Four-Week Exoskeleton Gait Training on Balance and Mobility in Minimally Impaired Individuals with Multiple Sclerosis: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Robotic Exoskeleton and Gait Training Session
2.3. Static Balance Test: Experimental Set-Up and Data Analysis
2.4. Dynamic Test: Experimental Set-Up and Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Static Balance Test
3.2. TUG Test
4. Discussion
4.1. General Comments About Balance Behavior of Individuals with MS Under Static and Dynamic Conditions: Comparison Between HSs and Pre-Training Results
4.2. Efficacy of Exoskeleton Gait Training in Restoring Healthy Balance Behavior in Static and Dynamic Conditions: Comparison Between HSs and Post-Training Results
5. Limits and Tips for Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MS | Multiple Sclerosis |
EO | Eyes Open |
EC | Eyes Closed |
TUG | Timed Up and Go |
CNS | central nervous system |
EDSS | Expanded Disability Status Scale |
CoP | Center of Pressure |
HSs | healthy subjects |
AP | Antero–Posterior |
ML | Medio–Lateral |
SD | Standard Deviation |
SDC | Sway Density Curve |
References
- Grzegorski, T.; Losy, J. Cognitive impairment in multiple sclerosis—A review of current knowledge and recent research. Rev. Neurosci. 2017, 28, 845–860. [Google Scholar] [CrossRef]
- DeSousa, E.A.; Albert, R.H.; Kalman, B. Cognitive impairments in multiple sclerosis: A review. Am. J. Alzheimers Dis. Dement. ® 2002, 17, 23–29. [Google Scholar] [CrossRef]
- Sanchez-Dalmau, B.; Martinez-Lapiscina, E.H.; Pulido-Valdeolivas, I.; Zubizarreta, I.; Llufriu, S.; Blanco, Y.; Sola-Valls, N.; Sepulveda, M.; Guerrero, A.; Alba, S.; et al. Predictors of vision impairment in multiple sclerosis. PLoS ONE 2018, 13, e0195856. [Google Scholar] [CrossRef]
- Jasse, L.; Vukusic, S.; Durand-Dubief, F.; Vartin, C.; Piras, C.; Bernard, M.; Pélisson, D.; Confavreux, C.; Vighetto, A.; Tilikete, C. Persistent visual impairment in multiple sclerosis: Prevalence, mechanisms and resulting disability. Mult. Scler. J. 2013, 19, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- Ramari, C.; Hvid, L.G.; de David, A.C.; Dalgas, U. The importance of lower-extremity muscle strength for lower-limb functional capacity in multiple sclerosis: Systematic review. Ann. Phys. Rehabil. Med. 2020, 63, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, M.-L.K.; Dalgas, U.; Wens, I.; Hvid, L.G. Muscle strength and power in persons with multiple sclerosis–a systematic review and meta-analysis. J. Neurol. Sci. 2017, 376, 225–241. [Google Scholar] [CrossRef]
- Rizzo, M.A.; Hadjimichael, O.C.; Preiningerova, J.; Vollmer, T.L. Prevalence and treatment of spasticity reported by multiple sclerosis patients. Mult. Scler. J. 2004, 10, 589–595. [Google Scholar] [CrossRef]
- Cattaneo, D.; De Nuzzo, C.; Fascia, T.; Macalli, M.; Pisoni, I.; Cardini, R. Risks of falls in subjects with multiple sclerosis. Arch. Phys. Med. Rehabil. 2002, 83, 864–867. [Google Scholar] [CrossRef]
- Huisinga, J.M.; Yentes, J.M.; Filipi, M.L.; Stergiou, N. Postural control strategy during standing is altered in patients with multiple sclerosis. Neurosci. Lett. 2012, 524, 124–128. [Google Scholar] [CrossRef]
- Fjeldstad, C.; Pardo, G.; Frederiksen, C.; Bemben, D.; Bemben, M. Assessment of postural balance in multiple sclerosis. Int. J. MS Care 2009, 11, 1–5. [Google Scholar] [CrossRef]
- Cameron, M.H.; Lord, S. Postural Control in Multiple Sclerosis: Implications for Fall Prevention. Curr. Neurol. Neurosci. Rep. 2010, 10, 407–412. [Google Scholar] [CrossRef]
