Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,224)

Search Parameters:
Keywords = mobility test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5388 KiB  
Article
Numerical and Experimental Evaluation of Axial Load Transfer in Deep Foundations Within Stratified Cohesive Soils
by Şahin Çaglar Tuna
Buildings 2025, 15(15), 2723; https://doi.org/10.3390/buildings15152723 (registering DOI) - 1 Aug 2025
Abstract
This study presents a numerical and experimental evaluation of axial load transfer mechanisms in deep foundations constructed in stratified cohesive soils in İzmir, Türkiye. A full-scale bi-directional static load test equipped with strain gauges was conducted on a barrette pile to investigate depth-dependent [...] Read more.
This study presents a numerical and experimental evaluation of axial load transfer mechanisms in deep foundations constructed in stratified cohesive soils in İzmir, Türkiye. A full-scale bi-directional static load test equipped with strain gauges was conducted on a barrette pile to investigate depth-dependent mobilization of shaft resistance. A finite element model was developed and calibrated using field-observed load–settlement and strain data to replicate the pile–soil interaction and deformation behavior. The analysis revealed a shaft-dominated load transfer behavior, with progressive mobilization concentrated in intermediate-depth cohesive layers. Sensitivity analysis identified the undrained stiffness (Eu) as the most influential parameter governing pile settlement. A strong polynomial correlation was established between calibrated Eu values and SPT N60, offering a practical tool for preliminary design. Additionally, strain energy distribution was evaluated as a supplementary metric, enhancing the interpretation of mobilization zones beyond conventional stress-based methods. The integrated approach provides valuable insights for performance-based foundation design in layered cohesive ground, supporting the development of site-calibrated numerical models informed by full-scale testing data. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 5336 KiB  
Article
The Effects of the Choice of Liquefaction Criteria on Liquefaction in Soils with Plastic Fines
by Carmine Polito
J 2025, 8(3), 27; https://doi.org/10.3390/j8030027 (registering DOI) - 1 Aug 2025
Abstract
Cyclic triaxial tests are widely used in laboratory studies to assess the liquefaction susceptibility of soils. Although standardized procedures exist for conducting these tests, there is no universally accepted criterion for defining liquefaction. The choice of a liquefaction criterion significantly influences the interpretation [...] Read more.
Cyclic triaxial tests are widely used in laboratory studies to assess the liquefaction susceptibility of soils. Although standardized procedures exist for conducting these tests, there is no universally accepted criterion for defining liquefaction. The choice of a liquefaction criterion significantly influences the interpretation of test results and subsequent engineering analyses. This study evaluates the impact of different liquefaction criteria by analyzing 42 cyclic triaxial tests performed on soil mixtures containing plastic fines. Both stress-based and strain-based liquefaction criteria were applied to assess their influence on test outcomes. The analyses focused on two key parameters: the number of loading cycles required to initiate liquefaction and the normalized dissipated energy per unit volume needed for liquefaction to occur. Results indicate that for soils susceptible to liquefaction failures, these parameters remain relatively consistent across different failure criteria. However, for soils prone to cyclic mobility failures, the number of loading cycles and the dissipated energy required for liquefaction vary significantly depending on the selected failure criterion. These findings highlight the importance of carefully selecting a liquefaction criterion, as it directly affects the assessment of soil behavior under cyclic loading. A better understanding of these variations can improve the accuracy of liquefaction susceptibility evaluations and inform geotechnical design and hazard mitigation strategies. Full article
(This article belongs to the Section Engineering)
14 pages, 529 KiB  
Article
Nomophobia Levels in Turkish High School Students: Variations by Gender, Physical Activity, Grade Level and Smartphone Use
by Piyami Çakto, İlyas Görgüt, Amayra Tannoubi, Michael Agyei, Medina Srem-Sai, John Elvis Hagan, Oğuzhan Yüksel and Orhan Demir
Youth 2025, 5(3), 78; https://doi.org/10.3390/youth5030078 (registering DOI) - 1 Aug 2025
Abstract
The rapidly changing dynamics of the digital age reshape the addiction relationship that high school students establish with technology. While smartphones remove boundaries in terms of communication and access to information, their usage triggers a source of anxiety and nomophobia. The increase in [...] Read more.
The rapidly changing dynamics of the digital age reshape the addiction relationship that high school students establish with technology. While smartphones remove boundaries in terms of communication and access to information, their usage triggers a source of anxiety and nomophobia. The increase in students’ anxiety levels because of their over-reliance on mobile phone use leads to significant behavioral changes in their mental health, academic performance, social interactions and financial dependency. This study examined the nomophobia levels of high school students according to selected socio-demographic indicators. Using the relational screening model, the multistage sampling technique was used to select a sample of 884 participants: 388 from Science High School and 496 from Anatolian High School (459 female, 425 male, Mage = 16.45 ± 1.14 year). Independent sample test and One-way ANOVA were applied. Depending on the homogeneity assumption of the data, Welch values were considered, and Tukey tests were applied as a second-level test from post hoc analyses. Comprehensive analyses of nomophobia levels revealed that young individuals’ attitudes towards digital technology differ significantly according to their demographic and behavioral characteristics. Variables such as gender, physical activity participation, grade level and duration of smartphone use are among the main factors affecting nomophobia levels. Female individuals and students who do not participate in physical activity exhibit higher nomophobia scores. Full article
Show Figures

