Branched-Chain Amino Acids in Parkinson’s Disease: Molecular Mechanisms and Therapeutic Potential
Abstract
1. Introduction
2. Overview of BCAA Metabolism in Health and Disease
3. BCAA Alterations Across Neurodegenerative Diseases
3.1. Brain Uptake and Neurotransmitter Regulation
3.2. The BCAA–Glutamate Cycle and Excitotoxicity
3.3. Neuroinflammation and Immune Activation
3.4. BCAAs, mTOR Signaling, and Insulin Resistance
3.5. Mitochondrial Stress and Redox Imbalance
3.6. Clinical Correlations Across AD, PD, and ALS (Table 1)
Disease | BCAA Alteration | Sample/Method | Associated Mechanisms | Reference |
---|---|---|---|---|
>Alzheimer’s Disease (AD) | ↑ Isoleucine, Valine | Plasma (MCI patients) | Insulin resistance, mTOR activation | [47,53] |
↑ BCAA-related genetic risk | Genetic polymorphism (isoleucine pathway) | ↑ AD susceptibility | [54] | |
↓ Valine | Plasma, advanced AD | Neurodegeneration, cognitive decline | [55,56] | |
↓ Valine | CSF and plasma (biomarker study) | Associated with cognitive decline | [57] | |
↑ Isoleucine | Plasma metabolomics | Linked to mild cognitive impairment (MCI) | [58] | |
Parkinson’s Disease (PD) | ↑ Isoleucine, Valine | Saliva, plasma | Altered amino acid transport and LAT1 competition | [13,14] |
↓ Valine, ↑ Isoleucine (stage-specific) | CSF, brain tissue metabolomics | Mitochondrial dysfunction, α-synuclein aggregation | [15] | |
↑ Ketoleucine | Metabolomic profiling | Excitotoxicity, oxidative stress | [43] | |
↑ Isoleucine, Valine, Alanine, Glutamine, Histidine; ↓ Glutamate, Glucose | Serum metabolomics | Metabolic subtype differentiation (PD vs. PSP vs. MSA) | [59] | |
↑ Alanine, Arginine | Plasma (correlated with L-dopa dose and disease duration) | Biomarkers of disease progression and medication load | [60] | |
↑ Isoleucine, Valine | Saliva (biomarker panel) | Reflects early metabolic imbalance | [13] | |
↑ Leucine (optimal ~2.14 mmol/L) | Population cohort (U-shaped risk curve) | Associated with reduced dementia risk at mid-range level | [61] | |
↑ Valine, Isoleucine | Metabolomics + microbiome | Correlated with gut microbial imbalance and mitochondrial disruption | [62] | |
Amyotrophic Lateral Sclerosis (ALS) | ↓ Valine, Isoleucine | Plasma | Metabolic exhaustion | [63,64] |
↑ Leucine, Isoleucine, Ketoleucine | CSF | Altered energy metabolism and neurotoxicity | [15] |
- Genetic predisposition to higher isoleucine levels has been associated with increased AD risk [54].
3.7. Therapeutic Potentials and Risk Considerations
3.8. Summary and Future Directions
4. BCAAs in Parkinson’s Disease: Pathological and Mechanistic Insights
4.1. Central Nervous System Uptake and Dopaminergic Modulation
4.2. The Astrocyte–Neuron BCAA–Glutamate–Glutamine Shuttle in PD
4.3. Neuroinflammatory Activation and Cytokine Stress
4.4. BCAAs, Insulin Resistance, and mTOR Hyperactivation
4.5. Mitochondrial Dysfunction, Oxidative Stress, and Dopaminergic Vulnerability
4.6. Clinical and Preclinical Evidence in PD (Table 2)
- Decreased BCAAs:
- (1)
- Zhang et al. [66] reported significantly lower plasma BCAA levels in 106 PD patients compared to 114 controls, which correlated inversely with Hoehn and Yahr stage;
- (2)
- Yan et al. [65] found reduced fecal BCAAs in PD patients, suggesting altered gut-derived amino acid availability;
- (3)
- In rotenone-induced PD mice, Yan et al. [68] observed downregulated leucine and isoleucine, linked to disease severity.
- Increased BCAAs:
- Genetic and Longitudinal Data:
- (1)
- Yan and Zhao [61], using Mendelian randomization in >350,000 subjects, showed genetically elevated isoleucine is associated with a lower risk of PD, supporting a potential neuroprotective window.
4.7. Concluding Remarks and Future Perspectives
Studies Subjects | Sample | Method | Findings | Reference |
---|---|---|---|---|
Decreased BCAAs | ||||
106 PD patients and 114 controls | Plasma | HPLC-FLD | BCAAs ↓ negatively correlated with the Hoehn and Yahr stage. | [66] |
20 PD patients and 20 controls | Stool | GC-MS/MS | Fecal BCAAs ↓ | [65] |
IEU Open GWAS project (359,194 controls and 2005 cases) | SNP | Mendelian randomization (MR) approach | Elevated levels of BCAAs, especially isoleucine, are associated with reduced risk of PD. | [61] |
Rotenone-induced PD mouse model | Serum | GC-MS | Leucine and isoleucine are down-regulated and correlate with disease progression. | [68] |
Increased BCAAs | ||||
17 PD patients, 7 PSP, 6 MSA, 22 controls | Serum | NMR spectroscopy | Isoleucine ↑ valine ↑ in PD, PSP and MSA | [59] |
73 PD patients; including 22 early PD (ePD), 28 advanced PD (aPD) with LID, 23 aPD without LID | Serum | HPLC-FLD | Higher levels of alanine in early PD compared with advanced PD with or without dyskinesia. | [60] |
76 PD patients, 37 controls | Saliva | NMR spectroscopy | Isoleucine and valine levels are higher in PD, particularly in early-stage patients. | [13] |
UK Biobank | Blood | NMR spectroscopy | Higher levels of isoleucine and leucine are associated with increased risk of PD. | [69] |
20 PD patients, 20 controls | Plasma, CSF | GC-MS/MS | Plasma and CSF levels of alanine are increased in PD. | [14] |
22 PD patients, 22 controls | Plasma, CSF | GC-MS/MS, LC-MS | Leucine, isoleucine, alanine and ketoleucine are increased in CSF of PD. | [15] |
64 PD patients, 51 controls | Stool | GC-MS | Higher levels of leucine and isoleucine in PD fecal samples. | [62] |
92 PD patients, 65 controls | Urine | GC-MS/LC-MS | Elevated levels of isoleucine and leucine in PD. | [70] |
Meta-analysis | Serum | Valine, proline, ornithine and homocysteine levels were increased, while aspartate, citrulline, lysine and serine levels were significantly decreased in PD patients. | [71] | |
Others | ||||
EPIC4PD cohort (total subject number: 220,494) across seven European countries. Of the 734 confirmed incident PD cases, 351 were eligible for inclusion | Serum | Untargeted metabolome by LC-MS | Three pathways were implicated in PD risk: valine, leucine, and isoleucine degradation, butanoate metabolism, and propanoate metabolism. | [72] |
5. The Gut–Brain Axis and BCAA Dysregulation in Parkinson’s Disease
5.1. Gut-Brain Axis Disruption as a Precursor of PD
5.2. Microbiota-Mediated Amino Acid Metabolism in PD
5.3. Overview of Microbial Signatures in PD
- Reduced BCAA-producing taxa: Prevotella, Faecalibacterium, Roseburia;
- Increased potentially pathogenic taxa: Enterobacteriaceae, Lactobacillus, Akkermansia.
