Mazet, N.; Munoz, F.; Grenié, M.; Denelle, P.; Sobral, M.; Kissling, W.D.; Şekercioğlu, Ç.H.; Violle, C. Functional Biogeography of Dietary Strategies in Birds. Glob. Ecol. Biogeogr. 2019, 28, 1004–1017. [Google Scholar] [CrossRef]
- Sobral, M.; Sampedro, L. Phenotypic, Epigenetic, and Fitness Diversity within Plant Genotypes. Trends Plant Sci. 2022, 27, 843–846. [Google Scholar] [CrossRef]
- Zhao, D.; Tao, J. Recent Advances on the Development and Regulation of Flower Color in Ornamental Plants. Front. Plant Sci. 2015, 6, 261. [Google Scholar] [CrossRef] [PubMed]
- Sobral, M. All Traits Are Functional: An Evolutionary Viewpoint. Trends Plant Sci. 2021, 26, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Zhang, J.; Jiang, M. Global Patterns of Taxonomic and Phylogenetic Diversity of Flowering Plants: Biodiversity Hotspots and Coldspots. Plant Divers. 2023, 45, 265–271. [Google Scholar] [CrossRef]
- Sandoval, L.; Zamora-Castro, S.A.; Vidal-Alvarez, M.; Marin-Muniz, J.L. Role of Wetland Plants and Use of Ornamental Flowering Plants in Constructed Wetlands for Wastewater Treatment: A Review. Appl. Sci. 2019, 9, 685. [Google Scholar] [CrossRef]
- Fornoff, F.; Klein, A.; Hartig, F.; Benadi, G.; Venjakob, C.; Schaefer, H.M.; Ebeling, A. Functional Flower Traits and Their Diversity Drive Pollinator Visitation. Oikos 2017, 126, 1020–1030. [Google Scholar] [CrossRef]
- Chen, S.; Hua, J.; Liu, W.; Yang, S.; Wang, X.; Ji, W. Effects of Artificial Restoration and Natural Recovery on Plant Communities and Soil Properties across Different Temporal Gradients after Landslides. Forests 2023, 14, 1974. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, N.; Shen, S.; Zhu, S.; Fan, S.; Lu, Y. Effects of Climate Change on the Spatial Distribution of the Threatened Species Rhododendron Purdomii in Qinling-Daba Mountains of Central China: Implications for Conservation. Sustainability 2023, 15, 3181. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Zhuang, H.; Wang, L.; Innes, J.L.; Ma, K. Integrating Hotspots for Endemic, Threatened and Rare Species Supports the Identification of Priority Areas for Vascular Plants in SW China. For. Ecol. Manag. 2021, 484, 118952. [Google Scholar] [CrossRef]
- He, C.; Jia, S.; Luo, Y.; Hao, Z.; Yin, Q. Spatial Distribution and Species Association of Dominant Tree Species in Huangguan Plot of Qinling Mountains, China. Forests 2022, 13, 866. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Wang, J.; Yu, F.; Zhao, C.; Yao, Y. North-South Vegetation Transition in the Eastern Qinling-Daba Mountains. J. Geogr. Sci. 2021, 31, 350–368. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Yao, Y.; Liu, J.; Wang, J.; Yu, F.; Li, J. Variation Model of North-South Plant Species Diversity in the Qinling-Daba Mountains in China. Glob. Ecol. Conserv. 2022, 38, e02190. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Li, Y.; Jia, L. Spatiotemporal Variation and Driving Forces of NDVI from 1982 to 2015 in the Qinba Mountains, China. Environ. Sci. Pollut. Res. 2022, 29, 52277–52288. [Google Scholar] [CrossRef]
- Chai, Z.; Wang, D. A Comparison of Species Composition and Community Assemblage of Secondary Forests between the Birch and Pine-Oak Belts in the Mid-Altitude Zone of the Qinling Mountains, China. PeerJ 2016, 4, e1900. [Google Scholar] [CrossRef]