Figure A1

13 pages, 1482 KiB  
Article
Effect of Surrounding Detritus on Phragmites australis Litter Decomposition: Evidence from Laboratory Aquatic Microcosms
by Franca Sangiorgio, Daniela Santagata, Fabio Vignes, Maurizio Pinna and Alberto Basset
Limnol. Rev. 2025, 25(3), 34; https://doi.org/10.3390/limnolrev25030034 (registering DOI) - 1 Aug 2025
Abstract
The availability of detritus is a key factor influencing aquatic biota and can significantly affect decomposition processes. In this study, we investigated how varying quantities of surrounding detritus impact leaf litter decay rates. It was tested in flowing and still-water microcosms to highlight [...] Read more.
The availability of detritus is a key factor influencing aquatic biota and can significantly affect decomposition processes. In this study, we investigated how varying quantities of surrounding detritus impact leaf litter decay rates. It was tested in flowing and still-water microcosms to highlight context-dependent effects of surrounding detritus on leaf litter decomposition. To isolate the effect of detritus amount, experiments were conducted in laboratory microcosms simulating lotic and lentic ecosystems, each containing leaf fragments for decomposition assessments. Four detritus quantities were tested, with invertebrates either allowed or restricted from moving among detritus patches. Leaf decomposition rates were influenced by the amount of surrounding detritus, with slower decay observed at higher detritus conditions, regardless of invertebrate mobility. Detritivore distribution responded to both detritus quantity and oxygen availability, showing a preference for high detritus conditions. Additionally, detritus quantity affected microbial activity with a quadratic response, as indicated by leaf respiration rates. Overall, our findings indicate that the amount of surrounding detritus modulates leaf litter decomposition independently of invertebrate density, by influencing oxygen dynamics and, consequently, the activity of biological decomposers. Full article
Show Figures

Graphical abstract

24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 (registering DOI) - 1 Aug 2025
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

28 pages, 1804 KiB  
Article
The Penetration of Digital Currency for Sustainable and Inclusive Urban Development: Evidence from China’s e-CNY Pilot Using SDID-SCM
by Ying Chen and Ke Zhang
Sustainability 2025, 17(15), 6981; https://doi.org/10.3390/su17156981 (registering DOI) - 31 Jul 2025
Abstract
Against the backdrop of China’s fast-growing digital economy and its financial inclusion agenda, there is still little city-level evidence on whether the e-CNY pilot accelerates financial deepening at the grassroots. Using a balanced panel of 271 prefecture-and-above cities for 2016–2022, this study employs [...] Read more.
Against the backdrop of China’s fast-growing digital economy and its financial inclusion agenda, there is still little city-level evidence on whether the e-CNY pilot accelerates financial deepening at the grassroots. Using a balanced panel of 271 prefecture-and-above cities for 2016–2022, this study employs a staggered difference-in-differences (SDID) design augmented by the synthetic control method (SCM) to rigorously identify the policy effect of the e-CNY pilot. The results show that the pilot program significantly improves urban financial inclusion, contributing to more equitable access to financial services and supporting inclusive socio-economic development. Mechanism analysis suggests that the effect operates mainly through two channels, a merchant-coverage channel and a transaction-scale channel, with the former contributing the majority of the overall effect. Incorporating a migration-based mobility index shows that most studies’ focus on the merchant-coverage effect is amplified in cities under tight mobility restrictions but wanes where commercial networks are already saturated, whereas the transaction-scale channel is largely insensitive to mobility shocks. Heterogeneity tests further indicate stronger gains in non-provincial capital cities and in the eastern and central regions. Overall, the study uncovers a “penetration-inclusion” network logic and provides policy insights for advancing sustainable financial inclusion through optimized terminal deployment, merchant incentives, and diversified scenario design. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

