Seasonal Temperature and Precipitation Patterns in Caucasus Landscapes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Methods
3. Results and Discussion
3.1. Changes in the Annual Course of Air Temperature in Different Landscape Conditions
3.2. Temperature Inversion in Different Landscape Conditions
3.3. Precipitation Annual Course in Different Landscape Conditions
3.4. Limitations and Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Soltani, K.; Amiri, A.; Ebtehaj, I.; Cheshmehghasabani, H.; Fazeli, S.; Gumiere, S.J.; Bonakdari, H. Advanced Forecasting of Drought Zones in Canada Using Deep Learning and CMIP6 Projections. Climate 2024, 12, 119. [Google Scholar] [CrossRef]
- Rybak, O.O.; Rybak, E.A. Climate change in the south of Russia: Tendencies and possibilities for prediction. Sci. J. Kuban State Univ. 2015, 111, 3–18. [Google Scholar]
- Tashilova, A.A.; Ashabokov, B.A.; Kesheva, L.A.; Teunova, N.V. Analysis of Climate Change in the Caucasus Region: End of the 20th–Beginning of the 21st Century. Climate 2019, 7, 11. [Google Scholar] [CrossRef]
- Tashilova, A.A.; Ashabokov, B.A.; Kesheva, L.A.; Teunova, N.V. Modern Climate Changes in the North Caucasus Region. In Physics of the Atmosphere, Climatology and Environmental Monitoring; PAPCEM 2022; Zakinyan, R., Zakinyan, A., Eds.; Springer Proceedings in Earth and Environmental Sciences; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Kozachek, A.; Mikhalenko, V.; Masson-Delmotte, V.; Ekaykin, A.; Ginot, P.; Kutuzov, S.; Legrand, M.; Lipenkov, V.; Preunkert, S. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El’brus ice cores. Clim. Past 2017, 13, 473–489. [Google Scholar] [CrossRef]
- Elizbarashvili, E.S.; Elizbarashvili, M.E.; Maglakelidze, R.V.; Sulkhanishvili, N.G.; Elizbarashvili, S.E. Specific features of soil temperature regimes in Georgia. Eurasian Soil Sci. 2007, 40, 761–765. [Google Scholar] [CrossRef]
- Huseynov, J.; Huseynova, T.; Tagiyev, A. Assessment of the impact of climate changes on the quality of life of the population in the Greater Caucasus region of the Republic of Azerbaijan. J. Geol. Geogr. Geoecol. 2025, 34, 100–111. [Google Scholar] [CrossRef]
- Gevorgyan, A.; Piliposyan, N.; Gizhlaryan, S.; Sargsyan, S. Climate Change Impact on Extreme Temperatures and Heat Waves in Armenia. Int. J. Climatol. 2025, 46, e8802. [Google Scholar] [CrossRef]
- Manucharyan, M. Climate change impacts on sustainable agriculture: Evidence from Armenia. Unconv. Resour. 2025, 6, 100159. [Google Scholar] [CrossRef]
- Petrushina, M.N.; Gunya, A.N.; Kolbovsky, E.Y.; Purehovsky, A.Z. Dynamics of Mountain Landscapes of the North Caucasus under Modern Climate Change and Increased Anthropogenic Impact. Izv. Ross. Akad. Nauk. Seriya Geogr. 2023, 87, 1032–1049. [Google Scholar] [CrossRef]
- Bonan, G. Ecological Climatology: Concepts and Applications; Cambridge University Press: Cambridge, UK, 2015; ISBN 9781107619050. [Google Scholar] [CrossRef]
- Elizbarashvili, E.S.; Tatishvili, M.R.; Elizbarashvili, M.E.; Elizbarashvili, S.E.; Meskhiya, R.S. Air temperature trends in Georgia under global warming conditions. Russ. Meteorol. Hydrol. 2013, 38, 234–238. [Google Scholar] [CrossRef]