- Cattaneo, D.; Jonsdottir, J. Sensory impairments in quiet standing in subjects with multiple sclerosis. Mult. Scler. J. 2009, 15, 59–67. [Google Scholar] [CrossRef]
- Jamali, A.; Sadeghi-Demneh, E.; Fereshtenajad, N.; Hillier, S. Somatosensory impairment and its association with balance limitation in people with multiple sclerosis. Gait Posture 2017, 57, 224–229. [Google Scholar] [CrossRef]
- Pearson, K.G. Generating the walking gait: Role of sensory feedback. Prog. Brain Res. 2004, 143, 123–129. [Google Scholar] [CrossRef]
- Schieppati, M.; Nardone, A. Group II spindle afferent fibers in humans: Their possible role in the reflex control of stance. Prog. Brain Res. 1999, 123, 461–472. [Google Scholar] [CrossRef]
- Fitzpatrick, R.; McCloskey, D.I. Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J. Physiol. 1994, 478, 173–186. [Google Scholar] [CrossRef]
- Peterka, R.J. Sensorimotor Integration in Human Postural Control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, N.; Simoneau, M. Attentional demands for postural control: The effects of aging and sensory reintegration. Gait Posture 2001, 14, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Eklund, G. General Features of Vibration-Induced Effects on Balance. Ups. J. Med. Sci. 1972, 77, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Kavounoudias, A.; Roll, R.; Roll, J.P. Specific whole-body shifts induced by frequency-modulated vibrations of human plantar soles. Neurosci. Lett. 1999, 266, 181–184. [Google Scholar] [CrossRef]
- Lund, S. Postural effects of neck muscle vibration in man. Experientia 1980, 36, 1398. [Google Scholar] [CrossRef] [PubMed]
- Roll, J.P.; Vedel, J.P.; Roll, R. Eye, head and skeletal muscle spindle feedback in the elaboration of body references. Prog. Brain Res. 1989, 80, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Courtine, G.; De Nunzio, A.M.; Schmid, M.; Beretta, M.V.; Schieppati, M. Stance- and Locomotion-Dependent Processing of Vibration-Induced Proprioceptive Inflow from Multiple Muscles in Humans. J. Neurophysiol. 2007, 97, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Hay, L.; Bard, C.; Fleury, M.; Teasdale, N. Availability of visual and proprioceptive afferent messages and postural control in elderly adults. Exp. Brain Res. 1996, 108, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Vuillerme, N.; Danion, F.; Forestier, N.; Nougier, V. Postural sway under muscle vibration and muscle fatigue in humans. Neurosci. Lett. 2002, 333, 131–135. [Google Scholar] [CrossRef]
- Johnston III, R.B.; Howard, M.E.; Cawley, P.W.; Losse, G.M. Effect of lower extremity muscular fatigue on motor control performance. Med. Sci. Sports Exerc. 1998, 30, 1703–1707. [Google Scholar] [CrossRef]
- Yaggie, J.A.; McGregor, S.J. Effects of isokinetic ankle fatigue on the maintenance of balance and postural limits. Arch. Phys. Med. Rehabil. 2002, 83, 224–228. [Google Scholar] [CrossRef]
- Schieppati, M.; Nardone, A.; Schmid, M. Neck muscle fatigue affects postural control in man. Neuroscience 2003, 121, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Nardone, A.; Tarantola, J.; Giordano, A.; Schieppati, M. Fatigue effects on body balance. Electroencephalogr. Clin. Neurophysiol. Electromyogr. Mot. Control 1997, 105, 309–320. [Google Scholar] [CrossRef]
- Bove, M.; Faelli, E.; Tacchino, A.; Lofrano, F.; Cogo, C.E.; Ruggeri, P. Postural control after a strenuous treadmill exercise. Neurosci. Lett. 2007, 418, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Fling, B.W.; Dutta, G.G.; Schlueter, H.; Cameron, M.H.; Horak, F.B. Associations between proprioceptive neural pathway structural connectivity and balance in people with multiple sclerosis. Front. Hum. Neurosci. 2014, 8, 814. [Google Scholar] [CrossRef]
