Predicting Potentially Suitable Habitats and Analyzing the Distribution Patterns of the Rare and Endangered Genus Syndiclis Hook. f. (Lauraceae) in China
Abstract
1. Introduction
2. Results
2.1. Model Performance and Accuracy Assessment
2.2. Dominant Environmental Variables Influencing the Distribution of Syndiclis
2.3. Response Ranges of Dominant Environmental Variables
2.4. Current and Future Potentially Suitable Habitats for Syndiclis in China
2.5. Spatiotemporal Shifts in Syndiclis Distribution Under Future Climate Scenarios
2.6. Centroid Shift Analysis
2.7. Landscape Pattern Analysis
2.8. Gap Analysis of Conservation Coverage
3. Discussion
3.1. Model Accuracy Assessment and Conservation Gap Analysis
3.2. The Dominant Factors That Restrict the Distribution of Syndiclis Habitat
3.3. Current Distribution Prediction and Distribution Center of Syndiclis
4. Materials and Methods
4.1. Data and Materials
4.1.1. Species Occurrence Data
4.1.2. Environmental Data Sources and Variable Selection
4.2. Species Distribution Modeling and Model Accuracy Assessment
4.3. Classification of Habitat Suitability Levels, Spatial Dynamics, and Environmental Variable Importance Assessment
4.4. Habitat Landscape Pattern Analysis
4.5. Species Distribution Centroid Migration Analysis
4.6. Conservation Gap Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Huang, Z.C.; Chen, L.J.; Wang, M.; Yan, Y.H.; Chen, J.B. Prediction of distribution patterns and dominant climatic factors of Cymbidium in China using MaxEnt model. Guihaia 2023, 43, 1027–1040. [Google Scholar]
- Pounds, J.A.; Bustamante, M.R.; Coloma, L.A.; Consuegra, J.A.; Fogden, M.P.L.; Foster, P.N.; La Marca, E.; Masters, K.L.; Merino-Viteri, A.; Puschendorf, R.; et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 2006, 439, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.H.; Lei, C.Y.; Wang, C.; Feng, D.F.; Sun, Y.Y. Predicting the potentially suitable climate areas for four varietas of Toona ciliata in Yunnan Province by maximum entropy (MaxEnt) Model. J. Yunnan Agric. Univ. Nat. Sci. 2022, 37, 294–301. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. (Eds.) Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Howarth, C.; Viner, D. Integrating Adaptation Practice in Assessments of Climate Change Science: The Case of IPCC Working Group II Reports. Environ. Sci. Policy 2022, 135, 1–5. [Google Scholar] [CrossRef]
- Jordà, G.; Marbà, N.; Bennett, S.; Santana-Garcon, J.; Agusti, S.; Duarte, C.M. Ocean Warming Compresses the Three-Dimensional Habitat of Marine Life. Nat. Ecol. Evol. 2020, 4, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Kellner, J.R.; Kendrick, J.; Sax, D.F. High-Velocity Upward Shifts in Vegetation Are Ubiquitous in Mountains of Western North America. PLoS Clim. 2023, 2, e0000071. [Google Scholar] [CrossRef]
- Ma, X.P.; Ma, L.L. Research on biodiversity conservation legislation in Qinghai Province. J. Qinghai Environ. 2023, 33, 166–169. [Google Scholar]
- Yang, X.; Xu, Y.; Gong, B.C.; Xie, Q.J. Fruit and Seed Phenotypic Diversity of Two Species of Diospyros spp. in Dabie Mountains. For. Res. 2022, 35, 188–196. [Google Scholar]
- Matías, L.; Linares, J.C.; Sánchez-Miranda, Á.; Jump, A.S. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity. Glob. Change Biol. 2017, 23, 4106–4116. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.C. Accelerating Extinction Risk from Climate Change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Xu, W.; Kang, D.; Li, J. Nature Reserve Group Planning for Conservation of Giant Pandas in North Minshan, China. J. Nat. Conserv. 2011, 19, 209–214. [Google Scholar] [CrossRef]
- Colli-Silva, M.; Pirani, J.R.; Zizka, A. Ecological Niche Models and Point Distribution Data Reveal a Differential Coverage of the Cacao Relatives (Malvaceae) in South American Protected Areas. Ecol. Inform. 2022, 69, 101668. [Google Scholar] [CrossRef]
