Effect of Surrounding Detritus on Phragmites australis Litter Decomposition: Evidence from Laboratory Aquatic Microcosms
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Methods
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wetzel, R.G. Death, detritus, and energy flow in aquatic ecosystems. Freshw. Biol. 1995, 33, 83–89. [Google Scholar] [CrossRef]
- Benbow, M.E.; Receveur, J.P.; Lamberti, G.A. Death and Decomposition in Aquatic Ecosystems. Front. Ecol. Evol. 2020, 8, 17. [Google Scholar] [CrossRef]
- O’Neill, R.V.; Reichle, D.A. Dimensions of ecosystem theory. In Forests: Fresh Perspectives from Ecosystem Analysis; Waring, R.H., Ed.; Oregon Press University Press: Corvallis, OR, USA, 1991; pp. 11–26. [Google Scholar]
- Wallace, J.B.; Eggert, S.L.; Meyer, J.L.; Webster, J.R. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 1997, 277, 102–104. [Google Scholar] [CrossRef]
- Windham, L.; Ehrenfeld, J.G. Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecol. Appl. 2003, 13, 883–897. [Google Scholar] [CrossRef]
- Duke, S.T.; Francoeur, S.N.; Judd, K.E. Effects of Phragmites australis Invasion on Carbon Dynamics in a Freshwater Marsh. Wetlands 2015, 35, 311–321. [Google Scholar] [CrossRef]
- Sangiorgio, F.; Basset, A.; Pinna, M.; Sabetta, L.; Abbiati, M.; Ponti, M.; Minocci, M.; Orfanidis, S.; Nicolaidou, A.; Moncheva, S.; et al. Environmental factors affecting Phragmites australis litter decomposition in Mediterranean and Black Sea transitional waters. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, S16–S26. [Google Scholar] [CrossRef]
- Ferreira, V.; Chauvet, E. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob. Change Biol. 2011, 17, 551–564. [Google Scholar] [CrossRef]
- Abelho, M.; Ribeiro, R.; Moreira-Santos, M. Salinity Affects Freshwater Invertebrate Traits and Litter Decomposition. Diversity 2021, 13, 599. [Google Scholar] [CrossRef]
- Quintino, V.; Sangiorgio, F.; Ricardo, F.; Mamede, R.; Pires, P.; Freitas, R.; Rodrigues, A.M.; Basset, A. In situ experimental study of reed leaf decomposition along a full salinity gradient. Estuar. Coast. Shelf Sci. 2009, 85, 497–506. [Google Scholar] [CrossRef]
- Gessner, M.O. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake. Aquat. Bot. 2000, 66, 9–20. [Google Scholar] [CrossRef]
- Pinna, M.; Sangiorgio, F.; Fonnesu, A.; Basset, A. Spatial analysis of plant detritus processing in a Mediterranean River type: The case of the River Tirso Basin, Sardinia Italy. J. Environ. Sci. 2003, 15, 227–240. [Google Scholar] [CrossRef]
- Sangiorgio, F.; Pinna, M.; Basset, A. Inter- and intra-habitat variability of plant detritus decomposition in a transitional environment (Lake Alimni, Adriatic Sea). Chem. Ecol. 2004, 20, 353–366. [Google Scholar] [CrossRef]
- Sangiorgio, F.; Fonnesu, A.; Pinna, M.; Sabetta, L.; Basset, A. Influence of Drought and Abiotic Factors on Phragmites australis Leaf Decomposition in the River Pula, Sardinia Italy. J. Freshw. Ecol. 2006, 21, 411–420. [Google Scholar] [CrossRef]