- Yang, F.; Liu, X. Relative importance of vision and proprioception in maintaining standing balance in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 39, 101901. [Google Scholar] [CrossRef]
- Lizrova Preiningerova, J.; Novotna, K.; Rusz, J.; Sucha, L.; Ruzicka, E.; Havrdova, E. Spatial and temporal characteristics of gait as outcome measures in multiple sclerosis (EDSS 0 to 6.5). J. NeuroEng. Rehabil. 2015, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Donzé, C. Neurorehabilitation in multiple sclerosis: An overview. Rev. Neurol. 2007, 163, 711–719. [Google Scholar] [CrossRef]
- Learmonth, Y.C.; Ensari, I.; Motl, R.W. Physiotherapy and walking outcomes in adults with multiple sclerosis: Systematic review and meta-analysis. Phys. Ther. Rev. 2016, 21, 160–172. [Google Scholar] [CrossRef]
- Pearson, M.; Dieberg, G.; Smart, N. Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: A meta-analysis. Arch. Phys. Med. Rehabil. 2015, 96, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Kalron, A.; Rosenblum, U.; Frid, L.; Achiron, A. Pilates exercise training vs. physical therapy for improving walking and balance in people with multiple sclerosis: A randomized controlled trial. Clin. Rehabil. 2017, 31, 319–328. [Google Scholar] [CrossRef]
- Davies, B.L.; Arpin, D.J.; Liu, M.; Reelfs, H.; Volkman, K.G.; Healey, K.; Zabad, R.; Kurz, M.J. Two different types of high-frequency physical therapy promote improvements in the balance and mobility of persons with multiple sclerosis. Arch. Phys. Med. Rehabil. 2016, 97, 2095–2101. [Google Scholar] [CrossRef]
- Mejia, M.; Androwis, G.; Chervin, K.; Cording, C.; Kesten, A.; Perret, M.; Nolan, K. Changes in temporal-spatial parameters after six sessions of robotic exoskeleton gait training in acute stroke. Arch. Phys. Med. Rehabil. 2017, 98, e41. [Google Scholar] [CrossRef]
- Rodriguez Tapia, G.; Doumas, I.; Lejeune, T.; Previnaire, J.-G. Wearable powered exoskeletons for gait training in tetraplegia: A systematic review on feasibility, safety and potential health benefits. Acta Neurol. Belg. 2022, 122, 1149–1162. [Google Scholar] [CrossRef]
- Hsu, T.H.; Tsai, C.L.; Chi, J.Y.; Hsu, C.Y.; Lin, Y.N. Effect of wearable exoskeleton on post-stroke gait: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2022, 66, 101674. [Google Scholar] [CrossRef]
- Yang, F.A.; Lin, C.L.; Huang, W.C.; Wang, H.Y.; Peng, C.W.; Chen, H.C. Effect of Robot-Assisted Gait Training on Multiple Sclerosis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Neurorehabil. Neural Repair. 2023, 37, 228–239. [Google Scholar] [CrossRef]
- Androwis, G.J.; Tapia, G.R.; Doumas, I.; Lejeune, T.; Previnaire, J.-G. Mobility and cognitive improvements resulted from overground robotic exoskeleton gait-training in persons with MS. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: New York, NY, USA, 2019; pp. 4454–4457. [Google Scholar] [CrossRef]
- Straudi, S.; Benedetti, M.G.; Venturini, E.; Manca, M.; Foti, C.; Basaglia, N. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. NeuroRehabilitation 2013, 33, 555–563. [Google Scholar] [CrossRef]
- Cavallo, C.; Gatti, A.; Pellino, V.C.; Pirazzi, A.; Ramat, S.; De Nunzio, A.; Schmid, M.; Vandoni, M. The Effects of One Month of Lower Limb Powered Exoskeleton Gait Training Compared to the Conventional Gait Training on Treadmills in People with Multiple Sclerosis: A Pilot Study. In Engineering Methodologies for Medicine and Sports; Montanari, R., Richetta, M., Febbi, M., Staderini, E.M., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; Volume 162, pp. 149–162. [Google Scholar] [CrossRef]
