Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (169)

Search Parameters:
Keywords = montane area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9116 KiB  
Article
Habitat Loss and Other Threats to the Survival of Parnassius apollo (Linnaeus, 1758) in Serbia
by Dejan V. Stojanović, Vladimir Višacki, Dragana Ranđelović, Jelena Ivetić and Saša Orlović
Insects 2025, 16(8), 805; https://doi.org/10.3390/insects16080805 - 4 Aug 2025
Viewed by 219
Abstract
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive [...] Read more.
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive livestock grazing has triggered vegetation succession, the disappearance of the larval host plant (Sedum album), and a reduction in microhabitat heterogeneity—conditions essential for the persistence of this stenophagous butterfly species. Through satellite-based analysis of vegetation dynamics (2015–2024), we identified clear structural differences between habitats that currently support populations and those where the species is no longer present. Occupied sites were characterized by low levels of exposed soil, moderate grass coverage, and consistently high shrub and tree density, whereas unoccupied sites exhibited dense encroachment of grasses and woody vegetation, leading to structural instability. Furthermore, MODIS-derived indices (2010–2024) revealed a consistent decline in vegetation productivity (GPP, FPAR, LAI) in succession-affected areas, alongside significant correlations between elevated land surface temperatures (LST), thermal stress (TCI), and reduced photosynthetic capacity. A wildfire event on Mount Stol in 2024 further exacerbated habitat degradation, as confirmed by remote sensing indices (BAI, NBR, NBR2), which documented extensive burn scars and post-fire vegetation loss. Collectively, these findings indicate that the decline of P. apollo is driven not only by ecological succession and climatic stressors, but also by the abandonment of land-use practices that historically maintained suitable habitat conditions. Our results underscore the necessity of restoring traditional grazing regimes and integrating ecological, climatic, and landscape management approaches to prevent further biodiversity loss in montane environments. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

14 pages, 1727 KiB  
Article
Endemic Species of Butterflies: Importance of Protected Areas in Tropical Montane Endemism Conservation
by Mónica Higuera-Díaz, Andrea León-Parra and Giovanny Fagua
Diversity 2025, 17(8), 536; https://doi.org/10.3390/d17080536 - 31 Jul 2025
Viewed by 254
Abstract
Protected areas play a key role in containing and protecting most of the endemic biodiversity of megadiverse places, underscoring their importance as custodians of biological richness. Colombia, one of the most species-rich countries, also has one of the highest rates of deforestation globally. [...] Read more.
Protected areas play a key role in containing and protecting most of the endemic biodiversity of megadiverse places, underscoring their importance as custodians of biological richness. Colombia, one of the most species-rich countries, also has one of the highest rates of deforestation globally. The Colombian National Natural Parks (NNPs) system is one of the mechanisms for protecting natural landscape ecosystems and biota. Based on the role of butterflies as bioindicators in biodiversity mapping, we compiled records of endemic butterfly species from entomological collections and the literature to assess the importance of protected areas in endemic species conservation. The NNPs harbor records of 127 endemic species, representing 65% of the 196 endemic butterfly species recorded in Colombia. Most of these endemic species, 93 species, have been recorded in only one NNP, here defined as “unique” species. These species are mainly distributed along the Andes Cordillera. Among all the NNPs, Sierra Nevada de Santa Marta holds the highest number of both total and unique endemic species. Extrapolating this pattern to the broader Andean Biota supports the idea that protected areas play a key role in containing and protecting much of Northern South American endemic biodiversity, underscoring their importance as custodians of biological richness. Full article
(This article belongs to the Special Issue Diversity, Biodiversity, Threats and Conservation of Arthropods)
Show Figures