- Elizbarashvili, E.S.; Meskhiya, R.S.; Elizbarashvili, M.E.; Megrelidze, L.D.; Gorgisheli, V.E. Frequency of occurrence and dynamics of droughts in Eastern Georgia in the 20th century. Russ. Meteorol. Hydrol. 2009, 34, 401–405. [Google Scholar] [CrossRef]
- Beruchashvili, N.L. Landscape Map of the Caucasus; TSU: Tbilisi, Georgia, 1980. [Google Scholar]
- Beruchashvili, N.L. Four Dimensions of the Landscape; Mysl: Moscow, Russia, 1986; 182p. [Google Scholar]
- Beruchashvili, N.L. Landscape Ethology and Mapping of the Natural Environment; TSU: Tbilisi, Georgia, 1989; 198p. [Google Scholar]
- Beruchashvili, N.L. Geophysics of landscapes; Vysshaya Shkola: Moscow, Russia, 1990; 287p. [Google Scholar]
- Beruchashvili, N.L. Caucasus-Landscapes, Models, Experiments; TSU: Tbilisi, Georgia, 1995; 314p. [Google Scholar]
- Elizbarashvili, M.; Amiranashvili, A.; Elizbarashvili, E.; Mikuchadze, G.; Khuntselia, T.; Chikhradze, N. Comparison of RegCM4.7.1 Simulation with the Station Observation Data of Georgia, 1985–2008. Atmosphere 2024, 15, 369. [Google Scholar] [CrossRef]
- Cleveland, W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J.Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrela-tion on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Barry, R.G. Mountain Weather and Climate, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Beniston, M. Climatic change in mountain regions: A review of possible impacts. Clim. Change 2003, 59, 5–31. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. 2011, 116, G03025. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Whiteman, C. Breakup of temperature inversions in deep mountain valleys: Part I. Observations. J. Appl. Meteor. 1982, 21, 270–289. [Google Scholar] [CrossRef]
- Whiteman, C.D. Mountain Meteorology: Fundamentals and Applications; Oxford University Press: New York, NY, USA, 2000; 355p. [Google Scholar]
- Rendón, A.M.; Salazar, J.F.; Palacio, C.A.; Wirth, V.; Brötz, B. Effects of Urbanization on the Temperature Inversion Breakup in a Mountain Valley with Implications for Air Quality. J. Appl. Meteor. Climatol. 2014, 53, 840–858. [Google Scholar] [CrossRef]
- Janhall, S.; Olofson, K.; Andersson, P.; Pettersson, J.; Hallquist, M. Evolution of the urban aerosol during winter temperature inversion episodes. Atmos. Environ. 2006, 40, 5355–5366. [Google Scholar] [CrossRef]
- Yao, W.; Zhong, S. Nocturnal temperature inversions in a small, enclosed basin and their relationship to ambient atmospheric conditions. Meteor. Atmos. Phys. 2009, 103, 195–210. [Google Scholar] [CrossRef]
- Matzinger, N.; Andretta, M.; Van Gorsel, E.; Vogt, R.; Ohmura, A.; Rotach, M.W. Surface radiation budget in an alpine valley. Q. J. R. Meteorol. Soc. 2003, 129, 877–895. [Google Scholar] [CrossRef]
- Rolland, C. Spatial and Seasonal Variations of Air Temperature Lapse Rates in Alpine Regions. J. Clim. 2003, 16, 1032–1046. [Google Scholar] [CrossRef]
- Elizbarashvili, E.S. Vertical zoning of the climates of Transcaucasia. Izv. USSR Acad. Sci. Ser. Geogr. 1978, 4, 97–103. [Google Scholar]
- Climate Change 2021: The Physical Science Basis. Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 10 April 2025).