- Hurlbert, A.H.; Jetz, W. Species Richness, Hotspots, and the Scale Dependence of Range Maps in Ecology and Conservation. Proc. Natl. Acad. Sci. USA 2007, 104, 13384–13389. [Google Scholar] [CrossRef]
- Qin, F.; Zhang, X.-X.; Huang, Y.-F.; Wu, L.; Xu, W.-B.; Xue, T.-T.; Zhang, W.-D.; Liu, Q.; Yu, J.-H.; Gao, J.-J.; et al. Geographic Distribution, Conservation Effectiveness, and Gaps for National Key Protected Wild Plants in China. J. Syst. Evol. 2023, 61, 967–978. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Getis, A.; Aldstadt, J. Constructing the Spatial Weights Matrix Using a Local Statistic. Geogr. Anal. 2004, 36, 90–104. [Google Scholar] [CrossRef]
- Toscano, S.; Ferrante, A.; Romano, D. Response of Mediterranean Ornamental Plants to Drought Stress. Horticulturae 2019, 5, 6. [Google Scholar] [CrossRef]
- Sobral, M.; Sampedro, L.; Neylan, I.; Siemens, D.; Dirzo, R. Phenotypic Plasticity in Plant Defense across Life Stages: Inducibility, Transgenerational Induction, and Transgenerational Priming in Wild Radish. Proc. Natl. Acad. Sci. USA 2021, 118, e2005865118. [Google Scholar] [CrossRef] [PubMed]
- Guitián, J.A.; Sobral, M.; Veiga, T.; Losada, M.; Guitián, P.; Guitián, J.M. Differences in Pollination Success between Local and Foreign Flower Color Phenotypes: A Translocation Experiment with Gentiana lutea (Gentianaceae). PeerJ 2017, 5, e2882. [Google Scholar] [CrossRef]
- Losada, M.; Veiga, T.; Guitián, J.; Guitián, J.; Guitián, P.; Sobral, M. Is There a Hybridization Barrier between Gentiana lutea Color Morphs? PeerJ 2015, 3, e1308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Lv, Z.; Zhao, X.; Yang, X.; Jia, X.; Sun, W.; He, X.; He, B.; Cai, Q.; et al. Animal Diversity Responding to Different Forest Restoration Schemes in the Qinling Mountains, China. Ecol. Eng. 2019, 136, 23–29. [Google Scholar] [CrossRef]
- Shuai, L.-Y.; Ren, C.-L.; Yan, W.-B.; Song, Y.-L.; Zeng, Z.-G. Different Elevational Patterns of Rodent Species Richness between the Southern and Northern Slopes of a Mountain. Sci. Rep. 2017, 7, 8743. [Google Scholar] [CrossRef] [PubMed]
- Sobral, M.; Schleuning, M.; Cortizas, A.M. Trait Diversity Shapes the Carbon Cycle. Trends Ecol. Evol. 2023, 38, 602–604. [Google Scholar] [CrossRef]
- Losada, M.; Cortizas, A.M.M.; Silvius, K.M.; Varela, S.; Raab, T.K.; Fragoso, J.M.V.; Sobral, M. Mammal and Tree Diversity Accumulate Different Types of Soil Organic Matter in the Northern Amazon. iScience 2023, 26, 106088. [Google Scholar] [CrossRef]
- Li, Q.; Li, T.; Yue, M. Altitudinal Patterns of Species Richness of Seed Plants in Qingling Mountains: A Test of Rapoport’s Rule. Diversity 2022, 14, 603. [Google Scholar] [CrossRef]
- Kandel, P.; Chettri, N.; Chaudhary, R.P.; Badola, H.K.; Gaira, K.S.; Wangchuk, S.; Bidha, N.; Uprety, Y.; Sharma, E. Plant Diversity of the Kangchenjunga Landscape, Eastern Himalayas. Plant Divers. 2019, 41, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, Y.; Chen, W.; Zhao, Y.; Liu, X.; Bai, Y. The Potential of Mapping Grassland Plant Diversity with the Links among Spectral Diversity, Functional Trait Diversity, and Species Diversity. Remote Sens. 2021, 13, 3034. [Google Scholar] [CrossRef]
- Olusoji, O.D.; Barabás, G.; Spaak, J.W.; Fontana, S.; Neyens, T.; De Laender, F.; Aerts, M. Measuring Individual-level Trait Diversity: A Critical Assessment of Methods. Oikos 2023, 2023, e09178. [Google Scholar] [CrossRef]