20 pages, 10604 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

24 pages, 4319 KiB  
Article
Four-Week Exoskeleton Gait Training on Balance and Mobility in Minimally Impaired Individuals with Multiple Sclerosis: A Pilot Study
by Micaela Schmid, Stefania Sozzi, Bruna Maria Vittoria Guerra, Caterina Cavallo, Matteo Vandoni, Alessandro Marco De Nunzio and Stefano Ramat
Bioengineering 2025, 12(8), 826; https://doi.org/10.3390/bioengineering12080826 (registering DOI) - 30 Jul 2025
Abstract
Multiple Sclerosis (MS) is a chronic neurological disorder affecting the central nervous system that significantly impairs postural control and functional abilities. Robotic-assisted gait training mitigates this functional deterioration. This preliminary study aims to investigate the effects of a four-week gait training with the [...] Read more.
Multiple Sclerosis (MS) is a chronic neurological disorder affecting the central nervous system that significantly impairs postural control and functional abilities. Robotic-assisted gait training mitigates this functional deterioration. This preliminary study aims to investigate the effects of a four-week gait training with the ExoAtlet II exoskeleton on static balance control and functional mobility in five individuals with MS (Expanded Disability Status Scale ≤ 2.5). Before and after the training, they were assessed in quiet standing under Eyes Open (EO) and Eyes Closed (EC) conditions and with the Timed Up and Go (TUG) test. Center of Pressure (CoP) Sway Area, Antero–Posterior (AP) and Medio–Lateral (ML) CoP displacement, Stay Time, and Total Instability Duration were computed. TUG test Total Duration, sit-to-stand, stand-to-sit, and linear walking phase duration were analyzed. To establish target reference values for rehabilitation advancement, the same evaluations were performed on a matched healthy cohort. After the training, an improvement in static balance with EO was observed towards HS values (reduced Sway Area, AP and ML CoP displacement, and Total Instability Duration and increased Stay Time). Enhancements under EC condition were less marked. TUG test performance improved, particularly in the stand-to-sit phase. These preliminary findings suggest functional benefits of exoskeleton gait training for individuals with MS. Full article
(This article belongs to the Special Issue Advances in Physical Therapy and Rehabilitation)
Show Figures

Figure 1

34 pages, 3535 KiB  
Article
Hybrid Optimization and Explainable Deep Learning for Breast Cancer Detection
by Maral A. Mustafa, Osman Ayhan Erdem and Esra Söğüt
Appl. Sci. 2025, 15(15), 8448; https://doi.org/10.3390/app15158448 - 30 Jul 2025
Viewed by 65
Abstract
Breast cancer continues to be one of the leading causes of women’s deaths around the world, and this has emphasized the necessity to have novel and interpretable diagnostic models. This work offers a clear learning deep learning model that integrates the mobility of [...] Read more.
Breast cancer continues to be one of the leading causes of women’s deaths around the world, and this has emphasized the necessity to have novel and interpretable diagnostic models. This work offers a clear learning deep learning model that integrates the mobility of MobileNet and two bio-driven optimization operators, the Firefly Algorithm (FLA) and Dingo Optimization Algorithm (DOA), in an effort to boost classification appreciation and the convergence of the model. The suggested model demonstrated excellent findings as the DOA-optimized MobileNet acquired the highest performance of 98.96 percent accuracy on the fusion test, and the FLA-optimized MobileNet scaled up to 98.06 percent and 95.44 percent accuracies on mammographic and ultrasound tests, respectively. Further to good quantitative results, Grad-CAM visualizations indeed showed clinically consistent localization of the lesions, which strengthened the interpretability and model diagnostic reliability of Grad-CAM. These results show that lightweight, compact CNNs can be used to do high-performance, multimodal breast cancer diagnosis. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