- Pennekamp, F.; Pontarp, M.; Tabi, A.; Altermatt, F.; Alther, R.; Choffat, Y.; Fronhofer, E.A.; Ganesanandamoorthy, P.; Garnier, A.; Griffiths, J.I.; et al. Biodiversity Increases and Decreases Ecosystem Stability. Nature 2018, 563, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Youri, M.; Van Dyck, H.; Dendoncker, N.; Titeux, N. Testing Instead of Assuming the Importance of Land Use Change Scenarios to Model Species Distributions Under Climate Change. Glob. Ecol. Biogeogr. 2013, 22, 1204–1216. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- He, Y.L.; Ma, J.M.; Chen, G.S. Potential Geographical Distribution and Its Multi-Factor Analysis of Pinus massoniana in China Based on the MaxEnt Model. Ecol. Indic. 2023, 154, 110790. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Xiao, N.W.; Shen, M.; Li, J.S. Comparison Between Optimized MaxEnt and Random Forest Modeling in Predicting Potential Distribution: A Case Study with Quasipaa boulengeri in China. Sci. Total Environ. 2022, 842, 156867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. Application of MaxEnt Maximum Entropy Model in Predicting Species’ Potential Distribution Ranges. Bull. Biol. 2015, 50, 9–12. [Google Scholar]
- Pinedo-Alvarez, C.; Renteria-Villalobos, M.; Aguilar-Soto, V.; Vega-Mares, J.H.; Melgoza-Castillo, A. Distribution Dynamics of Picea chihuahuana Martínez Populations Under Different Climate Change Scenarios in Mexico. Glob. Ecol. Conserv. 2019, 17, e00559. [Google Scholar] [CrossRef]
- Liang, H.Z.; Lin, Y.; Liu, X.S.; Jiang, Y.; Yang, J.S.; Huang, R.L.; Wang, R.J. Evaluating Habitat Suitability of Endangered Plant Horsfieldia hainanensis Based on the Optimized MaxEnt Model. J. Cent. South Univ. For. Technol. 2024, 44, 16–26. [Google Scholar]
- Dai, Y.X.; Jin, T.; Xu, H.X.; Wang, D.; Wang, L. Study on the Suitable Area of Camellia luteoflora Y.K.Li in China Based on MaxEnt Model. J. Sichuan Univ. Nat. Sci. Ed. 2021, 58, 189–198. [Google Scholar]
- Li, H.; Teng, J.; Yin, X.J.; Li, G.; Chen, Z.; Wang, Y. Simulation Prediction of Suitable Distribution Area of Rare and Endangered Species of Camphora in China Under Different Climatic Environment. J. Northeast. For. Univ. 2023, 51, 43–53. [Google Scholar]
- Wu, Z.Y.; Raven, P.H.; Hong, D.Y. (Eds.) Flora of China; Volume 7: Menispermaceae Through Capparaceae; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2008; pp. 244–247. [Google Scholar]
- Chen, R.; Xu, C.R.; Huang, L.; Li, M.; Yang, C.H. Habitat, Community Characteristics and Species Diversity of an Endemic Tree Species (Syndiclis anlungensis) in Guizhou. Guizhou For. Sci. Technol. 2023, 51, 30–37+44. [Google Scholar]
- Liu, Y. Syndiclis anlungensis. Guizhou For. Sci. Technol. 2015, 43, 65. [Google Scholar]
- Zeng, G.; Liu, B.; Ferguson, D.K.; Rohwer, J.G.; Yang, Y. Floral Structure and Ontogeny of Syndiclis (Lauraceae). PLoS ONE 2017, 12, e0186358. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G. Floral Organs and Leaf Epidermis of a Few Groups of the Lauraceae. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2017. [Google Scholar]
- Huang, H.H.; Li, J.Z. Flower Fossils of Lauraceae in the Geological Time and Its Phylogenetic Evolutionary Significance. Guihaia 2018, 38, 210–219. [Google Scholar]
- Li, H.W. Phylogeny and Biogeography of the Beilschmiedia Group (Lauraceae). Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2020. [Google Scholar]
- Yang, Y.; Zhang, L.Y.; Liu, B.; van der Werff, H. Leaf Cuticular Anatomy and Taxonomy of Syndiclis (Lauraceae) and Its Allies. Syst. Bot. 2012, 37, 861–878. [Google Scholar] [CrossRef]
- Yang, S.T. Phylogeny and Biogeography of Beilschmiedia Species in the Family Lauraceae. Master’s Thesis, Guangxi Normal University, Guilin, China, 2024. [Google Scholar]
- Lou, L.; Yuan, C.J.; Chen, R.; Huang, L.; Huang, A.X.; Ding, F.J. Analysis of Codon Usage in the Chloroplast Genome of Syndiclis anlungensis. Mol. Plant Breed. 2025, 1–17. Available online: http://kns.cnki.net/kcms/detail/46.1068.S.20220602.0920.004.html (accessed on 18 July 2025).