5.4. Barrier Dysfunction and Systemic Inflammation in PD
5.5. Microbial Metabolic Networks and BCAA Compensation
5.6. Translational Relevance and Therapeutic Potential
5.7. Conclusions and Future Directions
- Longitudinal profiling of BCAA-related taxa across PD stages;
- Mechanistic mapping of microbe–host metabolic interactions;
- Development of microbiome-targeted therapies that restore BCAA biosynthetic capacity while maintaining microbial ecological stability;
- Integration of gut-derived amino acid signatures as early diagnostic biomarkers, particularly in preclinical or REM sleep behavior disorder (RBD) cohorts.
6. BCKDK and Branched-Chain Amino Acid Regulation in PD
6.1. BCKDK as a Key Regulator of BCAA Catabolism
6.2. BCKDK in Systemic Metabolic and Cardiovascular Health
6.3. BCKDK in Cancer and Cell Signaling
6.4. BCKDK in Neurological and Neurodegenerative Disorders
6.5. Mechanistic Insights from Experimental Models (Table 3)
- Transcriptomic analysis in A53T-α-synuclein transgenic mice reveals significant downregulation of BCKDK in dopaminergic neurons of the substantia nigra, coinciding with onset of motor symptoms [12];
- This downregulation is associated with mitochondrial fragmentation, loss of membrane potential, elevated ROS, and reduced expression of NDUFS1, a Complex I subunit critical for NADH oxidation and ATP production;
- In vitro studies using human iPSC-derived dopaminergic neurons confirm that BCKDK knockdown sensitizes neurons to oxidative stress, increases α-synuclein aggregation, and triggers apoptotic signaling;
- Conversely, BCKDK overexpression or supplementation with BCKAs rescues mitochondrial potential and improves cell viability under toxin-induced stress conditions, such as exposure to rotenone or MPP+.
Study Type | Model/Method | Key Findings and Contributions | Reference |
---|---|---|---|
GWAS 1 | 5353 PD cases vs. 5551 controls | Identified SNP rs14235 in the BCKDK–STX1B locus as associated with increased risk of Parkinson’s disease | [88] |
GWAS 2 (Replication) | 6476 PD cases vs. 302,042 controls (NeuroX) | Validated the association of SNP rs14235 with PD susceptibility in an independent population cohort | [88] |
Epigenetic & Expression | A53T-αSyn transgenic mice, PD patient brain tissue, dopaminergic iPSC-derived neurons | BCKDK expression is significantly downregulated in PD, especially in substantia nigra dopaminergic neurons; associated with mitochondrial dysfunction via NDUFS1 and α-synuclein aggregation | [12] |
Knockout Mouse Study | Bckdk−/− and Dbt+/− mice (deficient in BCAA metabolism enzymes) | BCKDK loss alone leads to neurodevelopmental impairment; BCAA supplementation fails to rescue phenotype, but Dbt inhibition improves behavioral and metabolic parameters | [92] |
6.6. Context-Dependent Therapeutic Implications
- Selective CNS-penetrant BCKDK activators could stabilize mitochondrial function in PD;
- Peripheral-targeted inhibitors might be useful in treating diabetes and cardiovascular diseases while sparing the CNS;
- Regulatory profiling of BCKDK expression across brain regions (e.g., substantia nigra, striatum, hippocampus) is needed to understand its regional vulnerability and therapeutic windows.
- BCKDK’s interaction with mTOR, inflammatory signaling (e.g., NF-κB), and dopamine biosynthesis pathways may also uncover actionable cross-talk points for future drug development.
7. Targeting BCAA Metabolism in Parkinson’s Disease: Therapeutic Strategies
7.1. Limitations of Current Pharmacotherapy and Microbial Interference
7.2. Metabolic Vulnerability in PD and the Rationale for Targeting BCAAs
7.3. Clinical and Nutritional Trials Targeting the BCAA Axis
- Nutritional interventions (e.g., BCAA-enriched protein supplements);
- Pharmacological modulation (e.g., BCKDK inhibitors like BT2);
- Microbiota-directed therapies (e.g., FMT, probiotic cocktails);
- Dietary restriction or rebalancing of amino acid intake.
7.4. Metabolomics-Based Evidence for BCAA Dysregulation
- Elevated levels of β-amino butyric acid, cystine, ornithine, phosphoethanolamine, and proline in plasma of elderly PD cohorts [96];
- Significant correlations between alanine/arginine levels and disease duration or L-dopa dosage [60];
- Upregulation of isoleucine, valine, alanine, glutamine, and histidine in serum of patients with PD, PSP, and MSA, with concurrent reductions in glutamate and glucose [59].
7.5. Microbial Metabolites and BCAA Interference in the Gut–Brain Axis
- Diet-derived (e.g., SCFAs, indole derivatives);
- Host-modified (e.g., secondary bile acids);
- Microbe-synthesized de novo compounds (e.g., polysaccharide A).