- Gandolfi, M.; Geroin, C.; Picelli, A.; Munari, D.; Waldner, A.; Tamburin, S.; Marchioretto, F.; Smania, N. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: A randomized controlled trial. Front. Hum. Neurosci. 2014, 8, 318. [Google Scholar] [CrossRef]
- Facciorusso, S.; Malfitano, C.; Giordano, M.; Del Furia, M.J.; Mosconi, B.; Arienti, C.; Cordani, C. Effectiveness of robotic rehabilitation for gait and balance in people with multiple sclerosis: A systematic review. J. Neurol. 2024, 271, 7141–7155. [Google Scholar] [CrossRef] [PubMed]
- Drużbicki, M.; Guzik, A.; Przysada, G.; Perenc, L.; Brzozowska-Magoń, A.; Cygoń, K.; Boczula, G.; Bartosik-Psujek, H. Effects of robotic exoskeleton-aided gait training in the strength, body balance, and walking speed in individuals with multiple sclerosis: A single-group preliminary study. Arch. Phys. Med. Rehabil. 2021, 102, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Baud, R.; Manzoori, A.R.; Ijspeert, A.; Bouri, M. Review of control strategies for lower-limb exoskeletons to assist gait. J. Neuro Eng. Rehabil. 2021, 18, 119. [Google Scholar] [CrossRef]
- Young, A.J.; Ferris, D.P. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 171–182. [Google Scholar] [CrossRef]
- Androwis, G.J.; Sandroff, B.M.; Niewrzol, P.; Fakhoury, F.; Wylie, G.R.; Yue, G.; DeLuca, J. A pilot randomized controlled trial of robotic exoskeleton-assisted exercise rehabilitation in multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 51, 102936. [Google Scholar] [CrossRef]
- Kaelin-Lang, A.; Sawaki, L.; Cohen, L.G. Role of Voluntary Drive in Encoding an Elementary Motor Memory. J. Neurophysiol. 2005, 93, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.D.; Wilson, E.T.; Gribble, P.L. Spatially selective enhancement of proprioceptive acuity following motor learning. J. Neurophysiol. 2011, 105, 2512–2521. [Google Scholar] [CrossRef]
- Beets, I.A.; Macé, M.; Meesen, R.L.; Cuypers, K.; Levin, O.; Swinnen, S.P. Active versus passive training of a complex bimanual task: Is prescriptive proprioceptive information sufficient for inducing motor learning? PLoS ONE 2012, 7, e37687. [Google Scholar] [CrossRef]
- Aman, J.E.; Elangovan, N.; Yeh, I.-L.; Konczak, J. The effectiveness of proprioceptive training for improving motor function: A systematic review. Front. Hum. Neurosci. 2015, 8, 1075. [Google Scholar] [CrossRef] [PubMed]
- Panjan, A.; Sarabon, N. Review of Methods for the Evaluation of Human Body Balanc. Sport. Sci. Rev. 2010, 19, 5–6. [Google Scholar] [CrossRef]
- Quijoux, F.; Nicolaï, A.; Chairi, I.; Bargiotas, I.; Ricard, D.; Yelnik, A.; Oudre, L.; Bertin-Hugault, F.; Vidal, P.P.; Vayatis, N.; et al. A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code. Physiol. Rep. 2021, 9, e15067. [Google Scholar] [CrossRef] [PubMed]
- Horlings, C.G.; Van Engelen, B.G.; Allum, J.H.; Bloem, B.R. A weak balance: The contribution of muscle weakness to postural instability and falls. Nat. Clin. Pract. Neurol. 2008, 4, 504–515. [Google Scholar] [CrossRef]
- Wang, H.; Ji, Z.; Jiang, G.; Liu, W.; Jiao, X. Correlation among proprioception, muscle strength, and balance. J. Phys. Ther. Sci. 2016, 28, 3468–3472. [Google Scholar] [CrossRef]