- Ivanov, A.Y. Local Katabatic Winds of the Russian Federation and Their Observation Using Synthetic Aperture Radar Imagery. Izv. Atmos. Ocean. Phys. 2020, 56, 989–1006. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1217. [Google Scholar] [CrossRef]
- Gonzalez-Hidalgo, J.C.; Vicente-Serrano, S.M.; Tomas-Burguera, M. Seasonal precipitation changes in the western Mediterranean Basin: The case of the Spanish mainland, 1916–2015. Int. J. Climatol. 2024, 44, e8412. [Google Scholar] [CrossRef]
- Ruban, D.A.; Mikhailenko, A.V.; Ermolaev, V.A. Inverted Landforms of the Western Caucasus: Implications for Geoheritage, Geotourism, and Geobranding. Heritage 2022, 5, 2315–2331. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Çelebioğlu, T.; Tayanç, M. A study on precipitation trends in Türkiye via linear regression analysis and non-parametric Mann-Kendall test. J. Sustain. Environ. 2024, 4, 19–28. [Google Scholar] [CrossRef]
- Bhugra, P.; Bischke, B.; Werner, C.; Syrnicki, R.; Packbier, C.; Helber, P.; Senaras, C.; Rana, A.S.; Davis, T.; De Keersmaecker, W.; et al. RapidAI4EO: Mono- and Multi-temporal Deep Learning Models for Updating the Corine Land Cover Product. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022. [Google Scholar]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Assenova, I.; Vitanova, L.; Petrova-Antonova, D. Urban heat islands from multiple perspectives: Trends across disciplines and interrelationships. Urban Clim. 2024, 56, 102075. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Jones, P.D. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 dataset. J. Geophys. Res. Atmos. 2021, 126, e2019JD032361. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Daly, C.; Conklin, D.R.; Unsworth, M.H. Local atmospheric decoupling in complex topography alters climate change impacts. Int. J. Climatol. 2008, 30, 1857–1864. [Google Scholar] [CrossRef]
Classes | Types | Subtypes | Meteorological Stations (Numbering as in Table 2) |
---|---|---|---|
Plain and hilly landscapes | Subtropical humid plains and hills. | Colchis forest, Hyrcanian forest, and shrubland landscapes. | 6. Anaklia 7. Anaseuli 8. Atsana 12. Bitchvinta 15. Dablatsikhe 20. Gali 39. Mamisoni 48. Poti 50. Samtredia 51. Senaki 52. Sokhumi 58. Tkibuli 63. Zugdidi |
Submediterranean subhumid plains and hills | Colchis transitional forest; submediterranean forest itself, arid sparse forest; temperately warm transitional subhumid forest. | 4. Akhmeta 24. Gori 49. Sagarejo 53. Tbilisi 55. Telavi 60. Tuapse | |
Subtropical subarid plains and hills | Steppe and semi-desert. | 16. Dedoplistskaro 21. Ganja 22. Gardabani 41. Marneuli 43. Mukhrani | |
Subtropical arid plains and hills | Desert and semi-desert. | 10. Baku | |
Temperately warm subhumid landscapes of the plains. | Subtropical to transitional forest; Temperate to transitional forest. | 13. Bolnisi 26. Gurjaani 36. Lagodekhi 35. Kvareli | |
