Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,365)

Search Parameters:
Keywords = motor neuron disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 902 KiB  
Review
Neuroaxonal Degeneration as a Converging Mechanism in Motor Neuron Diseases (MNDs): Molecular Insights into RNA Dysregulation and Emerging Therapeutic Targets
by Minoo Sharbafshaaer, Roberta Pepe, Rosaria Notariale, Fabrizio Canale, Alessandro Tessitore, Gioacchino Tedeschi and Francesca Trojsi
Int. J. Mol. Sci. 2025, 26(15), 7644; https://doi.org/10.3390/ijms26157644 - 7 Aug 2025
Abstract
Motor Neuron Diseases (MNDs) such as Amyotrophic Lateral Sclerosis (ALS), Primary Lateral Sclerosis (PLS), Hereditary Spastic Paraplegia (HSP), Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1), Multisystem Proteinopathy (MSP), Spinal and Bulbar Muscular Atrophy (SBMA), and ALS associated to Frontotemporal Dementia (ALS-FTD), [...] Read more.
Motor Neuron Diseases (MNDs) such as Amyotrophic Lateral Sclerosis (ALS), Primary Lateral Sclerosis (PLS), Hereditary Spastic Paraplegia (HSP), Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1), Multisystem Proteinopathy (MSP), Spinal and Bulbar Muscular Atrophy (SBMA), and ALS associated to Frontotemporal Dementia (ALS-FTD), have traditionally been studied as distinct entities, each one with unique genetic and clinical characteristics. However, emerging research reveals that these seemingly disparate conditions converge on shared molecular mechanisms that drive progressive neuroaxonal degeneration. This narrative review addresses a critical gap in the field by synthesizing the most recent findings into a comprehensive, cross-disease mechanisms framework. By integrating insights into RNA dysregulation, protein misfolding, mitochondrial dysfunction, DNA damage, kinase signaling, axonal transport failure, and immune activation, we highlight how these converging pathways create a common pathogenic landscape across MNDs. Importantly, this perspective not only reframes MNDs as interconnected neurodegenerative models but also identifies shared therapeutic targets and emerging strategies, including antisense oligonucleotides, autophagy modulators, kinase inhibitors, and immunotherapies that transcend individual disease boundaries. The diagnostic and prognostic potential of Neurofilament Light Chain (NfL) biomarkers is also emphasized. By shifting focus from gene-specific to mechanism-based approaches, this paper offers a much-needed roadmap for advancing both research and clinical management in MNDs, paving the way for cross-disease therapeutic innovations. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

14 pages, 982 KiB  
Article
Effectiveness of a Learning Pathway on Food and Nutrition in Amyotrophic Lateral Sclerosis
by Karla Mônica Dantas Coutinho, Humberto Rabelo, Felipe Fernandes, Karilany Dantas Coutinho, Ricardo Alexsandro de Medeiros Valentim, Aline de Pinho Dias, Janaína Luana Rodrigues da Silva Valentim, Natalia Araújo do Nascimento Batista, Manoel Honorio Romão, Priscila Sanara da Cunha, Aliete Cunha-Oliveira, Susana Henriques, Luciana Protásio de Melo, Sancha Helena de Lima Vale, Lucia Leite-Lais and Kenio Costa de Lima
Nutrients 2025, 17(15), 2562; https://doi.org/10.3390/nu17152562 - 6 Aug 2025
Abstract
Background/Objectives: Health education plays a vital role in training health professionals and caregivers, supporting both prevention and the promotion of self-care. In this context, technology serves as a valuable ally by enabling continuous and flexible learning. Among the various domains of health education, [...] Read more.
Background/Objectives: Health education plays a vital role in training health professionals and caregivers, supporting both prevention and the promotion of self-care. In this context, technology serves as a valuable ally by enabling continuous and flexible learning. Among the various domains of health education, nutrition stands out as a key element in the management of Amyotrophic Lateral Sclerosis (ALS), helping to prevent malnutrition and enhance patient well-being. Accordingly, this study aimed to evaluate the effectiveness of the teaching and learning processes within a learning pathway focused on food and nutrition in the context of ALS. Methods: This study adopted a longitudinal, quantitative design. The learning pathway, titled “Food and Nutrition in ALS,” consisted of four self-paced and self-instructional Massive Open Online Courses (MOOCs), offered through the Virtual Learning Environment of the Brazilian Health System (AVASUS). Participants included health professionals, caregivers, and patients from all five regions of Brazil. Participants had the autonomy to complete the courses in any order, with no prerequisites for enrollment. Results: Out of 14,263 participants enrolled nationwide, 182 were included in this study after signing the Informed Consent Form. Of these, 142 (78%) completed at least one course and participated in the educational intervention. A significant increase in knowledge was observed, with mean pre-test scores rising from 7.3 (SD = 1.8) to 9.6 (SD = 0.9) on the post-test across all courses (p < 0.001). Conclusions: The self-instructional, technology-mediated continuing education model proved effective in improving participants’ knowledge about nutrition in ALS. Future studies should explore knowledge retention, behavior change, and the impact of such interventions on clinical outcomes, especially in multidisciplinary care settings. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