35 pages, 4940 KiB  
Article
A Novel Lightweight Facial Expression Recognition Network Based on Deep Shallow Network Fusion and Attention Mechanism
by Qiaohe Yang, Yueshun He, Hongmao Chen, Youyong Wu and Zhihua Rao
Algorithms 2025, 18(8), 473; https://doi.org/10.3390/a18080473 - 30 Jul 2025
Viewed by 137
Abstract
Facial expression recognition (FER) is a critical research direction in artificial intelligence, which is widely used in intelligent interaction, medical diagnosis, security monitoring, and other domains. These applications highlight its considerable practical value and social significance. Face expression recognition models often need to [...] Read more.
Facial expression recognition (FER) is a critical research direction in artificial intelligence, which is widely used in intelligent interaction, medical diagnosis, security monitoring, and other domains. These applications highlight its considerable practical value and social significance. Face expression recognition models often need to run efficiently on mobile devices or edge devices, so the research on lightweight face expression recognition is particularly important. However, feature extraction and classification methods of lightweight convolutional neural network expression recognition algorithms mostly used at present are not specifically and fully optimized for the characteristics of facial expression images, yet fail to make full use of the feature information in face expression images. To address the lack of facial expression recognition models that are both lightweight and effectively optimized for expression-specific feature extraction, this study proposes a novel network design tailored to the characteristics of facial expressions. In this paper, we refer to the backbone architecture of MobileNet V2 network, and redesign LightExNet, a lightweight convolutional neural network based on the fusion of deep and shallow layers, attention mechanism, and joint loss function, according to the characteristics of the facial expression features. In the network architecture of LightExNet, firstly, deep and shallow features are fused in order to fully extract the shallow features in the original image, reduce the loss of information, alleviate the problem of gradient disappearance when the number of convolutional layers increases, and achieve the effect of multi-scale feature fusion. The MobileNet V2 architecture has also been streamlined to seamlessly integrate deep and shallow networks. Secondly, by combining the own characteristics of face expression features, a new channel and spatial attention mechanism is proposed to obtain the feature information of different expression regions as much as possible for encoding. Thus improve the accuracy of expression recognition effectively. Finally, the improved center loss function is superimposed to further improve the accuracy of face expression classification results, and corresponding measures are taken to significantly reduce the computational volume of the joint loss function. In this paper, LightExNet is tested on the three mainstream face expression datasets: Fer2013, CK+ and RAF-DB, respectively, and the experimental results show that LightExNet has 3.27 M Parameters and 298.27 M Flops, and the accuracy on the three datasets is 69.17%, 97.37%, and 85.97%, respectively. The comprehensive performance of LightExNet is better than the current mainstream lightweight expression recognition algorithms such as MobileNet V2, IE-DBN, Self-Cure Net, Improved MobileViT, MFN, Ada-CM, Parallel CNN(Convolutional Neural Network), etc. Experimental results confirm that LightExNet effectively improves recognition accuracy and computational efficiency while reducing energy consumption and enhancing deployment flexibility. These advantages underscore its strong potential for real-world applications in lightweight facial expression recognition. Full article
Show Figures