- Gessner, M.O.; Chauvet, E. Importance of Stream Microfungi in Controlling Breakdown Rates of Leaf Litter. Ecology 1994, 75, 1807–1817. [Google Scholar] [CrossRef]
- Graça, M.A.S. The Role of Invertebrates on Leaf Litter Decomposition in Streams—A Review. Internat. Rev. Hydrobiol. 2011, 86, 383–393. [Google Scholar] [CrossRef]
- Graça, M.A.S.; Ferreira, R.C.F.; Coimbra, C.N. Litter processing along a stream gradient: The role of invertebrates and decomposers. J. N. Am. Benthol. Soc. 2001, 20, 408–420. [Google Scholar] [CrossRef]
- Boyero, L.; López-Rojo, N.; Tonin, A.M.; Pérez, J.; Correa-Araneda, F.; Pearson, R.G.; Bosch, J.; Albariño, R.J.; Anbalagan, S.; Barmuta, L.A.; et al. Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics. Nat. Commun. 2021, 12, 3700. [Google Scholar] [CrossRef]
- McKie, B.G.; Woodward, G.; Hladyz, S.; Nistorescu, M.; Preda, E.; Popescu, C.; Giller, P.S.; Malmqvist, B. Ecosystem functioning in stream assemblages from different regions: Contrasting responses to variation in detritivore richness, evenness and density. J. Anim. Ecol. 2008, 77, 495–504. [Google Scholar] [CrossRef]
- Encalada, A.C.; Calles, J.; Ferreira, V.; Canhoto, C.; Graça, M.A.S. Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshw. Biol. 2010, 55, 1719–1733. [Google Scholar] [CrossRef]
- Reice, S.R. Environmental patchiness and the breakdown of leaf litter in a woodland stream. Ecology 1974, 54, 1271–1282. [Google Scholar] [CrossRef]
- Benfield, E.F.; Paul, R.W., Jr.; Webster, J.R. Influence of exposure technique on leaf breakdown rates in streams. Oikos 1979, 33, 386–391. [Google Scholar] [CrossRef]
- Fang, X.; Zhao, L.; Zhou, G.; Huang, W.; Liu, J. Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests. Plant Soil 2015, 392, 139–153. [Google Scholar] [CrossRef]
- Pozo, J.; Oterrnin, A.; Basaguren, A. Is loss rate dependent on leaf-litter amount? Verh. Int. Ver. Theor. Angew. Limnol. 2002, 28, 556–559. [Google Scholar] [CrossRef]
- Tiegs, S.D.; Peter, F.D.; Robinson, C.T.; Uehlinger, U.; Gessner, M.O. Leaf decomposition and invertebrate colonization responses to manipulated litter quantity in streams. J. N. Am. Benthol. Soc. 2008, 27, 321–331. [Google Scholar] [CrossRef]
- González, J.M.; Mora, N.; Molina, R. Initial mass of leaf litter influences mass loss and invertebrate assemblages in two mountain streams. Hydrobiologia 2025, 852, 1531–1544. [Google Scholar] [CrossRef]
- Campbell, I.C.; Enierga, G.M.; Fuchshuber, L. The influence of pack size and position, leaf type, and shredder access on the processing rate of Atherosperma moschatum leaves in an Australian cool temperate rainforest stream. Internat. Rev. Hydrobiol. 1994, 79, 557–568. [Google Scholar] [CrossRef]
- Bruder, A.; Schindler, M.H.; Moretti, M.S.; Gessner, M.O. Litter decomposition in a temperate and a tropical stream: The effects of species mixing, litter quality and shredders. Freshw. Biol. 2014, 59, 438–449. [Google Scholar] [CrossRef]