Figure 1

19 pages, 4196 KiB  
Article
Corridors of Suitable Distribution of Betula platyphylla Sukaczev Forest in China Under Climate Warming
by Bingying Xie, Huayong Zhang, Xiande Ji, Bingjian Zhao, Yanan Wei, Yijie Peng and Zhao Liu
Sustainability 2025, 17(15), 6937; https://doi.org/10.3390/su17156937 - 30 Jul 2025
Viewed by 188
Abstract
Betula. platyphylla Sukaczev (B. platyphylla) forest is an important montane forest type. Global warming has impacted its distribution. However, how it affects suitable distribution across ecoregions and corresponding biodiversity protection measures remains unclear. This study used the Maxent model to analyze [...] Read more.
Betula. platyphylla Sukaczev (B. platyphylla) forest is an important montane forest type. Global warming has impacted its distribution. However, how it affects suitable distribution across ecoregions and corresponding biodiversity protection measures remains unclear. This study used the Maxent model to analyze the suitable distribution and driving variables of B. platyphylla forest in China and its four ecoregions. The minimum cumulative resistance (MCR) model was applied to construct corridors nationwide. Results show that B. platyphylla forest in China is currently mainly distributed in the four ecoregions; specifically, in Gansu and Shaanxi Province in Northwest China, Heilongjiang Province in Northeast China, Sichuan Province in Southwest China, and Hebei Province and Inner Mongolia Autonomous Region in North China. Precipitation and temperature are the main factors affecting suitable distribution. With global warming, the suitable areas in China including the North, Northwest China ecoregions are projected to expand, while Northeast and Southwest China ecoregions will decline. Based on the suitable areas, we considered 45 corridors in China, spanning the four ecoregions. Our results help understand dynamic changes in the distribution of B. platyphylla forest in China under global warming, providing scientific guidance for montane forests’ sustainable development. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

20 pages, 7143 KiB  
Article
Predicting Potentially Suitable Habitats and Analyzing the Distribution Patterns of the Rare and Endangered Genus Syndiclis Hook. f. (Lauraceae) in China
by Lang Huang, Weihao Yao, Xu Xiao, Yang Zhang, Rui Chen, Yanbing Yang and Zhi Li
Plants 2025, 14(15), 2268; https://doi.org/10.3390/plants14152268 - 23 Jul 2025
Viewed by 278
Abstract
Changes in habitat suitability are critical indicators of the ecological impacts of climate change. Syndiclis Hook. f., a rare and endangered genus endemic to montane limestone and cloud forest ecosystems in China, holds considerable ecological and economic value. However, knowledge of its current [...] Read more.
Changes in habitat suitability are critical indicators of the ecological impacts of climate change. Syndiclis Hook. f., a rare and endangered genus endemic to montane limestone and cloud forest ecosystems in China, holds considerable ecological and economic value. However, knowledge of its current distribution and the key environmental factors influencing its habitat suitability remains limited. In this study, we employed the MaxEnt model, integrated with geographic information systems (ArcGIS), to predict the potential distribution of Syndiclis under current and future climate scenarios, identify dominant bioclimatic drivers, and assess temporal and spatial shifts in habitat patterns. We also analyzed spatial displacement of habitat centroids to explore potential migration pathways. The model demonstrated excellent performance (AUC = 0.988), with current suitable habitats primarily located in Hainan, Taiwan, Southeastern Yunnan, and along the Yunnan–Guangxi border. Temperature seasonality (bio7) emerged as the most important predictor (67.00%), followed by precipitation of the driest quarter (bio17, 14.90%), while soil factors played a relatively minor role. Under future climate projections, Hainan and Taiwan are expected to serve as stable climatic refugia, whereas the overall suitable habitat area is projected to decline significantly. Combined with topographic constraints, population decline, and limited dispersal ability, these changes elevate the risk of extinction for Syndiclis in the wild. Landscape pattern analysis revealed increased habitat fragmentation under warming conditions, with only 4.08% of suitable areas currently under effective protection. We recommend prioritizing conservation efforts in regions with habitat contraction (e.g., Guangxi and Yunnan) and stable refugia (e.g., Hainan and Taiwan). Conservation strategies should integrate targeted in situ and ex situ actions, guided by dominant environmental variables and projected migration routes, to ensure the long-term persistence of Syndiclis populations and support evidence-based conservation planning. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