Figure 1

28 pages, 4007 KiB  
Article
Voting-Based Classification Approach for Date Palm Health Detection Using UAV Camera Images: Vision and Learning
by Abdallah Guettaf Temam, Mohamed Nadour, Lakhmissi Cherroun, Ahmed Hafaifa, Giovanni Angiulli and Fabio La Foresta
Drones 2025, 9(8), 534; https://doi.org/10.3390/drones9080534 - 29 Jul 2025
Viewed by 172
Abstract
In this study, we introduce the application of deep learning (DL) models, specifically convolutional neural networks (CNNs), for detecting the health status of date palm leaves using images captured by an unmanned aerial vehicle (UAV). The images are modeled using the Newton–Euler method [...] Read more.
In this study, we introduce the application of deep learning (DL) models, specifically convolutional neural networks (CNNs), for detecting the health status of date palm leaves using images captured by an unmanned aerial vehicle (UAV). The images are modeled using the Newton–Euler method to ensure stability and accurate image acquisition. These deep learning models are implemented by a voting-based classification (VBC) system that combines multiple CNN architectures, including MobileNet, a handcrafted CNN, VGG16, and VGG19, to enhance classification accuracy and robustness. The classifiers independently generate predictions, and a voting mechanism determines the final classification. This hybridization of image-based visual servoing (IBVS) and classifiers makes immediate adaptations to changing conditions, providing straightforward and smooth flying as well as vision classification. The dataset used in this study was collected using a dual-camera UAV, which captures high-resolution images to detect pests in date palm leaves. After applying the proposed classification strategy, the implemented voting method achieved an impressive accuracy of 99.16% on the test set for detecting health conditions in date palm leaves, surpassing individual classifiers. The obtained results are discussed and compared to show the effectiveness of this classification technique. Full article
Show Figures

Figure 1

17 pages, 5158 KiB  
Article
Enhancing Oil Recovery Through Vibration-Stimulated Waterflooding: Experimental Insights and Mechanisms
by Shixuan Lu, Zhengyuan Zhang, Liming Dai and Na Jia
Fuels 2025, 6(3), 56; https://doi.org/10.3390/fuels6030056 - 29 Jul 2025
Viewed by 151
Abstract
Vibration-stimulated waterflooding (VS-WF) is a promising enhanced oil recovery (EOR) method, especially for reservoirs with high-viscosity or emulsified oil. This study explores the effect of low-frequency vibration (2 Hz and 5 Hz) on oil mobilization under constant pressure and flow rate, using both [...] Read more.
Vibration-stimulated waterflooding (VS-WF) is a promising enhanced oil recovery (EOR) method, especially for reservoirs with high-viscosity or emulsified oil. This study explores the effect of low-frequency vibration (2 Hz and 5 Hz) on oil mobilization under constant pressure and flow rate, using both crude and emulsified oil samples. Vibration significantly improves recovery by inducing stick-slip flow, lowering the threshold pressure, and enhancing oil phase permeability while suppressing the water phase flow. Crude oil recovery increased by up to 24% under optimal vibration conditions, while emulsified oil showed smaller gains due to higher viscosity. Intermittent vibration achieved similar recovery rates to continuous vibration, but with reduced energy use. Statistical analysis revealed a strong correlation between pressure fluctuations and oil production in vibration-assisted tests, but no such relationship in non-vibration cases. These results provide insight into the mechanisms behind vibration-enhanced recovery, supported by analysis of pressure and flow rate responses during waterflooding. Full article
Show Figures

Figure 1

19 pages, 11455 KiB  
Article
Characterizing Tracer Flux Ratio Methods for Methane Emission Quantification Using Small Unmanned Aerial System
by Ezekiel Alaba, Bryan Rainwater, Ethan Emerson, Ezra Levin, Michael Moy, Ryan Brouwer and Daniel Zimmerle
Methane 2025, 4(3), 18; https://doi.org/10.3390/methane4030018 - 29 Jul 2025
Viewed by 92
Abstract
Accurate methane emission estimates are essential for climate policy, yet current field methods often struggle with spatial constraints and source complexity. Ground-based mobile approaches frequently miss key plume features, introducing bias and uncertainty in emission rate estimates. This study addresses these limitations by [...] Read more.
Accurate methane emission estimates are essential for climate policy, yet current field methods often struggle with spatial constraints and source complexity. Ground-based mobile approaches frequently miss key plume features, introducing bias and uncertainty in emission rate estimates. This study addresses these limitations by using small unmanned aerial systems equipped with precision gas sensors to measure methane alongside co-released tracers. We tested whether arc-shaped flight paths and alternative ratio estimation methods could improve the accuracy of tracer-based emission quantification under real-world constraints. Controlled releases using ethane and nitrous oxide tracers showed that (1) arc flights provided stronger plume capture and higher correlation between methane and tracer concentrations than traditional flight paths; (2) the cumulative sum method yielded the lowest relative error (as low as 3.3%) under ideal mixing conditions; and (3) the arc flight pattern yielded the lowest relative error and uncertainty across all experimental configurations, demonstrating its robustness for quantifying methane emissions from downwind plume measurements. These findings demonstrate a practical and scalable approach to reducing uncertainty in methane quantification. The method is well-suited for challenging environments and lays the groundwork for future applications at the facility scale. Full article
Show Figures