- Yang, X.; Liu, B.; Bussmann, R.W.; Guan, X.; Xu, W.; Xue, T.; Xia, C.; Li, J.; Jiang, H.; Wu, L.; et al. Integrated Plant Diversity Hotspots and Long-Term Stable Conservation Strategies in the Unique Karst Area of Southern China under Global Climate Change. For. Ecol. Manag. 2021, 498, 119540. [Google Scholar] [CrossRef]
- Yang, J.; Luo, J.; Gan, Q.; Ke, L.; Zhang, F.; Guo, H.; Zhao, F.; Wang, Y. An Ethnobotanical Study of Forage Plants in Zhuxi County in the Qinba Mountainous Area of Central China. Plant Divers. 2021, 43, 239–247. [Google Scholar] [CrossRef]
- Xing, Y.; Ree, R.H. Uplift-Driven Diversification in the Hengduan Mountains, a Temperate Biodiversity Hotspot. Proc. Natl. Acad. Sci. USA 2017, 114, E3444–E3451. [Google Scholar] [CrossRef]
- Heywood, V.H. The Future of Plant Conservation and the Role of Botanic Gardens. Plant Divers. 2017, 39, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Zang, Z.; Guo, Z.; Fan, X.; Han, M.; Du, A.; Xu, W.; Ouyang, Z. Assessing the Performance of the Pilot National Parks in China. Ecol. Indic. 2022, 145, 109699. [Google Scholar] [CrossRef]
- Xu, W.; Pimm, S.L.; Du, A.; Su, Y.; Fan, X.; An, L.; Liu, J.; Ouyang, Z. Transforming Protected Area Management in China. Trends Ecol. Evol. 2019, 34, 762–766. [Google Scholar] [CrossRef]
- Du, A.; Xu, W.; Xiao, Y.; Cui, T.; Song, T.; Ouyang, Z. Evaluation of Prioritized Natural Landscape Conservation Areas for National Park Planning in China. Sustainability 2020, 12, 1840. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, Y.; Zhang, J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.; Polasky, S.; et al. Reply to Yang et al.: Coastal Wetlands Are Not Well Represented by Protected Areas for Endangered Birds. Proc. Natl. Acad. Sci. USA 2017, 114, E5493. [Google Scholar] [CrossRef]
- Diaz, S.; Cabido, M. Vive La Difference: Plant Functional Diversity Matters to Ecosystem Processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
- Zhuang, H.; Wang, C.; Wang, Y.; Jin, T.; Huang, R.; Lin, Z.; Wang, Y. Native Useful Vascular Plants of China: A Checklist and Use Patterns. Plant Divers. 2021, 43, 134–141. [Google Scholar] [CrossRef]
- Tucker, C.M.; Davies, T.J.; Cadotte, M.W.; Pearse, W.D. On the Relationship between Phylogenetic Diversity and Trait Diversity. Ecology 2018, 99, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Sobral, M.; Neylan, I.P.; Narbona, E.; Dirzo, R. Transgenerational Plasticity in Flower Color Induced by Caterpillars. Front. Plant Sci. 2021, 12, 617815. [Google Scholar] [CrossRef] [PubMed]
- Mammola, S.; Carmona, C.P.; Guillerme, T.; Cardoso, P. Concepts and Applications in Functional Diversity. Funct. Ecol. 2021, 35, 1869–1885. [Google Scholar] [CrossRef]
- Palacio, F.X.; Callaghan, C.T.; Cardoso, P.; Hudgins, E.J.; Jarzyna, M.A.; Ottaviani, G.; Riva, F.; Graco-Roza, C.; Shirey, V.; Mammola, S. A Protocol for Reproducible Functional Diversity Analyses. Ecography 2022, 2022, e06287. [Google Scholar] [CrossRef]
Life Form | Families | Genera | Species | ||||
---|---|---|---|---|---|---|---|
Numbers | Proportion of Total Families/% | Numbers | Proportion of Total Genera/% | Numbers | Proportion of Total Species/% | ||