Strategy | Intervention Type | Mechanism of Action | Reference |
---|---|---|---|
Whey Protein Supplementation | Nutritional/Clinical trial | Antioxidant effect, BCAA support | [95] |
BT2 (BCKDK Inhibitor) | Pharmacological | Activates BCKDH, enhances BCAA catabolism, improves mitochondrial function | [84,85] |
Probiotic Therapy | Microbiota-based | Restores BCAA-producing bacteria, reduces neuroinflammation | [83] |
Dietary Amino Acid Rebalancing | Nutritional | Limits aromatic amino acid competition at LAT1 transporter | [37] |
Amino Acid Supplementation in Protein-Restricted PD Patients | Clinical/Dietary Intervention | Improves metabolic profile without worsening neurological symptoms; supports nitrogen balance in L-dopa users | [98] |
High BCAA Diet in MPTP Mouse Model | Preclinical (MPTP-treated mice) | Modifies SCFA profile and fecal metabolites; implications for motor recovery remain unclear | [99] |
Lactobacillus plantarum CCFM405 | Probiotic/Gut microbiota modulation | Enhances microbial BCAA biosynthesis; modulates gut–brain axis and inflammation in PD model | [100] |
7.6. Future Directions: Toward Precision Metabolic Therapies
- Identification of reliable BCAA biomarkers predictive of therapeutic response;
- Integration of metabolomics and microbiome profiling to personalize treatment;
- Development of central nervous system-selective modulators (e.g., BCKDK inhibitors that spare peripheral tissues);
- Combination therapies pairing L-dopa with microbiota stabilizers to minimize microbial drug degradation.
8. Future Directions and Conclusion in BCAA Research for Parkinson’s Disease
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
4EBP1 | 4E-binding protein 1 |
5-HT | Serotonin |
AD | Alzheimer’s disease |
ASD | Autism spectrum disorder |
BBB | Blood–brain barrier |
BCAAs | Branched-chain amino acids |
BCAT | Branched-chain amino acid aminotransferase |
BCKAs | Branched-chain α-keto acids |
BCKDH | Branched-chain α-keto acid dehydrogenase complex |
BCKDK | Branched-chain ketoacid dehydrogenase kinase |
BMI | Body mass index |
CNS | Central nervous system |
CSF | Cerebrospinal fluid |
DA | Dopamine |
DALYs | Disability-adjusted life years |
EMT | Epithelial–mesenchymal transition |
FMT | Fecal microbiota transplantation |
GABA | Gamma-aminobutyric acid |
GBA | Gut–brain axis |
GC-MS | Gas chromatography mass spectrometry |
GI | Gastrointestinal |
GWAS | Genome-wide association studies |
HPLC-FLD | High-performance liquid chromatography |
ILE | Isoleucine |
KIC | α-ketoisocaproate |
KIV | α-ketoisovalerate |
KMV | α-keto-β-methylvalerate |
L-dopa | Levodopa |
LAT1 | L-type amino acid transporter 1 |
LC-MS | Liquid chromatography-mass spectrometry |
LEU | Leucine |
LID | Levodopa-induced dyskinesia |
LPS | Lipopolysaccharide |
MCI | Mild cognitive impairment |
MPTP | 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine |
MSA | Multiple system atrophy |
MSUD | Maple Syrup Urine Disease |
NMDA | N-methyl-D-aspartate |
PD | Parkinson’s disease |
PPM1K | Protein phosphatase, Mg2+/Mn2+ dependent 1K |
PSP | Progressive supranuclear palsy |
RBD | REM sleep behavior disorder |
REM | Rapid eye movement |
ROS | Reactive oxygen species |
S6K | S6 kinase |
SCFAs | Short-chain fatty acids |
SNP | Single-nucleotide polymorphism |
T2DM | Type 2 diabetes mellitus |
TCA | Tricarboxylic acid |
TRP | Tryptophan |
TYR | Tyrosine |
VAL | Valine |
mTORC1 | Mechanistic target of rapamycin complex 1 |
References
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Cui, Y.; He, C.; Yin, P.; Bai, R.; Zhu, J.; Lam, J.S.T.; Zhang, J.; Yan, R.; Zheng, X.; et al. Projections for prevalence of Parkinson’s disease and its driving factors in 195 countries and territories to 2050: Modelling study of Global Burden of Disease Study 2021. BMJ 2025, 388, e080952. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, Y.; Pan, H.; Han, L. Global, regional, and national burden of neurological disorders in 204 countries and territories worldwide. J. Glob. Health 2023, 13, 04160. [Google Scholar] [CrossRef] [PubMed]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019, 18, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Blauwendraat, C.; Nalls, M.A.; Singleton, A.B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020, 19, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.J.; Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014, 10, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Yudkoff, M. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS. Neurochem. Res. 2017, 42, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza, R. Transport of Amino Acids Across the Blood-Brain Barrier. Front. Physiol. 2020, 11, 973. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Liu, W.J.; Yang, J.; Zhao, S.S.; Liu, H.X. The Role of Branched-Chain Amino Acids and Branched-Chain alpha-Keto Acid Dehydrogenase Kinase in Metabolic Disorders. Front. Nutr. 2022, 9, 932670. [Google Scholar] [CrossRef] [PubMed]
- East, M.P.; Laitinen, T.; Asquith, C.R.M. BCKDK: An emerging kinase target for metabolic diseases and cancer. Nat. Rev. Drug Discov. 2021, 20, 498. [Google Scholar] [CrossRef] [PubMed]
- Tangeraas, T.; Constante, J.R.; Backe, P.H.; Oyarzabal, A.; Neugebauer, J.; Weinhold, N.; Boemer, F.; Debray, F.G.; Ozturk-Hism, B.; Evren, G.; et al. BCKDK deficiency: A treatable neurodevelopmental disease amenable to newborn screening. Brain 2023, 146, 3003–3013. [Google Scholar] [CrossRef]
- Jishi, A.; Hu, D.; Shang, Y.; Wang, R.; Gunzler, S.A.; Qi, X. BCKDK loss impairs mitochondrial Complex I activity and drives alpha-synuclein aggregation in models of Parkinson’s disease. Acta Neuropathol. Commun. 2024, 12, 198. [Google Scholar] [CrossRef]