21 pages, 4261 KiB  
Article
Seasonal Temperature and Precipitation Patterns in Caucasus Landscapes
by Mariam Elizbarashvili, Nazibrola Beglarashvili, Mikheil Pipia, Elizbar Elizbarashvili and Nino Chikhradze
Atmosphere 2025, 16(7), 889; https://doi.org/10.3390/atmos16070889 - 19 Jul 2025
Viewed by 774
Abstract
The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational [...] Read more.
The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational data from 63 meteorological stations for 1950–2022. Temperature trends were analyzed using linear regression, while vertical lapse rates and inversion layers were assessed based on seasonal temperature–elevation relationships. Precipitation regimes were evaluated through Mann-Kendall trend tests and Sen’s slope estimators. Results reveal that temperature regimes are strongly modulated by landscape type and elevation, with higher thermal variability in montane and subalpine zones. Seasonal temperature inversions are most frequent in spring and winter, especially in western lowlands and enclosed valleys. Precipitation patterns vary markedly across landscapes: humid lowlands show autumn–winter maxima, while arid and semi-arid zones peak in spring or late autumn. Some landscapes exhibit secondary maxima and minima, influenced by Mediterranean cyclones and regional atmospheric stability. Statistically significant trends include increasing cool-season precipitation in humid regions and decreasing spring rainfall in arid areas. These findings highlight the critical role of topography and landscape structure in shaping regional climate patterns and provide a foundation for improved climate modeling, ecological planning, and adaptation strategies in the Caucasus. Full article
Show Figures

Figure 1

12 pages, 5143 KiB  
Article
Ochrolechia raynori, a New Lichen Species from the Southern Rocky Mountains (Colorado, USA) and Key to Asexually Reproducing Ochrolechia in Western North America
by Erin A. Manzitto-Tripp and Jacob L. Watts
Wild 2025, 2(3), 28; https://doi.org/10.3390/wild2030028 - 14 Jul 2025
Viewed by 230
Abstract
Ochrolechia is a diverse and charismatic lineage of both sexually and asexually reproducing lichens, with centers of species richness in northern temperate areas of the world, including North America. As part of recent work to comprehensively inventory the lichens of the Indian Peaks [...] Read more.
Ochrolechia is a diverse and charismatic lineage of both sexually and asexually reproducing lichens, with centers of species richness in northern temperate areas of the world, including North America. As part of recent work to comprehensively inventory the lichens of the Indian Peaks Wilderness (Arapaho–Roosevelt National Forest, Front Range Mountains, Colorado), we discovered material of a sorediate member of the genus to which no existing names could be applied. This material was collected in very remote, extremely difficult-to-access mid-montane forests of the west slope of the Indian Peaks Wilderness, in a steep and jagged off-trail drainage (Hell Canyon). Subsequent study of this material along with review of pre-existing collections at the COLO Herbarium revealed it to represent a new scientific species. We here formally describe Ochrolechia raynori, in honor of Seth Raynor who led the Indian Peaks Wilderness lichen inventory. We additionally document the occurrence of Dactylospora parasitica on this new lichen species. Ochrolechia raynori is distinctive for its continuous, smooth, shiny thallus that bears discrete soralia and coarse soredia, its occurrence on mosses and other lichens that overgrow rocks, and its chemistry. We generated a molecular phylogeny of this and other members of Ochrolechia using the nrITS locus and show O. raynori to be sister to the widespread, sexually reproducing species O. upsaliensis. This occurrence of an asexual species that is sister to a sexual species is consistent with the “species pair” hypothesis in lichenology, which suggests an intimate role of reproductive mode divergence in the process of speciation. Examination of the phylogeny yielded evidence of four additional pairs in Ochrolechia, for a total of five species pairs, which indicates that this phenomenon may be a common occurrence in this lineage. IUCN Conservation Assessment of Ochrolechia raynori revealed the species to be best considered as Critically Endangered. However, we expect that continued efforts to inventory the lichens of the southern Rocky Mountains, especially in some of its wildest, most remote regions in similar habitats, will likely result in the discovery of additional populations of this remarkable new species. Full article
Show Figures