Tree | Deciduous tree | 36 | 26.7 | 74 | 11.7 | 170 | 8.8 |
Evergreen tree | 12 | 8.7 | 12 | 1.9 | 23 | 1.2 | |
Shrub | Deciduous shrub | 40 | 29.0 | 98 | 15.5 | 419 | 21.8 |
Evergreen shrub | 27 | 19.6 | 45 | 7.1 | 123 | 6.4 | |
Liana | Deciduous liana | 14 | 10.1 | 27 | 4.3 | 107 | 5.6 |
Evergreen liana | 12 | 8.7 | 14 | 2.2 | 20 | 1.0 | |
Herbs | Annual herbs | 44 | 31.9 | 101 | 16.0 | 138 | 7.2 |
Annual and biennial herbs | 16 | 11.6 | 38 | 6.0 | 51 | 2.7 | |
Perennial herbs | 87 | 63.0 | 362 | 57.1 | 872 | 45.3 |
Color of Flowers | Families | Genera | Species | |||
---|---|---|---|---|---|---|
Numbers | Proportion of Total Families/% | Numbers | Proportion of Total Genera/% | Numbers | Proportion of Total Species/% | |
White | 72 | 54.1 | 218 | 34.9 | 589 | 31.6 |
Yellow | 81 | 60.9 | 203 | 32.5 | 423 | 22.7 |
Purple | 61 | 45.7 | 143 | 22.9 | 305 | 16.3 |
Green | 45 | 33.8 | 73 | 11.7 | 154 | 8.3 |
Multicolor | 42 | 31.6 | 77 | 12.3 | 114 | 6.1 |
Pink | 25 | 18.8 | 45 | 7.2 | 93 | 5.0 |
Red | 39 | 29.3 | 66 | 10.6 | 90 | 4.8 |
Season of Observing Flowers | Families | Genera | Species | |||
---|---|---|---|---|---|---|
Numbers | Proportion of Total Families/% | Numbers | Proportion of Total Genera/% | Numbers | Proportion of Total Species/% | |
Spring | 110 | 82.7 | 363 | 58.2 | 821 | 44.0 |
Summer | 96 | 72.2 | 380 | 60.1 | 953 | 51.1 |
Autumn | 24 | 18.0 | 41 | 6.6 | 70 | 3.8 |
Winter | 7 | 5.3 | 8 | 1.3 | 10 | 0.5 |
Color of Fruits | Families | Genera | Species | |||
---|---|---|---|---|---|---|
Numbers | Proportion of Total Families/% | Numbers | Proportion of Total Genera/% | Numbers | Proportion of Total Species/% | |
Multicolor (Fruit shape) | 96 | 81.4 | 349 | 72.3 | 697 | 52.3 |
Red | 33 | 28.0 | 61 | 12.6 | 283 | 21.2 |
Black | 34 | 28.8 | 60 | 12.4 | 133 | 10.0 |
Brown | 23 | 19.5 | 38 | 7.9 | 100 | 7.5 |
Purple | 16 | 13.6 | 29 | 6.0 | 67 | 5.0 |
Yellow | 20 | 16.9 | 29 | 6.0 | 52 | 3.9 |
Season of Observing Fruits | Families | Genera | Species | |||
---|---|---|---|---|---|---|
Numbers | Proportion of Total Families/% | Numbers | Proportion of Total Genera/% | Numbers | Proportion of Total Species/% | |
Spring | 22 | 18.6 | 45 | 9.3 | 87 | 6.5 |
Summer | 88 | 74.6 | 282 | 58.4 | 648 | 48.6 |
Autumn | 88 | 74.6 | 262 | 54.2 | 581 | 43.6 |
Winter | 6 | 5.1 | 6 | 1.2 | 6 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Fu, X.; Chen, K.; Hua, J.; Rao, Q.; Feng, X.; Ji, W. Enhancing Conservation Efforts in the Qinling Mountains Through Phenotypic Trait Diversity Optimization. Plants 2025, 14, 2130. https://doi.org/10.3390/plants14142130
Chen S, Fu X, Chen K, Hua J, Rao Q, Feng X, Ji W. Enhancing Conservation Efforts in the Qinling Mountains Through Phenotypic Trait Diversity Optimization. Plants. 2025; 14(14):2130. https://doi.org/10.3390/plants14142130
Chicago/Turabian StyleChen, Sibo, Xin Fu, Kexin Chen, Jinguo Hua, Qian Rao, Xuewei Feng, and Wenli Ji. 2025. "Enhancing Conservation Efforts in the Qinling Mountains Through Phenotypic Trait Diversity Optimization" Plants 14, no. 14: 2130. https://doi.org/10.3390/plants14142130
APA StyleChen, S., Fu, X., Chen, K., Hua, J., Rao, Q., Feng, X., & Ji, W. (2025). Enhancing Conservation Efforts in the Qinling Mountains Through Phenotypic Trait Diversity Optimization. Plants, 14(14), 2130. https://doi.org/10.3390/plants14142130