16 pages, 4427 KiB  
Article
Garlic-Derived Allicin Attenuates Parkinson’s Disease via PKA/p-CREB/BDNF/DAT Pathway Activation and Apoptotic Inhibition
by Wanchen Zeng, Yingkai Wang, Yang Liu, Xiaomin Liu and Zhongquan Qi
Molecules 2025, 30(15), 3265; https://doi.org/10.3390/molecules30153265 - 4 Aug 2025
Viewed by 196
Abstract
Allicin (ALC), a naturally occurring organosulfur compound derived from garlic (Allium sativum), exhibits potential neuroprotective properties. Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons and motor dysfunction. This study utilized bioinformatics and network pharmacology methods [...] Read more.
Allicin (ALC), a naturally occurring organosulfur compound derived from garlic (Allium sativum), exhibits potential neuroprotective properties. Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons and motor dysfunction. This study utilized bioinformatics and network pharmacology methods to predict the anti-PD mechanism of ALC and established in vivo and in vitro PD models using 6-hydroxydopamine (6-OHDA) for experimental verification. Network pharmacological analysis indicates that apoptosis regulation and the PKA/p-CREB/BDNF signaling pathway are closely related to the anti-PD effect of ALC, and protein kinase A (PKA) and dopamine transporter (DAT) are key molecular targets. The experimental results show that ALC administration can alleviate the cytotoxicity of SH-SY5Y induced by 6-OHDA and simultaneously improve the motor dysfunction and dopaminergic neuron loss in PD mice. In addition, ALC can also activate the PKA/p-CREB/BDNF signaling pathway and increase the DAT level in brain tissue, regulate the expression of BAX and Bcl-2, and reduce neuronal apoptosis. These results indicate that ALC can exert anti-PD effects by up-regulating the PKA/p-CREB/BDNF/DAT signaling pathway and inhibiting neuronal apoptosis, providing theoretical support for the application of ALC in PD. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Figure 1