- Li, H.W. Notes on the Taxonomy and Distribution of the Genus Syndiclis Hook. f. of Lauraceae and to Discuss the Characteristic of Its Area-Type. Acta Bot. Yunnanica 1979, 1, 11–16. [Google Scholar]
- Hooker, J.D. Lauraceae. In The Flora of British India; Hooker, J.D., Ed.; L. Reeve and Co.: London, UK, 1886; Volume 5, pp. 116–189. [Google Scholar]
- Allen, C.K. Studies in the Lauraceae, V: Some Eastern Asiatic Species of Beilschmiedia and Related Genera. J. Arnold Arbor. 1942, 23, 444–463. [Google Scholar] [CrossRef]
- Xia, N.H.; Deng, Y.F.; Yip, K.L. Syndiclis hongkongensis (Lauraceae), a New Species from China. J. Trop. Subtrop. Bot. 2006, 14, 75–77. [Google Scholar]
- Liu, B. Systematics and Biogeography of the Subtribe Beilschmiediinae (Lauraceae) in China. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2013. [Google Scholar]
- Kostermans, A.J.G.H. Enumeratio Lauracearum madagascariensium et ex insulis Mascarenis (Revisio Lauracearum VI). Not. Syst. 1939, 8, 67–128. [Google Scholar]
- Rohwer, J.G. Nectandra. In Flora Neotropica; The New York Botanical Garden, Ed.; The New York Botanical Garden Press: New York, NY, USA, 1993; Volume 60, pp. 1–332. [Google Scholar]
- Li, S.G.; Bai, P.Y. Endiandra, Syndiclis. In Flora Reipublicae Popularis Sinicae; Editorial Committee of Flora of China, Ed.; Science Press: Beijing, China, 1982; Volume 31, pp. 149–160. [Google Scholar]
- Li, J.; Xia, N.H.; Li, X.W. Sinopora, a New Genus of Lauraceae from South China. Novon 2008, 18, 199–201. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.Y. Venation Pattern of Syndiclis Hook. f. and Its Related Genera. J. Trop. Subtrop. Bot. 2010, 18, 643–649. [Google Scholar]
- Ye, X.Z.; Zhang, M.Z.; Lai, W.F.; Yang, M.M.; Fan, H.H.; Zhang, G.F.; Chen, S.P.; Liu, B. Prediction of Potential Suitable Distribution of Phoebe bournei Based on MaxEnt Optimization Model. Acta Ecol. Sin. 2021, 41, 8135–8144. [Google Scholar] [CrossRef]
- Zhu, G.P.; Qiao, H.J. Effect of the MaxEnt Model’s Complexity on the Prediction of Species Potential Distributions. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Qiao, S.; Wang, Y.D.; Chen, Y.C.; Zhao, Y.X.; Zeng, W.; Jin, S.M.; Gao, M. Study on the Influence of Climate Change on the Distribution and Future Change of Five Litsea Species. Acta Ecol. Sin. 2025, 45, 1–20. [Google Scholar]
- Yao, W.H.; Wang, Z.H.; Fan, Y.; Liu, D.Y.; Ding, Z.Y.; Zhou, Y.M.; Hu, S.Y.; Zhang, W.; Ou, J. Prediction of Potential Habitat Distributions and Climate Change Impacts on the Rare Species Woonyoungia septentrionalis (Magnoliaceae) in China Based on MaxEnt. Plants 2024, 14, 86. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, Z.Y.; Chen, L.D.; Peng, Y.S.; Wang, X. Changes in Potential Geographical Distribution of Tsoongiodendron odorum Since the Last Glacial Maximum. Chin. J. Plant Ecol. 2020, 44, 44–55. [Google Scholar] [CrossRef]