Figure 1

13 pages, 1606 KiB  
Article
The Correlation of Microscopic Particle Components and Prediction of the Compressive Strength of Fly-Ash-Based Bubble Lightweight Soil
by Yaqiang Shi, Hao Li, Hongzhao Li, Zhiming Yuan, Wenjun Zhang, Like Niu and Xu Zhang
Buildings 2025, 15(15), 2674; https://doi.org/10.3390/buildings15152674 - 29 Jul 2025
Viewed by 140
Abstract
Fly-ash-based bubble lightweight soil is widely used due to its environmental friendliness, load reduction, ease of construction, and low costs. In this study, 41 sets of 28 d compressive strength data on lightweight soils with different water–cement ratios, blowing agent dosages, and fly [...] Read more.
Fly-ash-based bubble lightweight soil is widely used due to its environmental friendliness, load reduction, ease of construction, and low costs. In this study, 41 sets of 28 d compressive strength data on lightweight soils with different water–cement ratios, blowing agent dosages, and fly ash dosages were collected through a literature search and indoor tests. Using the compressive strength index and SEM tests, the correlation between the mix ratio design and the microscopic particle components was investigated. The findings were as follows: carbonation reactions occurred in lightweight soil during the maintenance process, and the particles were spherical; increasing the dosage of blowing agent increased the soil’s porosity and pore diameter, leading to the formation of through-holes and reducing the compressive strength and mobility; increasing the fly ash dosage and water–cement ratio increased the soil’s mobility but reduced its compressive strength; and the strength decreased significantly when the fly ash dosage was more than 16% (e.g., the strength at a 20% dosage was 17.8% lower than that at a 15% dosage). Feature importance analysis showed that the water–cement ratio (57.7%), fly ash dosage (30.9%), and blowing agent dosage (11.1%) had a significant effect on strength. ExtraTrees, LightGBM, and Bayesian-optimized Random Forest models were used for 28d strength prediction with coefficients of determination (R2) of 0.695, 0.731, and 0.794, respectively. The Bayesian-optimized Random Forest model performed optimally in terms of the mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE), and the prediction performance was best. The accuracy of the model is expected to be further improved with expansions in the database. A 28 d compressive strength prediction platform for fly-ash-based bubble lightweight soil was ultimately developed, providing a convenient tool for researchers and engineers to predict material properties and mix ratios. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 3170 KiB  
Article
Sensorless SPMSM Control for Heavy Handling Machines Electrification: An Innovative Proposal
by Marco Bassani, Andrea Toscani and Carlo Concari
Energies 2025, 18(15), 4021; https://doi.org/10.3390/en18154021 - 28 Jul 2025
Viewed by 211
Abstract
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting [...] Read more.
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting fan drives in heavy machinery, like bulldozers and tractors, utilizing existing 48 VDC batteries. By replacing or complementing internal combustion and hydraulic technologies with electric solutions, significant advantages in efficiency, reduced environmental impact, and versatility can be achieved. Focusing on the fan drive system addresses the critical challenge of thermal management in high ambient temperatures and harsh environments, particularly given the high current requirements for 3kW-class applications. A sensorless architecture has been selected to enhance reliability by eliminating mechanical position sensors. The developed fan drive has been extensively tested both on a braking bench and in real-world applications, demonstrating its effectiveness and robustness. Future work will extend this prototype to electrify additional onboard hydraulic motors in these machines, further advancing the electrification of heavy-duty equipment and improving overall efficiency and environmental impact. Full article
(This article belongs to the Special Issue Electronics for Energy Conversion and Renewables)
Show Figures

Figure 1

Back to TopTop