20 pages, 17080 KiB  
Article
Exercise Ameliorates Dopaminergic Neurodegeneration in Parkinson’s Disease Mice by Suppressing Microglia-Regulated Neuroinflammation Through Irisin/AMPK/Sirt1 Pathway
by Bin Wang, Nan Li, Yuanxin Wang, Xin Tian, Junjie Lin, Xin Zhang, Haocheng Xu, Yu Sun and Renqing Zhao
Biology 2025, 14(8), 955; https://doi.org/10.3390/biology14080955 - 29 Jul 2025
Viewed by 385
Abstract
Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson’s disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the [...] Read more.
Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson’s disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the role of irisin signaling in mediating these effects. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we found that a 10-week treadmill exercise regimen significantly enhanced motor function, reduced dopaminergic neuron loss, attenuated neuronal apoptosis, and alleviated neuroinflammation. Exercise also shifted microglia from a pro-inflammatory to an anti-inflammatory phenotype. Notably, levels of irisin, phosphorylated AMP-activated protein kinase (p-AMPK), and sirtuin 1 (Sirt1), which were decreased in the PD brain, were significantly increased following exercise. These beneficial effects were abolished by blocking the irisin receptor with cyclic arginine–glycine–aspartic acid–tyrosine–lysine (cycloRGDyk). Our results indicate that exercise promotes neuroprotection in PD by modulating microglial activation and the AMPK/Sirt1 pathway through irisin signaling, offering new insights into exercise-based therapeutic approaches for PD. Full article
Show Figures

Figure 1

29 pages, 23179 KiB  
Article
Oligodendrocyte-Specific STAT5B Overexpression Ameliorates Myelin Impairment in Experimental Models of Parkinson’s Disease
by Yibo Li, Zhaowen Su, Jitong Zhai, Qing Liu, Hongfang Wang, Jiaxin Hao, Xiaofeng Tian, Jiamin Gao, Dandan Geng and Lei Wang
Cells 2025, 14(15), 1145; https://doi.org/10.3390/cells14151145 - 25 Jul 2025
Viewed by 532
Abstract
Background: Parkinson’s disease (PD) involves progressive dopaminergic neuron degeneration and motor deficits. Oligodendrocyte dysfunction contributes to PD pathogenesis through impaired myelination. Methods: Single-nucleus RNA sequencing (snRNA-seq) of PD mice revealed compromised oligodendrocyte differentiation and STAT5B downregulation. Pseudotemporal trajectory analysis via Monocle2 demonstrated impaired [...] Read more.
Background: Parkinson’s disease (PD) involves progressive dopaminergic neuron degeneration and motor deficits. Oligodendrocyte dysfunction contributes to PD pathogenesis through impaired myelination. Methods: Single-nucleus RNA sequencing (snRNA-seq) of PD mice revealed compromised oligodendrocyte differentiation and STAT5B downregulation. Pseudotemporal trajectory analysis via Monocle2 demonstrated impaired oligodendrocyte maturation in PD oligodendrocytes, correlating with reduced myelin-related gene expression (Sox10, Plp1, Mbp, Mog, Mag, Mobp). DoRothEA-predicted regulon activity identified STAT5B as a key transcriptional regulator. Results: Oligodendrocyte-specific STAT5B activation improved myelin integrity, as validated by Luxol Fast Blue staining and transmission electron microscopy; attenuated dopaminergic neuron loss; and improved motor function. Mechanistically, STAT5B binds the MBP promoter to drive transcription, a finding confirmed by the luciferase assay, while the DNMT3A-mediated hypermethylation of the STAT5B promoter epigenetically silences its expression, as verified by MethylTarget sequencing and methylation-specific PCR. Conclusions: DNMT3A inhibited the expression of STAT5B by affecting its methylation, which reduced the transcription of MBP, caused oligodendrocyte myelin damage, and eventually led to dopamine neuron damage and motor dysfunction in an MPTP-induced mouse model. This DNMT3A-STAT5B-MBP axis underlies PD-associated myelin damage, connecting epigenetic dysregulation with oligodendrocyte dysfunction and subsequent PD pathogenesis. Full article
Show Figures