- Kumari, S.; Goyal, V.; Kumaran, S.S.; Dwivedi, S.N.; Srivastava, A.; Jagannathan, N.R. Quantitative metabolomics of saliva using proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls. Neurol. Sci. 2020, 41, 1201–1210. [Google Scholar] [CrossRef]
- Trupp, M.; Jonsson, P.; Ohrfelt, A.; Zetterberg, H.; Obudulu, O.; Malm, L.; Wuolikainen, A.; Linder, J.; Moritz, T.; Blennow, K.; et al. Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J. Park. Dis. 2014, 4, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Wuolikainen, A.; Jonsson, P.; Ahnlund, M.; Antti, H.; Marklund, S.L.; Moritz, T.; Forsgren, L.; Andersen, P.M.; Trupp, M. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson’s disease and control subjects. Mol. Biosyst. 2016, 12, 1287–1298. [Google Scholar] [CrossRef]
- Havelund, J.F.; Heegaard, N.H.H.; Færgeman, N.J.K.; Gramsbergen, J.B. Biomarker Research in Parkinson’s Disease Using Metabolite Profiling. Metabolites 2017, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.T.; Brosnan, M.E. Branched-chain amino acids: Enzyme and substrate regulation. J. Nutr. 2006, 136, 207S–211S. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Monirujjaman, M.; Ferdouse, A. Metabolic and Physiological Roles of Branched-Chain Amino Acids. Adv. Mol. Biol. 2014, 2014, 364976. [Google Scholar] [CrossRef]
- Yamamoto, K.; Tsuchisaka, A.; Yukawa, H. Branched-Chain Amino Acids. Adv. Biochem. Eng. Biotechnol. 2017, 159, 103–128. [Google Scholar] [PubMed]
- Adeva-Andany, M.M.; Lopez-Maside, L.; Donapetry-Garcia, C.; Fernandez-Fernandez, C.; Sixto-Leal, C. Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids 2017, 49, 1005–1028. [Google Scholar] [CrossRef] [PubMed]
- Dimou, A.; Tsimihodimos, V.; Bairaktari, E. The Critical Role of the Branched Chain Amino Acids (BCAAs) Catabolism-Regulating Enzymes, Branched-Chain Aminotransferase (BCAT) and Branched-Chain alpha-Keto Acid Dehydrogenase (BCKD), in Human Pathophysiology. Int. J. Mol. Sci. 2022, 23, 4022. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R. Branched-chain amino acids and muscle protein synthesis in humans: Myth or reality? J. Int. Soc. Sports Nutr. 2017, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, S.; Ijichi, C.; Takehana, K.; Fujitani, S.; Sonaka, I. Pharmacological activities of branched-chain amino acids: Specificity of tissue and signal transduction. Biochem. Biophys. Res. Commun. 2004, 313, 387–389. [Google Scholar] [CrossRef] [PubMed]
- Hamaya, R.; Mora, S.; Lawler, P.R.; Cook, N.R.; Ridker, P.M.; Buring, J.E.; Lee, I.M.; Manson, J.E.; Tobias, D.K. Association of Plasma Branched-Chain Amino Acid With Biomarkers of Inflammation and Lipid Metabolism in Women. Circ. Genom. Precis. Med. 2021, 14, e003330. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Gang, X.; Liu, Y.; Sun, C.; Han, Q.; Wang, G. Using Metabolomic Profiles as Biomarkers for Insulin Resistance in Childhood Obesity: A Systematic Review. J. Diabetes Res. 2016, 2016, 8160545. [Google Scholar] [CrossRef] [PubMed]
- Melnik, B.C. Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World J. Diabetes 2012, 3, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wu, Z.; Li, W.; Zhang, C.; Sun, K.; Ji, Y.; Wang, B.; Jiao, N.; He, B.; Wang, W.; et al. Dietary L-leucine supplementation enhances intestinal development in suckling piglets. Amino Acids 2015, 47, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhao, Y.; Liu, H.; Cao, Q.; Feng, L.; Zhang, Z.; Jiang, W.; Wu, P.; Liu, Y.; Luo, W.; et al. Dietary Leucine Improves Fish Intestinal Barrier Function by Increasing Humoral Immunity, Antioxidant Capacity, and Tight Junction. Int. J. Mol. Sci. 2023, 24, 4716. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Cai, H.; Liu, G.; Chang, W.; Zheng, A.; Zhang, S.; Liao, R.; Liu, W.; Li, Y.; Tian, J. Effects of dietary leucine supplementation on the gene expression of mammalian target of rapamycin signaling pathway and intestinal development of broilers. Anim. Nutr. 2015, 1, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Burrage, L.C.; Nagamani, S.C.; Campeau, P.M.; Lee, B.H. Branched-chain amino acid metabolism: From rare Mendelian diseases to more common disorders. Hum. Mol. Genet. 2014, 23, R1–R8. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef] [PubMed]
- Go, M.; Shin, E.; Jang, S.Y.; Nam, M.; Hwang, G.S.; Lee, S.Y. BCAT1 promotes osteoclast maturation by regulating branched-chain amino acid metabolism. Exp. Mol. Med. 2022, 54, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Cerra, F.B.; Mazuski, J.E.; Chute, E.; Nuwer, N.; Teasley, K.; Lysne, J.; Shronts, E.P.; Konstantinides, F.N. Branched chain metabolic support. A prospective, randomized, double-blind trial in surgical stress. Ann. Surg. 1984, 199, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Garcia-de-Lorenzo, A.; Ortiz-Leyba, C.; Planas, M.; Montejo, J.C.; Nunez, R.; Ordonez, F.J.; Aragon, C.; Jimenez, F.J. Parenteral administration of different amounts of branch-chain amino acids in septic patients: Clinical and metabolic aspects. Crit. Care Med. 1997, 25, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Branched-chain amino acids and immunity. J. Nutr. 2006, 136 (Suppl. S1), 288S–293S. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, J.D. Branched-chain amino acids and brain function. J. Nutr. 2005, 135 (Suppl. S6), 1539S–1546S. [Google Scholar] [CrossRef] [PubMed]