- Ferreira, V.; Castela, J.; Rosa, P.; Tonin, A.M.; Boyero, L.; Graça, M.A.S. Aquatic hyphomycetes, benthic macroinvertebrates and leaf litter decomposition in streams naturally differing in riparian vegetation. Aquat. Ecol. 2016, 50, 711–725. [Google Scholar] [CrossRef]
- Lecerf, A.; Dobson, M.; Dang, C.K.; Chauvet, E. Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia 2005, 146, 432–442. [Google Scholar] [CrossRef]
- Barlöcher, F. Pitfalls of traditional techniques when studying decomposition of vascular plant remains in aquatic habitats. Limnetica 1997, 13, 1–11. [Google Scholar] [CrossRef]
- Bedford, A.P. A modified litter bag design for use in lentic habitats. Hydrobiologia 2004, 529, 187–193. [Google Scholar] [CrossRef]
- Benfield, E.F.; Jones, D.S.; Patterson, M.F. Leaf pack processing in a pastureland stream. Oikos 1977, 29, 99–103. [Google Scholar] [CrossRef]
- Kaushik, N.K.; Hynes, H.B.N. Experimental study on the role of autumn-shed leaves in aquatic environments. J. Ecol. 1968, 56, 229–243. [Google Scholar] [CrossRef]
- Wall, C.B.; Spiegel, C.J.; Diaz, E.M.; Tran, C.H.; Fabiani, A.; Broe, T.Y.; Perez-Coronel, E.P.; Jackrel, S.L.; Mladenov, N.; Symons, C.C.; et al. Fire transforms effects of terrestrial subsidies on aquatic ecosystem structure and function. Glob. Change Biol. 2023, 30, e17058. [Google Scholar] [CrossRef] [PubMed]
- Basset, A.; Maci, S.; Mazzola, A.; Rosati, I.; Roselli, L.; Tramati, C.; Vizzini, S.; Pinna, M. Acquatina Lagoon: A model ecosystem to study community patterns. In Proceedings of the VI EUROLAG & VII LAGUNET Conference 2013, Lecce, Italy, 16–19 December 2013. [Google Scholar]
- Gartner, T.B.; Cardon, Z.G. Decomposition dynamics in mixed-species leaf litter. Oikos 2004, 104, 230–246. [Google Scholar] [CrossRef]
- Abelho, M. Leaf-litter mixtures affect breakdown and macroinvertebrate colonization rates in a stream ecosystem. Internat. Rev. Hydrobiol. 2009, 94, 436–451. [Google Scholar] [CrossRef]
- Köbbing, J.F.; Thevs, N.; Zerbe, S. The utilisation of reed (Phragmites australis): A review. Mires Peat 2013, 13, 1. Available online: http://www.mires-and-peat.net/pages/volumes/map13/map1301.php (accessed on 2 May 2025).
- Mancinelli, G.; Sabetta, L.; Sangiorgio, F. On the influence of temporal resolution in mesh bag decomposition studies. Internat. Rev. Hydrobiol. 2009, 92, 135–145. [Google Scholar] [CrossRef]
- Longo, E.; Mancinelli, G. Size at the onset of maturity (SOM) revealed in length weight relationships of brackish amphipods and isopods: An information theory approach. Estuar. Coast. Shelf Sci. 2014, 136, 119–128. [Google Scholar] [CrossRef]
- Tachet, H.; Bournaud, M.; Richoux, P. Introduction à l’Étude des Macroinvertébrés des Eaux Douces (Systématique Élémentaire et Aperçu Écologique); Université Lyon: Lyon, France, 1997; Available online: https://www.persee.fr/doc/linly_0366-1326_1981_num_50_5_14287_t2_0011_0000_3 (accessed on 2 May 2025).