Graphical abstract

21 pages, 14290 KiB  
Article
Identifying Therapeutic Targets for Amyotrophic Lateral Sclerosis Through Modeling of Multi-Omics Data
by François Xavier Blaudin de Thé, Cornelius J. H. M. Klemann, Ward De Witte, Joanna Widomska, Philippe Delagrange, Clotilde Mannoury La Cour, Mélanie Fouesnard, Sahar Elouej, Keith Mayl, Nicolas Lévy, Johannes Krupp, Ross Jeggo, Philippe Moingeon and Geert Poelmans
Int. J. Mol. Sci. 2025, 26(15), 7087; https://doi.org/10.3390/ijms26157087 - 23 Jul 2025
Viewed by 361
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily affects motor neurons, leading to loss of muscle control, and, ultimately, respiratory failure and death. Despite some advances in recent years, the underlying genetic and molecular mechanisms of ALS remain largely elusive. [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily affects motor neurons, leading to loss of muscle control, and, ultimately, respiratory failure and death. Despite some advances in recent years, the underlying genetic and molecular mechanisms of ALS remain largely elusive. In this respect, a better understanding of these mechanisms is needed to identify new and biologically relevant therapeutic targets that could be developed into treatments that are truly disease-modifying, in that they address the underlying causes rather than the symptoms of ALS. In this study, we used two approaches to model multi-omics data in order to map and elucidate the genetic and molecular mechanisms involved in ALS, i.e., the molecular landscape building approach and the Patrimony platform. These two methods are complementary because they rely upon different omics data sets, analytic methods, and scoring systems to identify and rank therapeutic target candidates. The orthogonal combination of the two modeling approaches led to significant convergences, as well as some complementarity, both for validating existing therapeutic targets and identifying novel targets. As for validating existing targets, we found that, out of 217 different targets that have been or are being investigated for drug development, 10 have high scores in both the landscape and Patrimony models, suggesting that they are highly relevant for ALS. Moreover, through both models, we identified or corroborated novel putative drug targets for ALS. A notable example of such a target is MATR3, a protein that has strong genetic, molecular, and functional links with ALS pathology. In conclusion, by using two distinct and highly complementary disease modeling approaches, this study enhances our understanding of ALS pathogenesis and provides a framework for prioritizing new therapeutic targets. Moreover, our findings underscore the potential of leveraging multi-omics analyses to improve target discovery and accelerate the development of effective treatments for ALS, and potentially other related complex human diseases. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

28 pages, 2258 KiB  
Review
CRISPR in Neurodegenerative Diseases Treatment: An Alternative Approach to Current Therapies
by Amna Akbar, Rida Haider, Luisa Agnello, Bushra Noor, Nida Maqsood, Fatima Atif, Wajeeha Ali, Marcello Ciaccio and Hira Tariq
Genes 2025, 16(8), 850; https://doi.org/10.3390/genes16080850 - 22 Jul 2025
Viewed by 693
Abstract
Neurodegenerative diseases (NDs) pose a major challenge to global healthcare systems owing to their devastating effects and limited treatment options. These disorders are characterized by progressive loss of neuronal structure and function, resulting in cognitive and motor impairments. Current therapies primarily focus on [...] Read more.
Neurodegenerative diseases (NDs) pose a major challenge to global healthcare systems owing to their devastating effects and limited treatment options. These disorders are characterized by progressive loss of neuronal structure and function, resulting in cognitive and motor impairments. Current therapies primarily focus on symptom management rather than on targeting the underlying causes. However, clustered regularly interspaced short palindromic repeat (CRISPR) technology offers a promising alternative by enabling precise genetic modifications that could halt or even reverse ND progression. CRISPR-Cas9, the most widely used CRISPR system, acts as a molecular scissor targeting specific DNA sequences for editing. By designing guide RNAs (gRNAs) to match sequences in genes associated with NDs, researchers can leverage CRISPR to knockout harmful genes, correct mutations, or insert protective genes. This review explores the potential of CRISPR-based therapies in comparison with traditional treatments for NDs. As research advances, CRISPR has the potential to revolutionize ND treatment by addressing its genetic underpinnings. Ongoing clinical trials and preclinical studies continue to expand our understanding and application of this powerful tool to fight debilitating conditions. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