Figure 1

17 pages, 4432 KiB  
Article
Modeling the Future of a Wild Edible Fern Under Climate Change: Distribution and Cultivation Zones of Pteridium aquilinum var. latiusculum in the Dadu–Min River Region
by Yi Huang, Jingtian Yang, Guanghua Zhao, Zixi Shama, Qingsong Ge, Yang Yang and Jian Yang
Plants 2025, 14(14), 2123; https://doi.org/10.3390/plants14142123 - 9 Jul 2025
Viewed by 538
Abstract
Under the pressures of global climate change, the sustainable management of plant resources in alpine gorge regions faces severe challenges. P. aquilinum var. latiusculum is widely harvested and utilized by residents in the upper reaches of the Dadu River–Min River basin due to [...] Read more.
Under the pressures of global climate change, the sustainable management of plant resources in alpine gorge regions faces severe challenges. P. aquilinum var. latiusculum is widely harvested and utilized by residents in the upper reaches of the Dadu River–Min River basin due to its high edible and medicinal value. This study employed ensemble models to simulate the potential distribution of P. aquilinum var. latiusculum in this region, predicting the impacts of future climate change on its distribution, the centroid migration of suitable habitats, and niche dynamics. A production dynamics model was also constructed to identify current and future potential cultivation areas by integrating ecological suitability and nutritional component synergies. The results show that current high-suitability areas and core cultivation zones of P. aquilinum var. latiusculum are predominantly distributed in patchy, fragmented patterns across the Wenchuan, Li, Mao, Luding, and Xiaojin Counties and Kangding City. Under climate change, the “mountain-top trap effect” drives a significant increase in high-suitability areas and core cultivation zones, while moderate-to-low-suitability areas and marginal cultivation zones decrease substantially. Meanwhile, suitable habitats and cultivation areas exhibit a northward migration trend toward higher latitudes. The most significant changes in suitable area and cultivation zone extent, as well as the most pronounced niche shifts, occur under high-emission climate scenarios. This research facilitates the development of suitability-based management strategies for P. aquilinum var. latiusculum in the study region and provides scientific references for the sustainable utilization of montane plant resources in the face of climate change. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

27 pages, 6077 KiB  
Article
Identification of Restoration Pathways for the Climate Adaptation of Wych Elm (Ulmus glabra Huds.) in Türkiye
by Derya Gülçin, Javier Velázquez, Víctor Rincón, Jorge Mongil-Manso, Ebru Ersoy Tonyaloğlu, Ali Uğur Özcan, Buse Ar and Kerim Çiçek
Land 2025, 14(7), 1391; https://doi.org/10.3390/land14071391 - 2 Jul 2025
Viewed by 458
Abstract
Ulmus glabra Huds. is a mesophilic, montane broadleaf tree with high ecological value, commonly found in temperate riparian and floodplain forests across Türkiye. Its populations in Türkiye have declined due to anthropogenic disturbances and climatic pressures that cause habitat fragmentation and threaten the [...] Read more.
Ulmus glabra Huds. is a mesophilic, montane broadleaf tree with high ecological value, commonly found in temperate riparian and floodplain forests across Türkiye. Its populations in Türkiye have declined due to anthropogenic disturbances and climatic pressures that cause habitat fragmentation and threaten the species’ long-term survival. In this research, we used Maximum Entropy (MaxEnt) to build species distribution models (SDMs) and applied the Restoration Planner (RP) tool to identify and prioritize critical restoration sites under both current and projected climate scenarios (SSP245, SSP370, SSP585). The SDMs highlighted areas of high suitability, primarily along the Black Sea coast. Future projections show that habitat fragmentation and shifts in suitable areas are expected to worsen. To systematically compare restoration options across different future scenarios, we derived and applied four spatial network status indicators using the RP tool. Specifically, we calculated Restoration Pixels (REST_PIX), Average Distance of Restoration Pixels from the Network (AVDIST_RP), Change in Equivalent Connected Area (ΔECA), and Restoration Efficiency (EFFIC) using the RP tool. For the 1 <-> 2 restoration pathways, the highest efficiency (EFFIC = 38.17) was recorded under present climate conditions. However, the largest improvement in connectivity (ΔECA = 60,775.62) was found in the 4 <-> 5 pathway under the SSP585 scenario, though this required substantial restoration effort (REST_PIX = 385). Temporal analysis noted that the restoration action will have most effectiveness between 2040 and 2080, while between 2081 and 2100, increased habitat fragmentation can severely undermine ecological connectivity. The result indicates that incorporation of habitat suitability modeling into restoration planning can help to design cost-effective restoration actions for degraded land. Moreover, the approach used herein provides a reproducible framework for the enhancement of species sustainability and habitat connectivity under varying climate conditions. Full article
Show Figures