- Bassit, R.A.; Sawada, L.A.; Bacurau, R.F.; Navarro, F.; Martins, E., Jr.; Santos, R.V.; Caperuto, E.C.; Rogeri, P.; Costa Rosa, L.F. Branched-chain amino acid supplementation and the immune response of long-distance athletes. Nutrition 2002, 18, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, J.D. Large neutral amino acids: Dietary effects on brain neurochemistry and function. Amino Acids 2013, 45, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Le Masurier, M.; Oldenzeil, W.; Lehman, C.; Cowen, P.; Sharp, T. Effect of acute tyrosine depletion in using a branched chain amino-acid mixture on dopamine neurotransmission in the rat brain. Neuropsychopharmacology 2006, 31, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Coppola, A.; Wenner, B.R.; Ilkayeva, O.; Stevens, R.D.; Maggioni, M.; Slotkin, T.A.; Levin, E.D.; Newgard, C.B. Branched-chain amino acids alter neurobehavioral function in rats. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E405–E413. [Google Scholar] [CrossRef] [PubMed]
- Contrusciere, V.; Paradisi, S.; Matteucci, A.; Malchiodi-Albedi, F. Branched-chain amino acids induce neurotoxicity in rat cortical cultures. Neurotox. Res. 2010, 17, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, F.; Mai, D.; Qu, S. Molecular Mechanisms of Glutamate Toxicity in Parkinson’s Disease. Front. Neurosci. 2020, 14, 585584. [Google Scholar] [CrossRef] [PubMed]
- Conway, M.E. Alzheimer’s disease: Targeting the glutamatergic system. Biogerontology 2020, 21, 257–274. [Google Scholar] [CrossRef] [PubMed]
- De Simone, R.; Vissicchio, F.; Mingarelli, C.; De Nuccio, C.; Visentin, S.; Ajmone-Cat, M.A.; Minghetti, L. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim. Biophys. Acta 2013, 1832, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Zhenyukh, O.; Civantos, E.; Ruiz-Ortega, M.; Sanchez, M.S.; Vazquez, C.; Peiro, C.; Egido, J.; Mas, S. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic. Biol. Med. 2017, 104, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ye, D.; Xie, W.; Hua, F.; Yang, Y.; Wu, J.; Gu, A.; Ren, Y.; Mao, K. Defect of branched-chain amino acid metabolism promotes the development of Alzheimer’s disease by targeting the mTOR signaling. Biosci. Rep. 2018, 38, BSR20180127. [Google Scholar] [CrossRef] [PubMed]
- Kellar, D.; Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders: Mechanisms and therapeutic approaches. Lancet Neurol. 2020, 19, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, L.; You, H. Insulin Resistance and Impaired Branched-Chain Amino Acid Metabolism in Alzheimer’s Disease. J. Alzheimers Dis. 2023, 93, 847–862. [Google Scholar] [CrossRef] [PubMed]
- Cullinane, P.W.; de Pablo Fernandez, E.; Konig, A.; Outeiro, T.F.; Jaunmuktane, Z.; Warner, T.T. Type 2 Diabetes and Parkinson’s Disease: A Focused Review of Current Concepts. Mov. Disord. 2023, 38, 162–177. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Wang, S.; Zhang, C.; Zhao, Y. Coordinated Modulation of Energy Metabolism and Inflammation by Branched-Chain Amino Acids and Fatty Acids. Front. Endocrinol. 2020, 11, 617. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhao, L.; Li, Y.; Dang, M.; Lu, J.; Lu, Z.; Huang, Q.; Yang, Y.; Feng, Y.; Wang, X.; et al. PPM1K mediates metabolic disorder of branched-chain amino acid and regulates cerebral ischemia-reperfusion injury by activating ferroptosis in neurons. Cell Death Dis. 2023, 14, 634. [Google Scholar] [CrossRef] [PubMed]
- Hudd, F.; Shiel, A.; Harris, M.; Bowdler, P.; McCann, B.; Tsivos, D.; Wearn, A.; Knight, M.; Kauppinen, R.; Coulthard, E.; et al. Novel Blood Biomarkers that Correlate with Cognitive Performance and Hippocampal Volumetry: Potential for Early Diagnosis of Alzheimer’s Disease. J. Alzheimers Dis. 2019, 67, 931–947. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Markus, H.S. Branched-chain amino acids and Alzheimer’s disease: A Mendelian randomization analysis. Sci. Rep. 2017, 7, 13604. [Google Scholar] [CrossRef] [PubMed]
- Basun, H.; Forssell, L.G.; Almkvist, O.; Cowburn, R.F.; Eklof, R.; Winblad, B.; Wetterberg, L. Amino acid concentrations in cerebrospinal fluid and plasma in Alzheimer’s disease and healthy control subjects. J. Neural Transm. Park. Dis. Dement. Sect. 1990, 2, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Dominguez, R.; Garcia-Barrera, T.; Gomez-Ariza, J.L. Metabolite profiling for the identification of altered metabolic pathways in Alzheimer’s disease. J. Pharm. Biomed. Anal. 2015, 107, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Toledo, J.B.; Arnold, M.; Kastenmuller, G.; Chang, R.; Baillie, R.A.; Han, X.; Thambisetty, M.; Tenenbaum, J.D.; Suhre, K.; Thompson, J.W.; et al. Metabolic network failures in Alzheimer’s disease: A biochemical road map. Alzheimers Dement. 2017, 13, 965–984. [Google Scholar] [CrossRef] [PubMed]
- Siddik, M.A.B.; Mullins, C.A.; Kramer, A.; Shah, H.; Gannaban, R.B.; Zabet-Moghaddam, M.; Huebinger, R.M.; Hegde, V.K.; MohanKumar, S.M.J.; MohanKumar, P.S.; et al. Branched-Chain Amino Acids Are Linked with Alzheimer’s Disease-Related Pathology and Cognitive Deficits. Cells 2022, 11, 3523. [Google Scholar] [CrossRef] [PubMed]
- Nagesh Babu, G.; Gupta, M.; Paliwal, V.K.; Singh, S.; Chatterji, T.; Roy, R. Serum metabolomics study in a group of Parkinson’s disease patients from northern India. Clin. Chim. Acta 2018, 480, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Figura, M.; Kusmierska, K.; Bucior, E.; Szlufik, S.; Koziorowski, D.; Jamrozik, Z.; Janik, P. Serum amino acid profile in patients with Parkinson’s disease. PLoS ONE 2018, 13, e0191670. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhao, G. The Associations Among Gut Microbiota, Branched Chain Amino Acids, and Parkinson’s Disease: Mendelian Randomization Study. J. Park. Dis. 2024, 14, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Vascellari, S.; Palmas, V.; Melis, M.; Pisanu, S.; Cusano, R.; Uva, P.; Perra, D.; Madau, V.; Sarchioto, M.; Oppo, V.; et al. Gut Microbiota and Metabolome Alterations Associated with Parkinson’s Disease. mSystems 2020, 5, e00561-20. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.H.; Lin, C.N.; Chen, C.M.; Lyu, R.K.; Chu, C.C.; Liao, M.F.; Huang, C.C.; Chang, H.S.; Ro, L.S.; Kuo, H.C. Altered Metabolic Profiles of the Plasma of Patients with Amyotrophic Lateral Sclerosis. Biomedicines 2021, 9, 1944. [Google Scholar] [CrossRef] [PubMed]