- Yan, H.Y.; Feng, L.; Zhao, Y.F.; Feng, L.; Wu, D.; Zhu, C.P. Prediction of the Spatial Distribution of Alternanthera philoxeroides in China Based on ArcGIS and MaxEnt. Glob. Ecol. Conserv. 2020, 21, e00856. [Google Scholar] [CrossRef]
- Xu, W.B.; Svenning, J.C.; Chen, G.K.; Zhang, M.G.; Huang, J.H.; Cheng, B.; Ordonez, A.; Ma, K.P. Human Activities Have Opposing Effects on Distributions of Narrow-Ranged and Widespread Plant Species in China. Proc. Natl. Acad. Sci. USA 2019, 116, 26674–26681. [Google Scholar] [CrossRef] [PubMed]
- Staude, I.R.; Navarro, L.M.; Pereira, H.M. Range Size Predicts the Risk of Local Extinction from Habitat Loss. Glob. Ecol. Biogeogr. 2020, 29, 16–25. [Google Scholar] [CrossRef]
- Sanczuk, P.; De Lombaerde, E.; Haesen, S.; Van Meerbeek, K.; Van der Veken, B.; Hermy, M.; Verheyen, K.; Vangansbeke, P.; De Frenne, P. Species Distribution Models and a 60-Year-Old Transplant Experiment Reveal Inhibited Forest Plant Range Shifts Under Climate Change. J. Biogeogr. 2022, 49, 537–550. [Google Scholar] [CrossRef]
- Gan, X.L.; Chang, Y.P.; Jiang, Y.; Cao, F.F.; Zhao, C.Y.; Li, W.B. Impact of Climate Change on Potential Distribution of Amygdalus mongolica in the Qilian Mountains. Acta Ecol. Sin. 2023, 43, 768–776. [Google Scholar] [CrossRef]
- Yang, S.Y.; An, M.T.; Liu, F.; Zhang, Y.; Tian, L.; Chen, C.Y. Prediction of Potential Suitable Area of Phoebe zhennan in Guizhou Province Based on MaxEnt Model. Guihaia 2023, 43, 846–857. [Google Scholar]
- Zhou, R.; Ci, X.Q.; Xiao, J.H.; Cao, G.L.; Li, J. Effects and Conservation Assessment of Climate Change on the Dominant Group—The Genus Cinnamomum of Subtropical Evergreen Broad-Leaved Forests. Biodivers. Sci. 2021, 29, 697–711. [Google Scholar] [CrossRef]
- Zhang, S.F. Prediction of Potential Distribution Area of Cassytha (Lauraceae) Based on MaxEnt Model. J. Sichuan For. Sci. Technol. 2024, 45, 21–32. [Google Scholar]
- Li, W.Q.; Xu, Z.F.; Shi, M.M.; Chen, J.H. Prediction of Potential Geographical Distribution Patterns of Salix tetrasperma Roxb. in Asia Under Different Climate Scenarios. Acta Ecol. Sin. 2019, 39, 3224–3234. [Google Scholar] [CrossRef]
- Liao, Z.Y.; Nobis, M.P.; Xiong, Q.L.; Tian, X.L.; Wu, X.G.; Pan, K.W.; Zhang, A.; Wang, Y.; Zhang, L. Potential Distributions of Seven Sympatric Sclerophyllous Oak Species in Southwest China Depend on Climatic, Non-Climatic, and Independent Spatial Drivers. Ann. For. Sci. 2021, 78, 5. [Google Scholar] [CrossRef]
- Yang, Q.S.; Chen, W.Y.; Xia, K.; Zhou, Z.K. Climatic Envelope of Evergreen Sclerophyllous Oaks and Their Present Distribution in the Eastern Himalaya and Hengduan Mountains. J. Syst. Evol. 2009, 47, 183–190. [Google Scholar] [CrossRef]
- Liu, X.Q.; Bai, M.; He, D.H.; Wang, X.P. Simulating Potential Distribution of Carabus Beetle in the Steppe Based on MaxEnt Model. Acta Ecol. Sin. 2022, 42, 4217–4224. [Google Scholar] [CrossRef]