9 pages, 550 KiB  
Brief Report
Elevated Urinary Titin in Adult Spinal Muscular Atrophy: A Multicenter, Cross-Sectional Observational Study
by Andrea Sipos, Emese Rebeka Ripszám, Judit Mária Molnár, Zoltán Grosz, Judit Boczán, Melinda Borbála Altorjay, Livia Dézsi, Anett Csáti, Kristóf Babarczy, Norbert Kovács, Nándor Hajdú and Endre Pál
Neurol. Int. 2025, 17(8), 114; https://doi.org/10.3390/neurolint17080114 - 22 Jul 2025
Viewed by 231
Abstract
Background: Spinal muscular atrophy (SMA) is a treatable motor neuron disease. Biomarkers for skeletal muscle atrophy are extremely important for measuring the effects of treatment and monitoring the natural course of the disease. The urinary titin N fragment (UNT) has recently been proven [...] Read more.
Background: Spinal muscular atrophy (SMA) is a treatable motor neuron disease. Biomarkers for skeletal muscle atrophy are extremely important for measuring the effects of treatment and monitoring the natural course of the disease. The urinary titin N fragment (UNT) has recently been proven to be related to muscle damage. Methods: The UNT was measured in 41 patients with SMA and 41 healthy controls. Clinical data, functional tests, and laboratory findings were also recorded. Results: We found significantly higher UNT levels in the patient samples than in the healthy subjects. The UNT was not related to disease type, functional test results, or serum creatine kinase levels. Conclusions: This cross-sectional study highlights the importance of the UNT as a potential noninvasive biomarker for spinal muscular atrophy. Its role can potentially be verified through longitudinal studies. Full article
(This article belongs to the Special Issue Biomarker Research in Neuromuscular Diseases)
Show Figures

Figure 1

13 pages, 1177 KiB  
Perspective
Banking on My Voice: Life with Motor Neurone Disease
by Ian Barry and Sarah El-Wahsh
Healthcare 2025, 13(14), 1770; https://doi.org/10.3390/healthcare13141770 - 21 Jul 2025
Viewed by 384
Abstract
This perspective paper presents a first-person account of life with motor neurone disease (MND). Through the lens of lived experience, it explores the complex and often prolonged diagnostic journey, shaped in part by the protective grip of denial. This paper then delves into [...] Read more.
This perspective paper presents a first-person account of life with motor neurone disease (MND). Through the lens of lived experience, it explores the complex and often prolonged diagnostic journey, shaped in part by the protective grip of denial. This paper then delves into the emotional impact of MND on the individual and their close relationships, capturing the strain on identity and family dynamics. It also highlights the vital role of the multidisciplinary team in providing support throughout the journey. A central focus of the paper is the personal journey of voice banking. It reflects on the restorative experience of reclaiming a pre-disease voice through tools such as ElevenLabsTM. This narrative underscores the critical importance of early intervention and timely access to voice banking, positioning voice not only as a tool for communication but also as a powerful anchor of identity, dignity, and agency. The paper concludes by highlighting key systemic gaps in MND care. It calls for earlier referral to speech pathology, earlier access to voice banking, access to psychological support from the time of diagnosis, and better integration between research and clinical care. Full article
(This article belongs to the Special Issue Improving Care for People Living with ALS/MND)
Show Figures