- Bjornevik, K.; O’Reilly, E.J.; Berry, J.D.; Clish, C.B.; Jeanfavre, S.; Kato, I.; Kolonel, L.N.; Le Marchand, L.; McCullough, M.L.; Paganoni, S.; et al. Prediagnostic plasma branched-chain amino acids and the risk of amyotrophic lateral sclerosis. Neurology 2019, 92, e2081–e2088. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Yang, F.; Cao, J.; Ding, W.; Yan, S.; Shi, W.; Wen, S.; Yao, L. Alterations of gut microbiota and metabolome with Parkinson’s disease. Microb. Pathog. 2021, 160, 105187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, X.; Qian, Y.; Xu, S.; Mo, C.; Yan, Z.; Yang, X.; Xiao, Q. Plasma branched-chain and aromatic amino acids correlate with the gut microbiota and severity of Parkinson’s disease. npj Park. Dis. 2022, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Tandan, R.; Bromberg, M.B.; Forshew, D.; Fries, T.J.; Badger, G.J.; Carpenter, J.; Krusinski, P.B.; Betts, E.F.; Arciero, K.; Nau, K. A controlled trial of amino acid therapy in amyotrophic lateral sclerosis: I. Clinical, functional, and maximum isometric torque data. Neurology 1996, 47, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Yang, F.; Wen, S.; Ding, W.; Si, Y.; Li, R.; Wang, K.; Yao, L. Longitudinal metabolomics profiling of serum amino acids in rotenone-induced Parkinson’s mouse model. Amino Acids 2022, 54, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wang, Y.; Ren, H.; Guo, X.; Han, L. Branched-chain amino acids and the risks of dementia, Alzheimer’s disease, and Parkinson’s disease. Front. Aging Neurosci. 2024, 16, 1369493. [Google Scholar] [CrossRef] [PubMed]
- Luan, H.; Liu, L.F.; Tang, Z.; Zhang, M.; Chua, K.K.; Song, J.X.; Mok, V.C.; Li, M.; Cai, Z. Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Sci. Rep. 2015, 5, 13888. [Google Scholar] [CrossRef] [PubMed]
- Akdas, S.; Yuksel, D.; Yazihan, N. Assessment of the Relationship Between Amino Acid Status and Parkinson’s Disease: A Comprehensive Review and Meta-analysis. Can. J. Neurol. Sci. 2024, 52, 606–622. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lai, Y.; Darweesh, S.K.L.; Bloem, B.R.; Forsgren, L.; Hansen, J.; Katzke, V.A.; Masala, G.; Sieri, S.; Sacerdote, C.; et al. Gut Microbial Metabolites and Future Risk of Parkinson’s Disease: A Metabolome-Wide Association Study. Mov. Disord. 2024, 40, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, B.; Guo, J. Parkinson’s disease and gut microbiota: From clinical to mechanistic and therapeutic studies. Transl. Neurodegener. 2023, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.H.; Lim, S.Y.; Lang, A.E. The microbiome-gut-brain axis in Parkinson disease—From basic research to the clinic. Nat. Rev. Neurol. 2022, 18, 476–495. [Google Scholar] [CrossRef] [PubMed]
- Horsager, J.; Borghammer, P. Brain-first vs. body-first Parkinson’s disease: An update on recent evidence. Park. Relat. Disord. 2024, 122, 106101. [Google Scholar] [CrossRef] [PubMed]
- Amorim Franco, T.M.; Blanchard, J.S. Bacterial Branched-Chain Amino Acid Biosynthesis: Structures, Mechanisms, and Drugability. Biochemistry 2017, 56, 5849–5865. [Google Scholar] [CrossRef] [PubMed]
- Al Bander, Z.; Nitert, M.D.; Mousa, A.; Naderpoor, N. The Gut Microbiota and Inflammation: An Overview. Int. J. Environ. Res. Public. Health 2020, 17, 7618. [Google Scholar] [CrossRef] [PubMed]
- Socala, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Wlodarczyk, M.; Zielinska, A.; Poleszak, E.; Fichna, J.; Wlaz, P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res. 2021, 172, 105840. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, K.; Su, N.; Yuan, C.; Zhang, N.; Hu, X.; Fu, Y.; Zhao, F. Microbiota-gut-brain axis in health and neurological disease: Interactions between gut microbiota and the nervous system. J. Cell. Mol. Med. 2024, 28, e70099. [Google Scholar] [CrossRef] [PubMed]
- Starke, S.; Harris, D.M.M.; Zimmermann, J.; Schuchardt, S.; Oumari, M.; Frank, D.; Bang, C.; Rosenstiel, P.; Schreiber, S.; Frey, N.; et al. Amino acid auxotrophies in human gut bacteria are linked to higher microbiome diversity and long-term stability. ISME J. 2023, 17, 2370–2380. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Alegria, A.; Bron, P.A.; de Angelis, M.; Gobbetti, M.; Kleerebezem, M.; Lemos, J.A.; Linares, D.M.; Ross, P.; Stanton, C.; et al. Stress Physiology of Lactic Acid Bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 837–890. [Google Scholar] [CrossRef] [PubMed]
- Kurilshikov, A.; Medina-Gomez, C.; Bacigalupe, R.; Radjabzadeh, D.; Wang, J.; Demirkan, A.; Le Roy, C.I.; Raygoza Garay, J.A.; Finnicum, C.T.; Liu, X.; et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 2021, 53, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Matheson, J.-A.T.; Holsinger, R.M.D. The Role of Fecal Microbiota Transplantation in the Treatment of Neurodegenerative Diseases: A Review. Int. J. Mol. Sci. 2023, 24, 1001. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; McGarrah, R.W.; Grimsrud, P.A.; Tso, S.C.; Yang, W.H.; Haldeman, J.M.; Grenier-Larouche, T.; An, J.; Lapworth, A.L.; Astapova, I.; et al. The BCKDH Kinase and Phosphatase Integrate BCAA and Lipid Metabolism via Regulation of ATP-Citrate Lyase. Cell Metab. 2018, 27, 1281–1293.e7. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, A.; Jones, A.E.; Danna, B.T.; Turner, R.; Montales, K.P.; Beninca, C.; Reue, K.; Shirihai, O.S.; Stiles, L.; Wallace, M.; et al. The BCKDK inhibitor BT2 is a chemical uncoupler that lowers mitochondrial ROS production and de novo lipogenesis. J. Biol. Chem. 2024, 300, 105702. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Gao, C.; Yu, J.; Ren, S.; Wang, M.; Wynn, R.M.; Chuang, D.T.; Wang, Y.; Sun, H. Therapeutic Effect of Targeting Branched-Chain Amino Acid Catabolic Flux in Pressure-Overload Induced Heart Failure. J. Am. Heart Assoc. 2019, 8, e011625. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Zeng, F.; Duan, Q.; Xiao, J.; Liu, L.; Yuan, P.; Fan, L.; Sun, H.; Malyarenko, O.S.; Lu, H.; et al. BCKDK of BCAA Catabolism Cross-talking With the MAPK Pathway Promotes Tumorigenesis of Colorectal Cancer. EBioMedicine 2017, 20, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Nalls, M.A.; Pankratz, N.; Lill, C.M.; Do, C.B.; Hernandez, D.G.; Saad, M.; DeStefano, A.L.; Kara, E.; Bras, J.; Sharma, M.; et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 2014, 46, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Nalls, M.A.; Hallgrimsdottir, I.B.; Hunkapiller, J.; van der Brug, M.; Cai, F.; International Parkinson’s Disease Genomics, C.; andMe Research, T.; Kerchner, G.A.; Ayalon, G.; et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat. Genet. 2017, 49, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.H.; Chen, C.M.; Chen, Y.C.; Fung, H.C.; Wu, Y.R. Polymorphisms of ACMSD-TMEM163, MCCC1, and BCKDK-STX1B Are Not Associated with Parkinson’s Disease in Taiwan. Park. Dis. 2019, 2019, 3489638. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, N.N.; Lu, Z.J.; Li, J.Y.; Peng, J.X.; Duan, L.R.; Peng, R. Association of three candidate genetic variants in ACMSD/TMEM163, GPNMB and BCKDK/STX1B with sporadic Parkinson’s disease in Han Chinese. Neurosci. Lett. 2019, 703, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Ohl, L.; Kuhs, A.; Pluck, R.; Durham, E.; Noji, M.; Philip, N.D.; Arany, Z.; Ahrens-Nicklas, R.C. Partial suppression of BCAA catabolism as a potential therapy for BCKDK deficiency. Mol. Genet. Metab. Rep. 2024, 39, 101091. [Google Scholar] [CrossRef] [PubMed]
- Maini Rekdal, V.; Bess, E.N.; Bisanz, J.E.; Turnbaugh, P.J.; Balskus, E.P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 2019, 364, eaau6323. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.E.; Kim, S.M.; Han, K.; Kim, N.H.; Chung, H.S.; Kim, J.W.; Han, B.; Cho, S.J.; Yu, J.H.; Park, Y.G.; et al. Metabolic syndrome and risk of Parkinson disease: A nationwide cohort study. PLoS Med. 2018, 15, e1002640. [Google Scholar] [CrossRef] [PubMed]
- Tosukhowong, P.; Boonla, C.; Dissayabutra, T.; Kaewwilai, L.; Muensri, S.; Chotipanich, C.; Joutsa, J.; Rinne, J.; Bhidayasiri, R. Biochemical and clinical effects of Whey protein supplementation in Parkinson’s disease: A pilot study. J. Neurol. Sci. 2016, 367, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Picca, A.; Calvani, R.; Landi, G.; Marini, F.; Biancolillo, A.; Gervasoni, J.; Persichilli, S.; Primiano, A.; Urbani, A.; Bossola, M.; et al. Circulating amino acid signature in older people with Parkinson’s disease: A metabolic complement to the EXosomes in PArkiNson Disease (EXPAND) study. Exp. Gerontol. 2019, 128, 110766. [Google Scholar] [CrossRef] [PubMed]
- Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther. 2024, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Cucca, A.; Mazzucco, S.; Bursomanno, A.; Antonutti, L.; Di Girolamo, F.G.; Pizzolato, G.; Koscica, N.; Gigli, G.L.; Catalan, M.; Biolo, G. Amino acid supplementation in l-dopa treated Parkinson’s disease patients. Clin. Nutr. 2015, 34, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Mi, N.; Ma, L.; Li, X.; Fu, J.; Bu, X.; Liu, F.; Yang, F.; Zhang, Y.; Yao, L. Metabolomic analysis of serum short-chain fatty acid concentrations in a mouse of MPTP-induced Parkinson’s disease after dietary supplementation with branched-chain amino acids. Open Med. 2023, 18, 20230849. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Yu, L.; Li, Y.; Guo, H.; Zhai, Q.; Chen, W.; Tian, F. Lactobacillus plantarum CCFM405 against Rotenone-Induced Parkinson’s Disease Mice via Regulating Gut Microbiota and Branched-Chain Amino Acids Biosynthesis. Nutrients 2023, 15, 1737. [Google Scholar] [CrossRef] [PubMed]
- Ammal Kaidery, N.; Thomas, B. Current perspective of mitochondrial biology in Parkinson’s disease. Neurochem. Int. 2018, 117, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, J.S.; Rivera, C.N.; Vaughan, R.A. Branched-Chain Amino Acids and Mitochondrial Biogenesis: An Overview and Mechanistic Summary. Mol. Nutr. Food Res. 2022, 66, e2200109. [Google Scholar] [CrossRef] [PubMed]
- Scheperjans, F.; Aho, V.; Pereira, P.A.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Haapaniemi, E.; Kaakkola, S.; Eerola-Rautio, J.; Pohja, M.; et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 2015, 30, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Zou, Z.; Shou, P.; Peng, W.; Liu, M.; Li, X. Gut microbiota and Parkinson’s disease: Potential links and the role of fecal microbiota transplantation. Front. Aging Neurosci. 2024, 16, 1479343. [Google Scholar] [CrossRef] [PubMed]