Temperately warm and temperate subhumid of the plains and hills | Meadows, steppes, shrublands, and forest-steppes. | ||
Temperately warm and temperate subarid landscapes of the plains and hills | Steppes | 25. Grozny 61. Vladikavkaz 44. Nalchik 34. Krasnodar | |
Temperately arid landscapes of the plains | Deserts and semi-deserts. | ||
Hydromorphic and subhydromorphic landscapes | Subtypes of swamps, salt marshes, and meadows. | ||
Mountain landscapes | Mountain submediterranean subhumid landscapes. | Humid subtropical and temperate warm transitional low mountain forest, and mountain Mediterranean transitional forest, xerophytic | 45. Novorossiysk |
Mountain subtropical subarid landscapes | Steppe, xerophytic, and arid sparse forest subtype. | ||
Mountain subtropical arid landscapes: | Semi-desert and desert subtypes | ||
Mountain temperate warm humid landscapes. | Lower mountain Colchis forest; middle mountain Colchis forest; lower mountain Hyrcanian forest; middle mountain Hyrcanian forest; lower montane forest; transitional to subhumid lower montane forest; middle montane forest. | 1. Abastumani 5. Ambrolauri 9. Bakhmaro 14. Borjomi 19. Gagra 23. Gombori 18. Dusheti 56. Tetri Tskaro 57. Tianeti 33. Kojori 38. Lentekhi 46. Oni 47. Pasanauri 32. Khulo 27. Java 40. Manglisi | |
Mountain temperate humid landscapes. | Lower mountain forest and middle mountain forest. | ||
Mountain temperate subhumid landscapes. | Moderately warm transitional middle mountain xerophytic, arid sparse forest, phrygana, meadow-steppe; moderately warm transitional mountain forest, steppe; low mountain forest, forest-bush, meadows and steppes; medium mountain meadows, steppes, meadow-steppes, shiblyak and phrygana | 2. Akhalkalaki 17. Dmanisi 30. Kartsakhi 59. Tsalka | |
Mountain temperate subarid landscapes. | Moderately warm transitional mountain steppes, meadows, phrygana, and shiblyak; moderately warm transitional middle mountain steppes and shiblyak, high mountain steppes and meadows transitional into mountain meadows; plateau with steppe and meadow-steppe vegetation; mountain depression steppes and shiblyak. | 3. Akhaltsikhe 29. Karmadon 54. Teberda | |
Mountain temperate arid landscapes. | Lower mountain deserts and semi-deserts; mountain depression deserts | 62. Yerevan | |
Mountain temperate cold landscapes: | medium mountain dark coniferous forest; upper mountain forest. | 42. Mestia 11. Bakuriani | |
High mountain meadows. | high mountain subalpine forest-shrub-meadows; high mountain alpine shrub-meadows; high mountain subnival and glacial–nival landscapes. | 39. Mamisoni 28. Jvari Pass 31. Kazbegi |
ID | NAME | Lat | Long | Elevation (m) |
---|---|---|---|---|
1 | Abastumani | 41.75 | 42.83 | 1329 |
2 | Akhalkalaki | 41.41 | 43.49 | 1721 |
3 | Akhaltsikhe | 41.64 | 42.99 | 1001 |
4 | Akhmeta | 42.04 | 45.21 | 571 |