Figure 1

24 pages, 18914 KiB  
Article
Canopy Chlorophyll Content Inversion of Mountainous Heterogeneous Grasslands Based on the Synergy of Ground Hyperspectral and Sentinel-2 Data: A New Vegetation Index Approach
by Yi Zheng, Yao Wang, Tayir Aziz, Ali Mamtimin, Yang Li and Yan Liu
Remote Sens. 2025, 17(13), 2149; https://doi.org/10.3390/rs17132149 - 23 Jun 2025
Viewed by 442
Abstract
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate [...] Read more.
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate CCC, the accurate estimation of CCC remains a significant challenge in mountainous regions with complex terrain and heterogeneous vegetation types. Through the synergistic analysis of ground hyperspectral and Sentinel-2 data, this study employed Pearson correlation analysis and spectral resampling techniques to identify Sentinel-2 blue band B1 (443 nm) and red band B4 (665 nm) as chlorophyll-sensitive bands through spectral matching with the hyperspectral reflectance of typical grassland vegetation. Based on this, we developed a new four-band vegetation index (VI), the Dual Red-edge and Coastal Aerosol Vegetation Index (DRECAVI), for estimating the CCC of heterogeneous grasslands in the middle section of the Tianshan Mountains. DRECAVI incorporates red-edge anti-saturation modules (bands B4 and B7) and aerosol correction modules (bands B1 and B8). In order to test the performance of the new index, we compared it with eight commonly used indices and a hybrid model, the Sentinel-2 Biophysical Processor (S2BP). The results indicated the following: (1) DRECAVI demonstrated the highest accuracy in CCC retrieval for mountainous vegetation (R2 = 0.74, RMSE = 16.79, MAE = 12.50) compared to other VIs and hybrid methods, effectively mitigating saturation effects in high biomass areas and capturing a weak bimodal distribution pattern of CCC in the montane meadow. (2) The blue band B1 enhances atmospheric correction robustness by suppressing aerosol scattering, and the red-edge band B7 overcomes the sensitivity limitations of conventional red-edge indices (such as NDVI705, CIred-edge, and NDRE), demonstrating the potential application of the synergy mechanism between the blue band and the red-edge band. (3) Although the S2BP achieved high accuracy (R2 = 0.73, RMSE = 19.83, MAE = 14.71) without saturation effects and detected a bimodal distribution of CCC in the montane meadow of the study area, its algorithmic complexity hindered large-scale operational applications. In contrast, DRECAVI maintained similar precision while reducing algorithmic complexity, making it more suitable for regional-scale grassland dynamic monitoring. This study confirms that the synergistic use of multi-source data effectively overcomes the limitations of the spectral–spatial resolution of a single data source, providing a novel methodology for the precision monitoring of mountain ecosystems. Full article
Show Figures

Figure 1

20 pages, 3842 KiB  
Article
Altitudinal Shifts as a Climate Resilience Strategy for Angelica sinensis Production in Its Primary Cultivation Region
by Zhengdong Li, Dajing Li, Hongxia Peng, Ruixuan Xu and Zaichun Zhu
Remote Sens. 2025, 17(12), 2085; https://doi.org/10.3390/rs17122085 - 18 Jun 2025
Viewed by 408
Abstract
Angelica sinensis, a highly valued Chinese herb renowned for its medicinal and nutritional properties, occupies a distinctive position in montane agriculture. The remote sensing monitoring of grain crops and their driving factors has been extensively studied, yet research on medicinal cash crops, [...] Read more.
Angelica sinensis, a highly valued Chinese herb renowned for its medicinal and nutritional properties, occupies a distinctive position in montane agriculture. The remote sensing monitoring of grain crops and their driving factors has been extensively studied, yet research on medicinal cash crops, particularly Angelica sinensis, remains limited. This study employed Landsat imagery and a two-step supervised classification method to map Angelica sinensis cultivation areas in southern Gansu Province while also assessing and projecting climate change impacts on its spatial distribution and yield based on the MaxEnt model and CMIP6 models. The results revealed a pronounced upward altitudinal shift in Angelica sinensis cultivation between 1990 and 2020, with the proportion of cultivation areas above 2400 m increasing from 28.75% to 67.80%. Climate factors explained 59.07% of the spatial distribution of Angelica sinensis, with precipitation, temperature, and altitude identified as the key environmental factors influencing its spatial distribution, yield, and growth. Projections for 2020 to 2060 indicate that Angelica sinensis cultivation areas will continue to shift to higher altitudes, accompanied by overall declines in both suitable area and yield. Under the SSP5-8.5 scenario, nearly all suitable areas are expected to be confined to altitudes above 2400 m by 2060, with 41.46% occurring above 2800 m. By 2060, the yield is expected to decrease to 361–421 kg/mu (down 20–31% from 2020) while the suitable area is projected to shrink to 0.98–1.80 million mu (40–60% smaller than 2040) under different scenarios. This study provides new insights into the protection and sustainable management of Angelica sinensis under changing climatic conditions, offering a scientific basis for the sustainable utilization of this valuable medicinal plant. Full article
Show Figures