- Unger, M.M.; Spiegel, J.; Dillmann, K.U.; Grundmann, D.; Philippeit, H.; Burmann, J.; Fassbender, K.; Schwiertz, A.; Schafer, K.H. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord. 2016, 32, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Petrov, V.A.; Saltykova, I.V.; Zhukova, I.A.; Alifirova, V.M.; Zhukova, N.G.; Dorofeeva, Y.B.; Tyakht, A.V.; Kovarsky, B.A.; Alekseev, D.G.; Kostryukova, E.S.; et al. Analysis of Gut Microbiota in Patients with Parkinson’s Disease. Bull. Exp. Biol. Med. 2017, 162, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Hill-Burns, E.M.; Debelius, J.W.; Morton, J.T.; Wissemann, W.T.; Lewis, M.R.; Wallen, Z.D.; Peddada, S.D.; Factor, S.A.; Molho, E.; Zabetian, C.P.; et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov. Disord. 2017, 32, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Mertsalmi, T.H.; Aho, V.T.E.; Pereira, P.A.B.; Paulin, L.; Pekkonen, E.; Auvinen, P.; Scheperjans, F. More than constipation - bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur. J. Neurol. 2017, 24, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Bedarf, J.R.; Hildebrand, F.; Coelho, L.P.; Sunagawa, S.; Bahram, M.; Goeser, F.; Bork, P.; Wullner, U. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naive Parkinson’s disease patients. Genome Med. 2017, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, X.; Hu, X.; Wang, T.; Liang, S.; Duan, Y.; Jin, F.; Qin, B. Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci. China Life Sci. 2017, 60, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Heintz-Buschart, A.; Pandey, U.; Wicke, T.; Sixel-Doring, F.; Janzen, A.; Sittig-Wiegand, E.; Trenkwalder, C.; Oertel, W.H.; Mollenhauer, B.; Wilmes, P. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 2018, 33, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Yang, X.; Xu, S.; Wu, C.; Song, Y.; Qin, N.; Chen, S.D.; Xiao, Q. Alteration of the fecal microbiota in Chinese patients with Parkinson’s disease. Brain Behav. Immun. 2018, 70, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Aho, V.T.E.; Pereira, P.A.B.; Voutilainen, S.; Paulin, L.; Pekkonen, E.; Auvinen, P.; Scheperjans, F. Gut microbiota in Parkinson’s disease: Temporal stability and relations to disease progression. EBioMedicine 2019, 44, 691–707. [Google Scholar] [CrossRef] [PubMed]
- Barichella, M.; Severgnini, M.; Cilia, R.; Cassani, E.; Bolliri, C.; Caronni, S.; Ferri, V.; Cancello, R.; Ceccarani, C.; Faierman, S.; et al. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov. Disord. 2019, 34, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Cirstea, M.S.; Yu, A.C.; Golz, E.; Sundvick, K.; Kliger, D.; Radisavljevic, N.; Foulger, L.H.; Mackenzie, M.; Huan, T.; Finlay, B.B.; et al. Microbiota Composition and Metabolism Are Associated With Gut Function in Parkinson’s Disease. Mov. Disord. 2020, 35, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Baldini, F.; Hertel, J.; Sandt, E.; Thinnes, C.C.; Neuberger-Castillo, L.; Pavelka, L.; Betsou, F.; Kruger, R.; Thiele, I.; Consortium, N.-P. Parkinson’s disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. BMC Biol. 2020, 18, 62. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Yang, X.; Xu, S.; Huang, P.; Li, B.; Du, J.; He, Y.; Su, B.; Xu, L.M.; Wang, L.; et al. Gut metagenomics-derived genes as potential biomarkers of Parkinson’s disease. Brain 2020, 143, 2474–2489. [Google Scholar] [CrossRef] [PubMed]
- Rosario, D.; Bidkhori, G.; Lee, S.; Bedarf, J.; Hildebrand, F.; Le Chatelier, E.; Uhlen, M.; Ehrlich, S.D.; Proctor, G.; Wullner, U.; et al. Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson’s disease. Cell Rep. 2021, 34, 108807. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.H.; Chong, C.W.; Lim, S.Y.; Yap, I.K.S.; Teh, C.S.J.; Loke, M.F.; Song, S.L.; Tan, J.Y.; Ang, B.H.; Tan, Y.Q.; et al. Gut Microbial Ecosystem in Parkinson Disease: New Clinicobiological Insights from Multi-Omics. Ann. Neurol. 2021, 89, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Wallen, Z.D.; Demirkan, A.; Twa, G.; Cohen, G.; Dean, M.N.; Standaert, D.G.; Sampson, T.R.; Payami, H. Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat. Commun. 2022, 13, 6958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Paul, K.C.; Jacobs, J.P.; Chou, H.L.; Duarte Folle, A.; Del Rosario, I.; Yu, Y.; Bronstein, J.M.; Keener, A.M.; Ritz, B. Parkinson’s Disease and the Gut Microbiome in Rural California. J. Parkinsons Dis. 2022, 12, 2441–2452. [Google Scholar] [CrossRef] [PubMed]
- Boktor, J.C.; Sharon, G.; Verhagen Metman, L.A.; Hall, D.A.; Engen, P.A.; Zreloff, Z.; Hakim, D.J.; Bostick, J.W.; Ousey, J.; Lange, D.; et al. Integrated Multi-Cohort Analysis of the Parkinson’s Disease Gut Metagenome. Mov. Disord. 2023, 38, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Babacan Yildiz, G.; Kayacan, Z.C.; Karacan, I.; Sumbul, B.; Elibol, B.; Gelisin, O.; Akgul, O. Altered gut microbiota in patients with idiopathic Parkinson’s disease: An age-sex matched case-control study. Acta Neurol. 2023, 123, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.; Wang, J.; Deng, Y.; Ye, Z.; Ge, Y. Inflammatory microbes and genes as potential biomarkers of Parkinson’s disease. npj Biofilms Microbiomes 2022, 8, 101. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-Y.; Tsao, S.-P.; Yeh, T.-H. Branched-Chain Amino Acids in Parkinson’s Disease: Molecular Mechanisms and Therapeutic Potential. Int. J. Mol. Sci. 2025, 26, 6992. https://doi.org/10.3390/ijms26146992
Huang H-Y, Tsao S-P, Yeh T-H. Branched-Chain Amino Acids in Parkinson’s Disease: Molecular Mechanisms and Therapeutic Potential. International Journal of Molecular Sciences. 2025; 26(14):6992. https://doi.org/10.3390/ijms26146992
Chicago/Turabian StyleHuang, Hui-Yu, Shu-Ping Tsao, and Tu-Hsueh Yeh. 2025. "Branched-Chain Amino Acids in Parkinson’s Disease: Molecular Mechanisms and Therapeutic Potential" International Journal of Molecular Sciences 26, no. 14: 6992. https://doi.org/10.3390/ijms26146992
APA StyleHuang, H.-Y., Tsao, S.-P., & Yeh, T.-H. (2025). Branched-Chain Amino Acids in Parkinson’s Disease: Molecular Mechanisms and Therapeutic Potential. International Journal of Molecular Sciences, 26(14), 6992. https://doi.org/10.3390/ijms26146992