5 | Ambrolauri | 42.52 | 43.15 | 577 |
6 | Anaklia | 42.40 | 41.58 | 7 |
7 | Anaseuli | 41.91 | 41.98 | 135 |
8 | Atsana | 42.05 | 42.07 | 199 |
9 | Bakhmaro | 41.85 | 42.33 | 1920 |
10 | Baku | 40.39 | 49.86 | 28 |
11 | Bakuriani | 41.75 | 43.53 | 1662 |
12 | Bitchvinta | 43.16 | 40.34 | 7 |
13 | Bolnisi | 41.38 | 44.50 | 641 |
14 | Borjomi | 41.85 | 43.41 | 820 |
15 | Dablatsikhe | 42.01 | 42.27 | 264 |
16 | Dedoplistskaro | 41.46 | 46.11 | 811 |
17 | Dmanisi | 41.33 | 44.20 | 1243 |
18 | Dusheti | 42.09 | 44.70 | 867 |
19 | Gagra | 43.30 | 40.26 | 9 |
20 | Gali | 42.63 | 41.74 | 55 |
21 | Ganja | 40.68 | 46.36 | 392 |
22 | Gardabani | 41.46 | 45.09 | 314 |
23 | Gombori | 41.86 | 45.21 | 1036 |
24 | Gori | 41.98 | 44.11 | 606 |
25 | Grozny | 43.32 | 45.69 | 128 |
26 | Gurjaani | 41.74 | 45.80 | 420 |
27 | Java | 42.39 | 43.92 | 1078 |
28 | Jvari Pass | 42.51 | 44.45 | 2409 |
29 | Karmadon | 42.86 | 44.52 | 1265 |
30 | Kartsakhi | 41.24 | 43.27 | 1855 |
31 | Kazbegi | 42.65 | 44.64 | 1762 |
32 | Khulo | 41.65 | 42.31 | 981 |
33 | Kojori | 41.66 | 44.70 | 1251 |
34 | Krasnodar | 45.04 | 38.97 | 25 |
35 | Kvareli | 41.95 | 45.82 | 418 |
36 | Lagodekhi | 41.82 | 46.27 | 438 |
37 | Lenkoran | 38.76 | 48.85 | −21 |
38 | Lentekhi | 42.79 | 42.72 | 730 |
39 | Mamisoni | 42.71 | 43.77 | 2550 |
40 | Manglisi | 41.70 | 44.38 | 1197 |
41 | Marneuli | 41.49 | 44.80 | 429 |
42 | Mestia | 43.04 | 42.72 | 1408 |
43 | Mukhrani | 41.93 | 44.58 | 549 |
44 | Nalchik | 43.48 | 43.62 | 483 |
45 | Novorossiysk | 44.72 | 37.77 | 30 |
46 | Oni | 42.58 | 43.44 | 800 |
47 | Pasanauri | 42.35 | 44.69 | 1076 |
48 | Poti | 42.14 | 41.67 | 9 |
49 | Sagarejo | 41.74 | 45.33 | 755 |
50 | Samtredia | 42.16 | 42.34 | 26 |
51 | Senaki | 42.27 | 42.06 | 34 |
52 | Sokhumi | 42.98 | 40.98 | 8 |
53 | Tbilisi | 41.70 | 44.83 | 492 |
54 | Teberda | 43.36 | 41.68 | 1428 |
55 | Telavi | 41.92 | 45.48 | 690 |
56 | Tetri Tskaro | 41.54 | 44.46 | 1168 |
57 | Tianeti | 42.11 | 44.97 | 1110 |
58 | Tkibuli | 42.35 | 43.00 | 577 |
59 | Tsalka | 41.60 | 44.09 | 1471 |
60 | Tuapse | 44.10 | 39.07 | 12 |
61 | Vladikavkaz | 43.03 | 44.68 | 704 |
62 | Yerevan | 40.18 | 44.51 | 1014 |
63 | Zugdidi | 42.51 | 41.87 | 112 |
Landscape Type, Subtypes | Statistical Parameter | Months | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
January | February | March | April | May | June | July | August | September | October | November | December | Year | ||
Subtropical humid of plains and hills | T (°C) | 3.70 | 4.5 | 6.69 | 11.3 | 16.4 | 19.4 | 21.7 | 21.9 | 19 | 15 | 10 | 5.9 | 13 |
SD (°C) | 1.62 | 1.5 | 1.62 | 0.92 | 0.73 | 1.07 | 1.10 | 1.43 | 0.9 | 0.9 | 1 | 1.4 | 0.9 | |
CV, (%) | 43.9 | 32 | 24.3 | 8.11 | 4.44 | 5.50 | 5.07 | 6.53 | 4.5 | 6.3 | 10 | 23 | 7.1 | |
Submediterranean subhumid of plains and hills | T (°C) | 0.36 | 1.64 | 5.4 | 10.8 | 16.0 | 19.9 | 22.9 | 22.8 | 18.4 | 12.9 | 6.88 | 2.4 | 12 |