- Witchel, H.J.; Oberndorfer, C.; Needham, R.; Healy, A.; Westling, C.E.; Guppy, J.H.; Bush, J.; Barth, J.; Herberz, C.; Roggen, D.; et al. Thigh-derived inertial sensor metrics to assess the sit-to-stand and stand-to-sit transitions in the timed up and go (TUG) task for quantifying mobility impairment in multiple sclerosis. Front. Neurol. 2018, 9, 684. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chou, L.S. Effects of Muscle Strength and Balance Control on Sit-to-Walk and Turn Durations in the Timed Up and Go Test. Arch. Phys. Med. Rehabil. 2017, 98, 2471–2476. [Google Scholar] [CrossRef]
- Gevorkyan, A.A.; Kotov, S.V.; Lizhdvoy, V.Y. Robotic mechanotherapy: The possibility to use an exoskeleton for lower limb rehabilitation in patients with multiple sclerosis and impaired walking function. Alm. Clin. Med. 2020, 48, 7–12. [Google Scholar] [CrossRef]
- Kotov, S.V.; Petrushanskaya, K.A.; Lizhdvoj, V.J.; Pismennaya, E.V.; Sekirin, A.B.; Sutchenkov, I.A. Clinico-physiological foundation of application of exoskeleton “exoatlet” during walking of patients with disseminated sclerosis. Russ. J. Biomech. 2020, 24, 148–166. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, A.; Lobo-Prat, J.; Font-Llagunes, J.M. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J. Neuroeng. Rehabil. 2021, 18, 22. [Google Scholar] [CrossRef]
- Baione, V.; Belvisi, D.; Cortese, A.; Cetta, I.; Tartaglia, M.; Millefiorini, E.; Berardelli, A.; Conte, A. Cortical M1 plasticity and metaplasticity in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 38, 101494. [Google Scholar] [CrossRef]
- Balloff, C.; Penner, I.K.; Ma, M.; Georgiades, I.; Scala, L.; Troullinakis, N.; Graf, J.; Kremer, D.; Aktas, O.; Hartung, H.P.; et al. The degree of cortical plasticity correlates with cognitive performance in patients with Multiple Sclerosis. Brain Stimul. 2022, 15, 403–413. [Google Scholar] [CrossRef]
- Pais-Vieira, C.; Allahdad, M.; Neves-Amado, J.; Perrotta, A.; Morya, E.; Moioli, R.; Shapkova, E.; Pais-Vieira, M. Method for positioning and rehabilitation training with the ExoAtlet® powered exoskeleton. MethodsX 2020, 7, 100849. [Google Scholar] [CrossRef]
- Jacono, M.; Casadio, M.; Morasso, P.G.; Sanguineti, V. The sway-density curve and the underlying postural stabilization process. Mot. Control 2004, 8, 292–311. [Google Scholar] [CrossRef]
- Valet, M.; Lejeune, T.; Devis, M.; Van Pesch, V.; El Sankari, S.; Stoquart, G. Timed Up-and-Go and 2-Minute Walk Test in patients with multiple sclerosis with mild disability: Reliability, responsiveness and link with perceived fatigue. Eur. J. Phys. Rehabil. Med. 2018, 55, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.J.; De Luca, C.J. Upright, correlated random walks: A statistical-biomechanics approach to the human postural control system. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Šarabon, N.; Rošker, J.; Loefler, S.; Kern, H. The effect of vision elimination during quiet stance tasks with different feet positions. Gait Posture 2013, 38, 708–711. [Google Scholar] [CrossRef]
- Peterka, R.J. Sensory integration for human balance control. Handb. Clin. Neurol. 2018, 159, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Mahboobin, A.; Loughlin, P.J.; Redfern, M.S.; Sparto, P.J. Sensory re-weighting in human postural control during moving-scene perturbations. Exp. Brain Res. 2005, 167, 260–267. [Google Scholar] [CrossRef]
- Bronstein, A.M. Suppression of visually evoked postural responses. Exp. Brain Res. 1986, 63, 655–658. [Google Scholar] [CrossRef]
- Winter, D.A.; Prince, F.; Frank, J.S.; Powell, C.; Zabjek, K.F. Unified theory regarding A/P and M/L balance in quiet stance. J. Neurophysiol. 1996, 75, 2334–2343. [Google Scholar] [CrossRef]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Morasso, P.G.; Spada, G.; Capra, R. Computing the COM from the COP in postural sway movements. Hum. Mov. Sci. 1999, 18, 759–767. [Google Scholar] [CrossRef]