Figure 1

27 pages, 977 KiB  
Review
Branched-Chain Amino Acids in Parkinson’s Disease: Molecular Mechanisms and Therapeutic Potential
by Hui-Yu Huang, Shu-Ping Tsao and Tu-Hsueh Yeh
Int. J. Mol. Sci. 2025, 26(14), 6992; https://doi.org/10.3390/ijms26146992 - 21 Jul 2025
Viewed by 385
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra, resulting in motor symptoms such as bradykinesia, tremor, rigidity, and postural instability, as well as a wide variety of non-motor manifestations. Branched-chain amino [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra, resulting in motor symptoms such as bradykinesia, tremor, rigidity, and postural instability, as well as a wide variety of non-motor manifestations. Branched-chain amino acids (BCAAs)—leucine, isoleucine, and valine—are essential nutrients involved in neurotransmitter synthesis, energy metabolism, and cellular signaling. Emerging evidence suggests that BCAA metabolism is intricately linked to the pathophysiology of PD. Dysregulation of BCAA levels has been associated with energy metabolism, mitochondrial dysfunction, oxidative stress, neuroinflammation, and altered neurotransmission. Furthermore, the branched-chain ketoacid dehydrogenase kinase (BCKDK), a key regulator of BCAA catabolism, has been implicated in PD through its role in modulating neuronal energetics and redox homeostasis. In this review, we synthesize current molecular, genetic, microbiome, and clinical evidence on BCAA dysregulation in PD to provide an integrative perspective on the BCAA–PD axis and highlight directions for future translational research. We explored the dualistic role of BCAAs as both potential neuroprotective agents and metabolic stressors, and critically examined the therapeutic prospects and limitations of BCAA supplementation and BCKDK targeting. Full article
(This article belongs to the Special Issue Molecular Research in Parkinson's Disease)
Show Figures

Graphical abstract

38 pages, 1734 KiB  
Review
Application of Biomarkers in Spinal Muscular Atrophy
by Changyi Gao, Yanqiang Zhan, Hong Chen and Chunchu Deng
Int. J. Mol. Sci. 2025, 26(14), 6887; https://doi.org/10.3390/ijms26146887 - 17 Jul 2025
Viewed by 490
Abstract
Spinal muscular atrophy (SMA) is a fatal motor neuron disease characterized by five clinical subtypes, each presenting with different rates of disease progression and varying responses to recently approved therapies. The identification of reliable biomarkers is essential for improving diagnosis and prognosis, monitoring [...] Read more.
Spinal muscular atrophy (SMA) is a fatal motor neuron disease characterized by five clinical subtypes, each presenting with different rates of disease progression and varying responses to recently approved therapies. The identification of reliable biomarkers is essential for improving diagnosis and prognosis, monitoring disease progression, enabling personalized treatment strategies, and evaluating therapeutic responses. In this review, we conducted a comprehensive literature search using PubMed and Web of Science with the keywords “spinal muscular atrophy”, “biomarker” and advanced technologies such as “single-cell omics”, “nanopore and long-read sequencing” and “epigenetics” to identify and summarize current advances in SMA biomarker discovery and application. We begin with a brief overview of SMA and its current treatment barriers. We then conclude with well-established and emerging molecular and non-molecular biomarkers, followed by a conclusion of emerging technologies in biomarker discovery. In the meantime, we highlight the application of biomarkers in key areas, including early diagnosis and disease stratification, monitoring of disease progression, and prediction of treatment response. Finally, we summarize biomarker-targeted therapies, addressing current challenges in biomarker research, with the goal of improving clinical outcomes for patients with SMA. Full article
(This article belongs to the Special Issue Application of Biomarkers in Spinal Muscular Atrophy (SMA))
Show Figures