SD (°C) | 0.46 | 0.61 | 0.85 | 0.70 | 0.81 | 0.88 | 0.95 | 1.00 | 0.97 | 0.71 | 0.53 | 0.32 | 0.7 | |
CV, (%) | 128 | 37.2 | 15.8 | 6.48 | 5.04 | 4.45 | 4.14 | 4.40 | 5.24 | 5.48 | 7.65 | 13.1 | 6.2 | |
Subtropical subarid of plains and hills | T (°C) | −1.3 | 0.40 | 4.2 | 9.8 | 15 | 18.7 | 22 | 21.9 | 17.5 | 11.6 | 5.68 | 0.88 | 11 |
SD (°C) | 0.22 | 0.26 | 0.87 | 0.61 | 0.52 | 0.35 | 0.51 | 0.22 | 0.44 | 0.64 | 0.56 | 0.30 | 0.3 | |
CV, (%) | - | 64.5 | 20.7 | 6.22 | 3.42 | 1.87 | 2.27 | 1.01 | 2.51 | 5.48 | 9.80 | 34.1 | 3.6 | |
Temperate warm, and temperate subarid of plains and hills | T (°C) | −4.1 | −2.9 | 2.38 | 9.13 | 15.4 | 19.4 | 22 | 21.6 | 16.2 | 10.2 | 3.49 | −1.4 | 9.4 |
SD (°C) | 1.11 | 1.02 | 0.96 | 0.90 | 1.17 | 1.29 | 1.48 | 1.42 | 1.08 | 0.98 | 1.02 | 1.05 | 1.0 | |
CV, (%) | - | - | 40.4 | 9.83 | 7.56 | 6.66 | 6.71 | 6.54 | 6.64 | 9.52 | 29.2 | - | 11 | |
The lower and middle montane Colchis forest humid | T (°C) | −2.7 | −2 | 1.54 | 6.81 | 11.9 | 15.1 | 17.1 | 17.6 | 14.1 | 9.56 | 4.08 | −0.4 | 7.8 |
SD (°C) | 1.83 | 2.03 | 2.50 | 2.87 | 3.06 | 2.86 | 2.86 | 2.86 | 2.22 | 1.70 | 1.90 | 1.18 | 2.3 | |
CV, (%) | 162 | 42 | 25.6 | 18.9 | 16.7 | 16.2 | 15.7 | 17.7 | 46.6 | 29 | ||||
Mountain moderately arid | T (°C) | −1.8 | −0.2 | 5.53 | 12 | 16.9 | 21.1 | 24.8 | 24.6 | 20.4 | 14.4 | 8.37 | 0.60 | 12 |
SD (°C) | 1.98 | 2.24 | 1.69 | 1.08 | 1.10 | 1.10 | 0.82 | 0.50 | 0.43 | 0.63 | 0.18 | 1.73 | 1.2 | |
CV, (%) | - | - | 30.6 | 9.00 | 6.53 | 5.23 | 3.31 | 2.01 | 2.12 | 4.32 | 2.15 | 288 | 9.5 | |
Medium montane dark coniferous forest | T (°C) | −5.6 | −4.7 | −0.78 | 4.8 | 9.8 | 13 | 15.4 | 15.5 | 11.4 | 6.62 | 1.48 | −3.2 | 5.4 |
SD (°C) | 1.10 | 1.62 | 1.44 | 1.32 | 1.16 | 1.06 | 0.90 | 0.75 | 0.62 | 0.70 | 0.62 | 0.89 | 0.8 | |
CV, (%) | - | - | - | 27.5 | 11.7 | 8.16 | 5.80 | 4.83 | 5.41 | 10.5 | 41.7 | - | 14 | |
High mountain meadows and glacial nival landscapes | T (°C) | −13 | −13 | −9.64 | −4.58 | 0.28 | 3.52 | 6.94 | 7.04 | 3.5 | −0.9 | −6.3 | −10 | −3 |
SD (°C) | 1.66 | 2.04 | 2.31 | 2.76 | 3.24 | 3.68 | 3.21 | 3.22 | 2.96 | 2.71 | 1.88 | 1.58 | 2.5 | |
CV, (%) | - | - | - | - | 997 | 104 | 46.2 | 45.7 | 84.5 | - | - | - | - |
Landscape Type, SubtypeF | Month | Year | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
January | February | March | April | May | June | July | August | September | October | November | December | SD | 95% CI Lower Upper | ||
Subtropical humid of plains and hills | 0.75 | 0.66 | 0.70 | 0.26 | 0.05 | 0.45 | 0.45 | 0.45 | 0.40 | 0.45 | 0.46 | 0.65 | 0.42 | 0.20 | 0.28 |
0.68 | |||||||||||||||
Submediterranean subhumid of plains and hills | 0.25 | 0.49 | 0.52 | 0.44 | 0.50 | 0.52 | 0.60 | 0.60 | 0.60 | 0.42 | 0.41 | 0.20 | 0.42 | 0.14 | 0.29 |
0.57 | |||||||||||||||
Subtropical subarid of plains and hills | 0.12 | 0.15 | 0.50 | 0.35 | 0.30 | 0.20 | 0.20 | 0.12 | 0.25 | 0.30 | 0.30 | 0.18 | 0.22 | 0.10 | 0.14 |