Figure 1

44 pages, 34279 KiB  
Article
Identification and Optimization of Urban Avian Ecological Corridors in Kunming: Framework Construction Based on Multi-Model Coupling and Multi-Scenario Simulation
by Xiaoli Zhang and Zhe Zhang
Diversity 2025, 17(6), 427; https://doi.org/10.3390/d17060427 - 17 Jun 2025
Viewed by 743
Abstract
This study employs a multi-model coupling and multi-scenario simulation approach to construct a framework for identifying and optimizing avian ecological corridors in the urban core of Kunming. The framework focuses on the ecological needs of resident birds (64.72%), woodland-dependent birds (39.87%), and low-mobility [...] Read more.
This study employs a multi-model coupling and multi-scenario simulation approach to construct a framework for identifying and optimizing avian ecological corridors in the urban core of Kunming. The framework focuses on the ecological needs of resident birds (64.72%), woodland-dependent birds (39.87%), and low-mobility birds (47.29%) to address habitat fragmentation and enhance urban biodiversity conservation. This study identifies 54 core ecological corridors, totaling 183.58 km, primarily located in forest–urban transition zones. These corridors meet the continuous habitat requirements of resident and woodland-dependent birds, providing a stable environment for species. Additionally, 55 general corridors, spanning 537.30 km, focus on facilitating short-distance movements of low-mobility birds, enhancing habitat connectivity in urban fringe areas through ecological stepping stones. Eighteen ecological pinch points (total area 5.63 km2) play a crucial role in the network. The northern pinch points, dominated by forest land, serve as vital breeding and refuge habitats for woodland-dependent and resident birds. The southern pinch points, located in wetland-forest ecotones, function as critical stopover sites for low-mobility waterbirds. Degradation of these pinch points would significantly reduce available habitat for birds. The 27 ecological barrier points (total area 89.79 km2), characterized by urban land use, severely impede the movement of woodland-dependent birds and increase the migratory energy expenditure of low-mobility birds in agricultural areas. Following optimization, resistance to resident birds in core corridors is significantly reduced, and habitat utilization by generalist species in general corridors is markedly improved. Moreover, multi-scenario optimization measures, including the addition of ecological stepping stones, barrier improvement, and pinch-point protection, have effectively increased ecological sources, met avian habitat requirements, and secured migratory pathways for waterbirds. These measures validate the scientific rationale of a multidimensional management strategy. The comprehensive framework developed in this study, integrating species needs, corridor design, and spatial optimization, provides a replicable model for avian ecological corridor construction in subtropical montane cities. Future research may incorporate bird-tracking technologies to further validate corridor efficacy and explore planning pathways for climate-adaptive corridors. Full article
Show Figures