- Wu, R.R.; Liu, M.Z.; Gu, X.; Chang, X.Y.; Guo, L.Y.; Jiang, G.M.; Qi, R.Y. Prediction of Suitable Habitat Distribution and Potential Impact of Climate Change on Distribution Patterns of Cupressus gigantea. Chin. J. Plant Ecol. 2024, 48, 445–458. [Google Scholar]
- Heinrich, B. Flowering Phenologies: Bog, Woodland, and Disturbed Habitats. Ecology 1976, 57, 890–899. [Google Scholar] [CrossRef]
- Feng, X.P.; Liu, J.F.; He, Z.S.; Zheng, S.Q.; Li, W.Z.; Chen, W.W. Effects of Climatic Factors on Phenological Phases of Flowers and Fruits of the Main Woody Plants in Daiyun Mountain. J. Northwest For. Univ. 2017, 32, 56–61. [Google Scholar]
- Liu, Y.; Wang, H.; Yang, J.; Dao, Z.; Sun, W. Conservation Genetics and Potential Geographic Distribution Modeling of Corybas taliensis, a Small ‘Sky Island’ Orchid Species in China. BMC Plant Biol. 2024, 24, 11. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, K.S.; Yang, S.; Tewksbury, J.J. Climate Change and Community Disassembly: Impacts of Warming on Tropical and Temperate Montane Community Structure. Ecol. Lett. 2011, 14, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Zhu, J.L.; Shi, Y. The Responses of Ecosystems to Global Warming. Chin. Sci. Bull. 2018, 63, 136–140. [Google Scholar] [CrossRef]
- Shen, Y.; Tu, Z.; Zhang, Y.; Zhong, W.; Xia, H.; Hao, Z.; Zhang, C.; Li, H. Predicting the Impact of Climate Change on the Distribution of Two Relict Liriodendron Species by Coupling the MaxEnt Model and Actual Physiological Indicators in Relation to Stress Tolerance. J. Environ. Manag. 2022, 322, 116024. [Google Scholar] [CrossRef] [PubMed]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Baca-González, V. MaxEnt’s Parameter Configuration and Small Samples: Are We Paying Attention to Recommendations? A Systematic Review. PeerJ 2017, 5, e3093. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Kumar, D.; Rawat, S. Modeling the Effect of Climate Change on the Distribution of Threatened Medicinal Orchid Satyrium nepalense D.Don in India. Environ. Sci. Pollut. Res. 2022, 29, 72431–72444. [Google Scholar] [CrossRef] [PubMed]
- Yackulic, C.B.; Chandler, R.; Zipkin, E.F.; Royle, J.A.; Nichols, J.D.; Grant, E.H.C.; Veran, S. Presence-Only Modelling Using MaxEnt: When Can We Trust the Inferences? Methods Ecol. Evol. 2013, 4, 236–243. [Google Scholar] [CrossRef]
- Zhou, B.J.; Wang, Y.J.; Ma, C.L.; Fan, Z.F.; Zheng, J.X. Analysis of Potential Habitat of Torreya yunnanensis Based on MaxEnt and ArcGIS. Acta Ecol. Sin. 2022, 42, 4485–4493. [Google Scholar] [CrossRef]
- Chen, B.R.; Zou, H.; Meng, X.H.; Wang, L.X.; Hao, X.L.; Kang, X.; Wang, C.; Zhang, X.X. Prediction of Distribution Pattern and Change of Suitable Areas of Bupleurum chinense and Bupleurum scorzonerifolium Under Climate Change in China. Acta Ecol. Sin. 2022, 42, 8471–8482. [Google Scholar] [CrossRef]
- Guga, S.; Xu, J.; Riao, D.; Li, K.W.; Han, A.R.; Zhang, J.Q. Combining MaxEnt Model and Landscape Pattern Theory for Analyzing Interdecadal Variation of Sugarcane Climate Suitability in Guangxi, China. Ecol. Indic. 2021, 131, 108152. [Google Scholar] [CrossRef]