- Denommé, L.T.; Mandalfino, P.; Cinelli, M.E. Understanding balance differences in individuals with multiple sclerosis with mild disability: An investigation of differences in sensory feedback on postural control during a Romberg task. Exp. Brain Res. 2014, 232, 1833–1842. [Google Scholar] [CrossRef]
- Comber, L.; Sosnoff, J.; Galvin, R.; Coote, S. Postural control deficits in people with Multiple Sclerosis: A systematic review and meta-analysis. Gait Posture 2018, 61, 445–452. [Google Scholar] [CrossRef]
- Cameron, M.H.; Horak, F.B.; Herndon, R.R.; Bourdette, D. Imbalance in multiple sclerosis: A result of slowed spinal somatosensory conduction. Somatosens. Mot. Res. 2008, 25, 113–122. [Google Scholar] [CrossRef]
- Spain, R.I.; George, R.S.; Salarian, A.; Mancini, M.; Wagner, J.M.; Horak, F.B.; Bourdette, D. Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait Posture 2012, 35, 573–578. [Google Scholar] [CrossRef]
- Kanekar, N.; Lee, Y.-J.; Aruin, A.S. Frequency analysis approach to study balance control in individuals with multiple sclerosis. J. Neurosci. Methods 2014, 222, 91–96. [Google Scholar] [CrossRef]
- Shadmehr, R.; Smith, M.A.; Krakauer, J.W. Error Correction, Sensory Prediction, and Adaptation in Motor Control. Annu. Rev. Neurosci. 2010, 33, 89–108. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, P.; Krakauer, J.W. An implicit plan overrides an explicit strategy during visuomotor adaptation. J. Neurosci. 2006, 26, 3642–3645. [Google Scholar] [CrossRef]
- Adams, H.; Narasimham, G.; Rieser, J.; Creem-Regehr, S.; Stefanucci, J.; Bodenheimer, B. Locomotive Recalibration and Prism Adaptation of Children and Teens in Immersive Virtual Environments. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1408–1417. [Google Scholar] [CrossRef]
- Bronstein, A.M. Multisensory integration in balance control. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 137, pp. 57–66. [Google Scholar] [CrossRef]
- Sosnoff, J.J.; Sunghoon, S.; Motl, R.W. Multiple sclerosis and postural control: The role of spasticity. Arch. Phys. Med. Rehabil. 2010, 91, 93–99. [Google Scholar] [CrossRef]
- Hameau, S.; Zory, R.; Latrille, C.; Roche, N.; Bensmail, D. Relationship between neuromuscular and perceived fatigue and locomotor performance in patients with multiple sclerosis. Eur. J. Phys. Rehabil. Med. 2017, 53, 833–840. [Google Scholar] [CrossRef]
- Pau, M.; Casu, G.; Porta, M.; Pilloni, G.; Frau, J.; Coghe, G.; Cocco, E. Timed Up and Go in men and women with Multiple Sclerosis: Effect of muscular strength. J. Bodyw. Mov. Ther. 2020, 24, 124–130. [Google Scholar] [CrossRef]
- Allali, G.; Kuhle, J.; Breville, G.; Leppert, D.; Armand, S.; Lalive, P.H. Serum neurofilament light chains in MS: Association with the Timed Up and Go. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e895. [Google Scholar] [CrossRef] [PubMed]
- Ozkul, C.; Eldemir, K.; Eldemir, S.; Yildirim, M.S.; Saygili, F.; Guclu-Gunduz, A.; Irkec, C. Functional Performance, Leg Muscle Strength, and Core Muscle Endurance in Multiple Sclerosis Patients with Mild Disability: A Cross-Sectional Study. Mot. Control 2022, 26, 729–747. [Google Scholar] [CrossRef]
- Broekmans, T.; Gijbels, D.; Eijnde, B.O.; Alders, G.; Lamers, I.; Roelants, M.; Feys, P. The relationship between upper leg muscle strength and walking capacity in persons with multiple sclerosis. Mult. Scler. J. 2013, 19, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Comber, L.; Galvin, R.; Coote, S. Gait deficits in people with multiple sclerosis: A systematic review and meta-analysis. Gait Posture 2017, 51, 25–35. [Google Scholar] [CrossRef]