Figure 1

23 pages, 4375 KiB  
Article
Leafing Out: Leaf Area Index as an Indicator for Mountain Forest Recovery Following Mixed-Severity Wildfire in Southwest Colorado
by Michael Remke, Katie Schneider and Julie Korb
Forests 2025, 16(6), 872; https://doi.org/10.3390/f16060872 - 22 May 2025
Cited by 1 | Viewed by 499
Abstract
Wildfire is a critical driver of ecological processes in western U.S. forests, but recent shifts in climate, land use, and fire suppression have altered forest structure and disturbance regimes. Understanding post-fire recovery is essential for land management, particularly across complex montane landscapes like [...] Read more.
Wildfire is a critical driver of ecological processes in western U.S. forests, but recent shifts in climate, land use, and fire suppression have altered forest structure and disturbance regimes. Understanding post-fire recovery is essential for land management, particularly across complex montane landscapes like the southern Rocky Mountains. We assessed forest recovery in montane conifer forests, ranging from ponderosa pine to spruce-fir, following a large mixed-severity fire using field-based forest stand data and remotely sensed Leaf Area Index (LAI) measurements. Our objectives were to determine whether LAI is a meaningful proxy for post-fire vegetative recovery and how recovery patterns vary by forest type, burn severity, and abiotic factors. Stand characteristics predicted crown burn severity inconsistently and did not predict soil burn severity. LAI correlated strongly with live overstory tree density and shrub cover (R2 = 0.70). Recovery trajectories varied by forest type, with lower-severity burns generally recovering four years post-fire, while high-severity burns showed delayed recovery. Regeneration patterns were strongly influenced by climate, with higher seedling densities occurring at wetter sites. Our findings highlight the utility of LAI as a proxy for vegetative recovery and underscore the importance of forest type, fire severity, and climatic factors when assessing post-fire resilience. Full article
Show Figures

Figure 1

18 pages, 11692 KiB  
Article
Water Balance in an Atlantic Forest Remnant: Focus on Representative Tree Species
by Adérito C. Cau, José A. Junqueira Junior, Alejandra B. Vega, Severino J. Macôo, André F. Rodrigues, Marcela C. N. S. Terra, Li Guo and Carlos R. Mello
Forests 2025, 16(5), 812; https://doi.org/10.3390/f16050812 - 13 May 2025
Viewed by 419
Abstract
The Atlantic Forest has undergone deforestation and prolonged droughts, affecting ecosystem services. This study assesses the water balance using hydrological observations from representative tree species within a Montane Semideciduous Seasonal Forest (MF) remnant. Gross precipitation (GP), canopy interception (CI), and effective precipitation (EP [...] Read more.
The Atlantic Forest has undergone deforestation and prolonged droughts, affecting ecosystem services. This study assesses the water balance using hydrological observations from representative tree species within a Montane Semideciduous Seasonal Forest (MF) remnant. Gross precipitation (GP), canopy interception (CI), and effective precipitation (EP = Throughfall + Stemflow) were recorded daily, and soil moisture was measured down to 1.80 m every two days during the dry period of the 2023/2024 hydrological year. Additionally, aboveground biomass (AGB), fresh root biomass (BR), and soil hydrological properties in the soil profile were obtained to support the water balance results. The highest EP values were recorded in Miconia willdenowii, while the lowest were in Xylopia brasiliensis. Root zone water storage exhibited a declining trend, with the highest values in Miconia willdenowii. ET remained low, mainly in April, July, and September, with Miconia willdenowii and Copaifera langsdorffii showing the highest values, and AGB correlated with CI and ET. The dynamic of this ecosystem is apparent in the temporal variations (CVt) of soil moisture, influenced by EP and ET. The greatest variability was recorded in the surface layer (0–20 cm), stabilizing with depth, especially below 120 cm. The Temporal Stability Index (TSI) of soil water storage indicated greater stability in Blepharocalyx salicifolius. This study highlights the significance of soil water storage and ET in a tropical forest ecosystem, particularly under drought conditions, suggesting potential species that may be more effective in recovering degraded areas. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