- Zhao, G.; Cui, X.; Sun, J.; Li, T.; Wang, Q.; Ye, X.; Fan, B. Analysis of the Distribution Pattern of Chinese Ziziphus jujuba Under Climate Change Based on Optimized biomod2 and MaxEnt Models. Ecol. Indic. 2021, 132, 108256. [Google Scholar] [CrossRef]
- Cong, M.; Xu, Y.; Tang, L.; Yang, W.; Jian, M. Predicting the Dynamic Distribution of Sphagnum Bogs in China Under Climate Change Since the Last Interglacial Period. PLoS ONE 2020, 15, e0230969. [Google Scholar] [CrossRef] [PubMed]
Year | Scenario | Total Suitable Area (×104 km2) | Highly Suitable Area (×104 km2) | Change Trend |
---|---|---|---|---|
2050 | SSP126 | 25.97 | 3.39 | Decrease |
SSP245 | 35.66 | 4.49 | Increase | |
SSP585 | 27.07 | 2.86 | Slight decrease | |
2070 | SSP126 | 30.85 | 4.09 | Slight increase |
SSP245 | 27.84 | 3.85 | Decrease | |
SSP585 | 26.76 | 3.19 | Decrease | |
2090 | SSP126 | 36.5 | 5.37 | Major increase |
SSP245 | 22.72 | 3.31 | Significant decrease | |
SSP585 | 17.06 | 2.56 | Drastic decrease |
Code | Environmental Variable | Contribution Rate/% | Permutation Importance/% |
---|---|---|---|
bio7 | Temperature Annual Range | 67.00 | 78.50 |
bio17 | Precipitation of Driest Quarter | 14.90 | 3.40 |
bio2 | Mean Diurnal Range | 3.60 | 9.90 |
slope | slope | 2.50 | 2.60 |
s_bs | Subsoil Base Saturation | 2.60 | 1.40 |
t_usda_tex | Topsoil USDA Texture Classification | 2.50 | 0.10 |
s_clay | Subsoil Clay Fraction | 2.10 | 0.40 |
elevation | Elevation | 1.80 | 3.10 |
bio13 | Precipitation of Wettest Month | 1.60 | 0.50 |
t_bs | Topsoil Base Saturation | 0.30 | 0.10 |
t_gravel | Topsoil Gravel Content | 0.10 | 0 |
s_teb | Subsoil TEB | 0.10 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Yao, W.; Xiao, X.; Zhang, Y.; Chen, R.; Yang, Y.; Li, Z. Predicting Potentially Suitable Habitats and Analyzing the Distribution Patterns of the Rare and Endangered Genus Syndiclis Hook. f. (Lauraceae) in China. Plants 2025, 14, 2268. https://doi.org/10.3390/plants14152268
Huang L, Yao W, Xiao X, Zhang Y, Chen R, Yang Y, Li Z. Predicting Potentially Suitable Habitats and Analyzing the Distribution Patterns of the Rare and Endangered Genus Syndiclis Hook. f. (Lauraceae) in China. Plants. 2025; 14(15):2268. https://doi.org/10.3390/plants14152268
Chicago/Turabian StyleHuang, Lang, Weihao Yao, Xu Xiao, Yang Zhang, Rui Chen, Yanbing Yang, and Zhi Li. 2025. "Predicting Potentially Suitable Habitats and Analyzing the Distribution Patterns of the Rare and Endangered Genus Syndiclis Hook. f. (Lauraceae) in China" Plants 14, no. 15: 2268. https://doi.org/10.3390/plants14152268
APA StyleHuang, L., Yao, W., Xiao, X., Zhang, Y., Chen, R., Yang, Y., & Li, Z. (2025). Predicting Potentially Suitable Habitats and Analyzing the Distribution Patterns of the Rare and Endangered Genus Syndiclis Hook. f. (Lauraceae) in China. Plants, 14(15), 2268. https://doi.org/10.3390/plants14152268