0.34 | |||||||||||||||
Temperate warm and temperate subarid of plains and hills | 0.50 | 0.47 | 0.47 | 0.40 | 0.50 | 0.47 | 0.53 | 0.51 | 0.47 | 0.41 | 0.46 | 0.43 | 0.46 | 0.06 | 0.40 |
0.52 | |||||||||||||||
Low and middle montane Colchis forest humid | 0.55 | 0.61 | 0.74 | 0.35 | 0.91 | 0.87 | 0.83 | 0.87 | 0.65 | 0.28 | 0.58 | 0.36 | 0.69 | 0.20 | 0.36 |
0.76 | |||||||||||||||
Mountain temperate arid | 0.91 | 1.30 | 0.92 | 0.50 | 0.52 | 0.52 | 0.33 | 0.23 | 0.20 | 0.40 | 0.40 | 0.80 | 0.55 | 0.31 | 0.18 |
0.79 | |||||||||||||||
Middle montane dark coniferous forest | 0.67 | 1.0 | 0.95 | 0.82 | 0.62 | 0.52 | 0.40 | 0.25 | 0.25 | 0.40 | 0.40 | 0.50 | 0.66 | 0.21 | 0.37 |
0.78 | |||||||||||||||
High montane meadows. glacial nival landscapes | 0.30 | 0.37 | 0.42 | 0.50 | 0.58 | 0.61 | 0.46 | 0.58 | 0.53 | 0.50 | 0.37 | 0.27 | 0.49 | 0.10 | 0.35 |
0.53 |
Landscape Type, Subtype | Main Maximum, Month, Quantity, mm | Main Minimum, Month, Quantity mm | Secondary Maximum, Month, Quantity, mm | Secondary Minimum, Month, Quantity, mm |
---|---|---|---|---|
Plains and hills subtropical humid | September–February, 140–300 | May–August, 60–150 | - | - |
Plains and hills sub Mediterranean subhumid | May, 90–150 | December–January, 20–40 | - | - |
Plains and hills subtropical subarid | May, 90–100 | January, 25–30 | October, 50–55 | - |
Plains temperate subhumid | May, 150 | January, 40 | September, 120 | - |
Plains and hills subtropical arid | November, 35–40 | August, 5–10 | December, 30–35 | September, 5–10 |
Plains temperate arid | June, 40–45 | February, 20–30 | December, 40–45 | September, 20–30 |
Mountain temperate warm humid | May–June, 90–140 | December–January, 20–40 | - | - |
Mountain temperate cold | May–June, October, 80–120 | December–February, 20–70 | - | - |
High mountain meadows | May, 170–220 | January, 100 | - | July, 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elizbarashvili, M.; Beglarashvili, N.; Pipia, M.; Elizbarashvili, E.; Chikhradze, N. Seasonal Temperature and Precipitation Patterns in Caucasus Landscapes. Atmosphere 2025, 16, 889. https://doi.org/10.3390/atmos16070889
Elizbarashvili M, Beglarashvili N, Pipia M, Elizbarashvili E, Chikhradze N. Seasonal Temperature and Precipitation Patterns in Caucasus Landscapes. Atmosphere. 2025; 16(7):889. https://doi.org/10.3390/atmos16070889
Chicago/Turabian StyleElizbarashvili, Mariam, Nazibrola Beglarashvili, Mikheil Pipia, Elizbar Elizbarashvili, and Nino Chikhradze. 2025. "Seasonal Temperature and Precipitation Patterns in Caucasus Landscapes" Atmosphere 16, no. 7: 889. https://doi.org/10.3390/atmos16070889
APA StyleElizbarashvili, M., Beglarashvili, N., Pipia, M., Elizbarashvili, E., & Chikhradze, N. (2025). Seasonal Temperature and Precipitation Patterns in Caucasus Landscapes. Atmosphere, 16(7), 889. https://doi.org/10.3390/atmos16070889