- Saggini, R.; Ancona, E.; Supplizi, M.; Barassi, C.S.; Carmignano, S.; Bellomo, R. Effect of two different rehabilitation training with a robotic gait system in body weight support and a proprioceptive sensory-motor exercises on unstable platforms in rehabilitation of gait and balance impairment and fatigue in multiple sclerosis. Int. J. Phys. Med. Rehabil. 2017, 5, 419. [Google Scholar] [CrossRef]
- Mansour, W.T.; Atya, A.M.; Aboumousa, A.M. Improving Gait and Balance in Multiple Sclerosis Using Partial Body Weight Supported Treadmill Training. Egypt. J. Neurol. Psychiatry Neurosurg. 2013, 50, 271–276. [Google Scholar]
- Benedetti, M.G.; Gasparroni, V.; Stecchi, S.; Zilioli, R.; Straudi, S.; Piperno, R. Treadmill exercise in early multiple sclerosis: A case series study. Eur. J. Phys. Rehabil. Med. 2009, 45, 53–59. [Google Scholar] [PubMed]
- Sandroff, B.M.; Motl, R.W.; Reed, W.R.; Barbey, A.K.; Benedict, R.H.B.; DeLuca, J. Integrative CNS Plasticity With Exercise in MS: The PRIMERS (PRocessing, Integration of Multisensory Exercise-Related Stimuli) Conceptual Framework. Neurorehabil. Neural Repair. 2018, 32, 847–862. [Google Scholar] [CrossRef] [PubMed]
- Tavazzi, E.; Bergsland, N.; Cattaneo, D.; Gervasoni, E.; Laganà, M.M.; Dipasquale, O.; Grosso, C.; Saibene, F.L.; Baglio, F.; Rovaris, M. Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: A structural and functional MRI study. J. Neurol. 2018, 265, 1393–1401. [Google Scholar] [CrossRef]
- Donzé, C.; Massot, C. Rehabilitation in multiple sclerosis in 2021. Presse Méd. 2021, 50, 104066. [Google Scholar] [CrossRef]
HS | MS Pre-Exo | MS Post-Exo | |
---|---|---|---|
Total Duration (s) | 6.8 ± 0.6 | 8.0 ± 0.8 | 7.7 ± 0.6 |
sit-to-stand (%Total Duration) | 16.8 ± 2.4 (1.12 ± 0.1 s) | 16.3 ± 1.8 (1.29 ± 0.05 s) | 16.8 ± 3.6 (1.3 ± 0.3 s) |
stand-to-sit (%Total Duration) | 16.5 ± 2.4 (1.13 ± 0.2 s) | 20.9 ± 2.3 (1.66 ± 0.1 s) | 17.9 ± 3 (1.4 ± 0.3 s) |
linear walking (%Total Duration) | 32.9 ± 3.6 (2.2 ± 0.3 s) | 33.9 ± 5.8 (2.54 ± 0.7 s) | 31.1 ± 2.9 (2.25 ± 0.2 s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmid, M.; Sozzi, S.; Guerra, B.M.V.; Cavallo, C.; Vandoni, M.; De Nunzio, A.M.; Ramat, S. Four-Week Exoskeleton Gait Training on Balance and Mobility in Minimally Impaired Individuals with Multiple Sclerosis: A Pilot Study. Bioengineering 2025, 12, 826. https://doi.org/10.3390/bioengineering12080826
Schmid M, Sozzi S, Guerra BMV, Cavallo C, Vandoni M, De Nunzio AM, Ramat S. Four-Week Exoskeleton Gait Training on Balance and Mobility in Minimally Impaired Individuals with Multiple Sclerosis: A Pilot Study. Bioengineering. 2025; 12(8):826. https://doi.org/10.3390/bioengineering12080826
Chicago/Turabian StyleSchmid, Micaela, Stefania Sozzi, Bruna Maria Vittoria Guerra, Caterina Cavallo, Matteo Vandoni, Alessandro Marco De Nunzio, and Stefano Ramat. 2025. "Four-Week Exoskeleton Gait Training on Balance and Mobility in Minimally Impaired Individuals with Multiple Sclerosis: A Pilot Study" Bioengineering 12, no. 8: 826. https://doi.org/10.3390/bioengineering12080826
APA StyleSchmid, M., Sozzi, S., Guerra, B. M. V., Cavallo, C., Vandoni, M., De Nunzio, A. M., & Ramat, S. (2025). Four-Week Exoskeleton Gait Training on Balance and Mobility in Minimally Impaired Individuals with Multiple Sclerosis: A Pilot Study. Bioengineering, 12(8), 826. https://doi.org/10.3390/bioengineering12080826