Figure 1

38 pages, 1540 KiB  
Review
Understanding the Pre-Clinical Stages of Parkinson’s Disease: Where Are We in Clinical and Research Settings?
by Camilla Dalla Verde, Sri Jayanti, Korri El Khobar, John A. Stanford, Claudio Tiribelli and Silvia Gazzin
Int. J. Mol. Sci. 2025, 26(14), 6881; https://doi.org/10.3390/ijms26146881 - 17 Jul 2025
Viewed by 1283
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the world. PD is characterized by motor and non-motor symptoms, but the diagnosis primarily relies on the clinical assessment of postural and movement abnormalities, supported by imaging and genetic testing. It is [...] Read more.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the world. PD is characterized by motor and non-motor symptoms, but the diagnosis primarily relies on the clinical assessment of postural and movement abnormalities, supported by imaging and genetic testing. It is widely accepted that the disease process begins decades before the onset of overt symptoms. Emerging evidence suggests that neuroinflammation plays a central role in the pathogenesis of PD, particularly during the pre-clinical phase. Activated microglia, increased levels of pro-inflammatory cytokines, and persistent oxidative stress have all been associated with the gradual loss of dopaminergic neurons. Although earlier detection and diagnosis remain elusive, achieving these goals is crucial for advancing prevention and disease-modifying strategies. Clinical studies are ongoing. To fill the gap, research models that recapitulate the chronic disease progression of PD are crucial to test preventive and disease-modifying strategies. This review briefly summarizes clinical knowledge on PD as a starting point for improving research models. Furthermore, we will critically evaluate how the existing models have been utilized and highlight opportunities to overcome their limitations and enhance the translational relevance to clinical application. Full article
Show Figures

Graphical abstract

32 pages, 16657 KiB  
Article
Meta-Analysis of Gene Expression in Bulk-Processed Post-Mortem Spinal Cord from ALS Patients and Normal Controls
by William R. Swindell
NeuroSci 2025, 6(3), 65; https://doi.org/10.3390/neurosci6030065 - 16 Jul 2025
Viewed by 721
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by upper and lower motor neuron failure and poor prognosis. This study performed a meta-analysis of gene expression datasets that compared bulk-processed post-mortem spinal cord from ALS and control (CTL) patients. The analysis included 569 samples (454 [...] Read more.
Amyotrophic lateral sclerosis (ALS) is characterized by upper and lower motor neuron failure and poor prognosis. This study performed a meta-analysis of gene expression datasets that compared bulk-processed post-mortem spinal cord from ALS and control (CTL) patients. The analysis included 569 samples (454 ALS, 115 CTL) from 348 individuals (262 ALS, 86 CTL). Patterns of differential expression bias, related to mRNA abundance, gene length and GC content, were discernable from individual studies but attenuated by meta-analysis. A total of 213 differentially expressed genes (DEGs) were identified (144 ALS-increased, 69 ALS-decreased). ALS-increased DEGs were most highly expressed by microglia and associated with MHC class II, immune response and leukocyte activation. ALS-decreased DEGs were abundantly expressed by mature oligodendrocytes (e.g., the MOL5 phenotype) and associated with myelin production, plasma membrane and sterol metabolism. Comparison to spatial transcriptomics data showed that DEGs were prominently expressed in white matter, with increased DEG expression strongest in the ventral/lateral white matter. These results highlight white matter as the spinal cord region most strongly associated with the shifts in mRNA abundance observed in bulk-processed tissues. These shifts can be explained by attrition of mature oligodendrocytes and an ALS-emergent microglia phenotype that is partly shared among neurodegenerative conditions. Full article
Show Figures

Graphical abstract

16 pages, 2172 KiB  
Article
Impact of SOD1 Transcript Variants on Amyotrophic Lateral Sclerosis Severity
by Matteo Bordoni, Eveljn Scarian, Camilla Viola, Francesca Dragoni, Rosalinda Di Gerlando, Bartolo Rizzo, Luca Diamanti, Stella Gagliardi and Orietta Pansarasa
Int. J. Mol. Sci. 2025, 26(14), 6788; https://doi.org/10.3390/ijms26146788 - 15 Jul 2025
Viewed by 367
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that affects motor neurons of people, leading to death. This pathology can be caused by mutations in different genes, including superoxide dismutase 1 (SOD1). Previous studies have pointed out the presence of [...] Read more.
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that affects motor neurons of people, leading to death. This pathology can be caused by mutations in different genes, including superoxide dismutase 1 (SOD1). Previous studies have pointed out the presence of two transcripts of SOD1, a short one and a long one. The aim of this study was the investigation of these two transcripts both in the SH-SY5Y cell line and in patients’ peripheral blood mononuclear cells. We found that the shortest SOD1 transcript is upregulated under stress conditions in both the cellular model and the patients’ cells. Moreover, we found a potential correlation between the short SOD1 transcript and the severity of the pathology, which also correlates with the age of patients. No correlation was found between SOD1 transcripts and the progression of the disease. These data suggest a toxic effect of short SOD1 transcripts in ALS patients, by affecting the severity of the pathology making it a possible biomarker for this disease. Interestingly, our data suggest that a short SOD1 transcript does not influence and drive disease progression. The finding of a biomarker will have suitable implications as indicators of disease severity and from the perspective of drug development. Full article
(This article belongs to the Special Issue Amyotrophic Lateral Sclerosis: From Molecular Basis to Therapies)
Show Figures