41 pages, 10191 KiB  
Review
Impact of Land-Use Change on Vascular Epiphytes: A Review
by Thorsten Krömer, Helena J. R. Einzmann, Glenda Mendieta-Leiva and Gerhard Zotz
Plants 2025, 14(8), 1188; https://doi.org/10.3390/plants14081188 - 11 Apr 2025
Cited by 1 | Viewed by 1052
Abstract
Human-caused habitat conversion, degradation, and climate change threaten global biodiversity, particularly in tropical forests where vascular epiphytes—non-parasitic plants growing on other plants—may be especially vulnerable. Epiphytes play vital ecological roles, in nutrient cycling and by providing habitat, but are disproportionately affected by land-use [...] Read more.
Human-caused habitat conversion, degradation, and climate change threaten global biodiversity, particularly in tropical forests where vascular epiphytes—non-parasitic plants growing on other plants—may be especially vulnerable. Epiphytes play vital ecological roles, in nutrient cycling and by providing habitat, but are disproportionately affected by land-use changes due to their reliance on host trees and specific microclimatic conditions. While tree species in secondary forests recover relatively quickly, epiphyte recolonization is slower, especially in humid montane regions, where species richness may decline by up to 96% compared to primary or old-growth forests. A review of nearly 300 pertinent studies has revealed a geographic bias toward the Neotropics, with limited research from tropical Asia, Africa, and temperate regions. The studies can be grouped into four main areas: 1. trade, use and conservation, 2. ecological effects of climate and land-use change, 3. diversity in human-modified habitats, and 4. responses to disturbance. In agricultural and timber plantations, particularly those using exotic species like pine and eucalyptus, epiphyte diversity is significantly reduced. In contrast, most native tree species and shade-grown agroforestry systems support higher species richness. Traditional polycultures with dense canopy cover maintain up to 88% of epiphyte diversity, while intensive management practices, such as epiphyte removal in coffee and cacao plantations, cause substantial biodiversity losses. Conservation strategies should prioritize preserving old-growth forests, maintaining forest fragments, and minimizing intensive land management. Active restoration, including the translocation of fallen epiphytes and planting vegetation nuclei, is more effective than passive approaches. Future research should include long-term monitoring to understand epiphyte dynamics and assess the broader impacts of epiphyte loss on biodiversity and ecosystem functioning. Full article
Show Figures

Figure 1

33 pages, 1969 KiB  
Article
Collaborative Adaptive Management in the Greater Yellowstone Ecosystem: A Rangeland Living Laboratory at the US Sheep Experiment Station
by Hailey Wilmer, Jonathan Spiess, Patrick E. Clark, Michelle Anderson, Amira Burns, Arica Crootof, Lily Fanok, Tracy Hruska, Bruce J. Mincher, Ryan S. Miller, William Munger, Christian J. Posbergh, Carrie S. Wilson, Eric Winford, Jessica Windh, Nicole Strong, Marlen Eve and J. Bret Taylor
Sustainability 2025, 17(7), 3086; https://doi.org/10.3390/su17073086 - 31 Mar 2025
Viewed by 1236
Abstract
Social conflict over rangeland-use priorities, especially near protected areas, has long pitted environmental and biodiversity conservation interests against livestock livelihoods. Social–ecological conflict limits management adaptation and creativity while reinforcing social and disciplinary divisions. It can also reduce rancher access to land and negatively [...] Read more.
Social conflict over rangeland-use priorities, especially near protected areas, has long pitted environmental and biodiversity conservation interests against livestock livelihoods. Social–ecological conflict limits management adaptation and creativity while reinforcing social and disciplinary divisions. It can also reduce rancher access to land and negatively affect wildlife conservation. Communities increasingly expect research organizations to address complex social dynamics to improve opportunities for multiple ecosystem service delivery on rangelands. In the Greater Yellowstone Ecosystem (GYE), an area of the western US, long-standing disagreements among actors who argue for the use of the land for livestock and those who prioritize wildlife are limiting conservation and ranching livelihoods. Researchers at the USDA-ARS US Sheep Experiment Station (USSES) along with University and societal partners are responding to these challenges using a collaborative adaptive management (CAM) methodology. The USSES Rangeland Collaboratory is a living laboratory project leveraging the resources of a federal range sheep research ranch operating across sagebrush steppe ecosystems in Clark County, Idaho, and montane/subalpine landscapes in Beaverhead County, Montana. The project places stakeholders, including ranchers, conservation groups, and government land managers, in the decision-making seat for a participatory case study. This involves adaptive management planning related to grazing and livestock–wildlife management decisions for two ranch-scale rangeland management scenarios, one modeled after a traditional range sheep operation and the second, a more intensified operation with no use of summer ranges. We discuss the extent to which the CAM approach creates opportunities for multi-directional learning among participants and evaluate trade-offs among preferred management systems through participatory ranch-scale grazing research. In a complex system where the needs and goals of various actors are misaligned across spatiotemporal, disciplinary, and social–ecological scales, CAM creates a structure and methods to focus on social learning and land management knowledge creation. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

Back to TopTop