Figure 1

23 pages, 2596 KiB  
Article
Integrated Behavioral and Proteomic Characterization of MPP+-Induced Early Neurodegeneration and Parkinsonism in Zebrafish Larvae
by Adolfo Luis Almeida Maleski, Felipe Assumpção da Cunha e Silva, Marcela Bermudez Echeverry and Carlos Alberto-Silva
Int. J. Mol. Sci. 2025, 26(14), 6762; https://doi.org/10.3390/ijms26146762 - 15 Jul 2025
Viewed by 330
Abstract
Zebrafish (Danio rerio) combine accessible behavioral phenotypes with conserved neurochemical pathways and molecular features of vertebrate brain function, positioning them as a powerful model for investigating early neurodegenerative processes and screening neuroprotective strategies. In this context, integrated behavioral and proteomic analyses [...] Read more.
Zebrafish (Danio rerio) combine accessible behavioral phenotypes with conserved neurochemical pathways and molecular features of vertebrate brain function, positioning them as a powerful model for investigating early neurodegenerative processes and screening neuroprotective strategies. In this context, integrated behavioral and proteomic analyses provide valuable insights into the initial pathophysiological events shared by conditions such as Parkinson’s disease and related disorders—including mitochondrial dysfunction, oxidative stress, and synaptic impairment—which emerge before overt neuronal loss and offer a crucial window to understand disease progression and evaluate therapeutic candidates prior to irreversible damage. To investigate this early window of dysfunction, zebrafish larvae were exposed to 500 μM 1-methyl-4-phenylpyridinium (MPP+) from 1 to 5 days post-fertilization and evaluated through integrated behavioral and label-free proteomic analyses. MPP+-treated larvae exhibited hypokinesia, characterized by significantly reduced total distance traveled, fewer movement bursts, prolonged immobility, and a near-complete absence of light-evoked responses—mirroring features of early Parkinsonian-like motor dysfunction. Label-free proteomic profiling revealed 40 differentially expressed proteins related to mitochondrial metabolism, redox regulation, proteasomal activity, and synaptic organization. Enrichment analysis indicated broad molecular alterations, including pathways such as mitochondrial translation and vesicle-mediated transport. A focused subset of Parkinsonism-related proteins—such as DJ-1 (PARK7), succinate dehydrogenase (SDHA), and multiple 26S proteasome subunits—exhibited coordinated dysregulation, as visualized through protein–protein interaction mapping. The upregulation of proteasome components and antioxidant proteins suggests an early-stage stress response, while the downregulation of mitochondrial enzymes and synaptic regulators reflects canonical PD-related neurodegeneration. Together, these findings provide a comprehensive functional and molecular characterization of MPP+-induced neurotoxicity in zebrafish larvae, supporting its use as a relevant in vivo system to investigate early-stage Parkinson’s disease mechanisms and shared neurodegenerative pathways, as well as for screening candidate therapeutics in a developmentally responsive context. Full article
(This article belongs to the Special Issue Zebrafish Model for Neurological Research)
Show Figures

Graphical abstract

Back to TopTop