- Windham, L.; Meyerson, L. Effects of Common Reed (Phragmites australis) Expansions on Nitrogen Dynamics of Tidal Marshes of the Northeastern U.S. Estuaries 2003, 26, 452–464. [Google Scholar] [CrossRef]
- Maltby, L.; Clayton, S.; Wood, R.; McLoughlin, N. Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: Robustness, responsiveness, and relevance. Environ. Toxicol. Chem. 2002, 21, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Pascoal, C.; Cássio, F. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl. Environ. Microbiol. 2004, 70, 5266–5273. [Google Scholar] [CrossRef] [PubMed]
- Dalla Via, J. Respirometria: Tecniche respirometriche per la determinazione del consumo di ossigeno in animali acquatici. In Argomenti di Idrobiologia e Acquacoltura; Carpenè, E., Isani, G., Serra, R., Eds.; CLUEB: Bologna, Italy, 1995. [Google Scholar]
- Vignes, F.; Fedele, M.; Pinna, M.; Mancinelli, G.; Basset, A. Variability of Lekanesphaera monodi metabolic rates with habitat trophic status. Acta Oecol. 2012, 41, 58–64. [Google Scholar] [CrossRef]
- Olson, J.S. Energy Storage and the Balance of Producers and Decomposers in Ecological Systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research; Freeman, W.H., Ed.; JSTOR: New York, NY, USA, 1995. [Google Scholar]
- Pérez, J.; Ferreira, V.; Graça, M.A.S.; Boyero, L. Litter Quality Is a Stronger Driver than Temperature of Early Microbial Decomposition in Oligotrophic Streams: A Microcosm Study. Environ. Microbiol. 2021, 82, 897–908. [Google Scholar] [CrossRef]
- Xu, C.; Yu, X.; Duan, H.; Li, J.; Xia, S.; Zhang, Q.; Li, C. The decomposition processes and return of carbon, nitrogen, and phosphorus of Phragmites australis litter with different detritus amount. Hydrobiologia 2023, 850, 3893–3906. [Google Scholar] [CrossRef]
- Yue, K.; De Frenne, P.; Van Meerbeek, K.; Ferreira, V.; Fornara, D.A.; Wu, Q.; Ni, X.; Peng, Y.; Wang, D.; Hedě, P.; et al. Litter quality and stream physicochemical properties drive global invertebrate effects on instream litter decomposition. Biol. Rev. 2022, 97, 2023–2038. [Google Scholar] [CrossRef]
- Gessner, M.O.; Swan, C.M.; Dang, C.K.; McKie, B.G.; Bardgett, R.D.; Wall, D.H.; Hättenschwiler, S. Diversity meets decomposition. Trends Ecol. Evol. 2010, 25, 372–380. [Google Scholar] [CrossRef]
- Benavides-Gordillo, S.; Moretti, M.S.; González, A.L.; Moi, D.A.; Aidar, M.P.M.; Kersch-Becker, M.F.; Romero, G.O. Warming and shifts in litter quality drive multiple responses in freshwater detritivore communities. Sci. Rep. 2024, 14, 11137. [Google Scholar] [CrossRef]
- Wissinger, S.A.; Klemmer, A.J.; Braccia, A.; Bush, M.B.; Batzer, D.P. Relationships between macroinvertebrates and detritus in freshwater wetlands. Freshw. Sci. 2021, 40, 681–698. [Google Scholar] [CrossRef]
- Kang, H.; Kim, S.; Song, K.; Kwon, M.J.; Lee, J. Intermediate Disturbances Enhance Microbial Enzyme Activities in Soil Ecosystems. Microorganisms 2024, 12, 1401. [Google Scholar] [CrossRef]
Two-Way ANOVA | ||||||
---|---|---|---|---|---|---|
Parameter | Effect | df | SS | MS | F | P |
Invertebrates | Detritus amount | 3 | 957.67 | 319.22 | 12.3 | <0.001 |
Time | 2 | 58.58 | 29.29 | 1.13 | 0.33 | |
Detritus amount × Time | 6 | 146.75 | 24.46 | 0.94 | 0.47 | |
Error | 60 | 1557 | 25.95 | |||
Dissolved oxygen | Detritus amount | 3 | 27.75 | 9.25 | 74.32 | <0.001 |
Time | 2 | 14.5 | 7.25 | 58.27 | <0.001 | |
Detritus amount × Time | 6 | 0.96 | 0.16 | 1.28 | 0.27 | |
Error | 60 | 7.47 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangiorgio, F.; Santagata, D.; Vignes, F.; Pinna, M.; Basset, A. Effect of Surrounding Detritus on Phragmites australis Litter Decomposition: Evidence from Laboratory Aquatic Microcosms. Limnol. Rev. 2025, 25, 34. https://doi.org/10.3390/limnolrev25030034
Sangiorgio F, Santagata D, Vignes F, Pinna M, Basset A. Effect of Surrounding Detritus on Phragmites australis Litter Decomposition: Evidence from Laboratory Aquatic Microcosms. Limnological Review. 2025; 25(3):34. https://doi.org/10.3390/limnolrev25030034
Chicago/Turabian StyleSangiorgio, Franca, Daniela Santagata, Fabio Vignes, Maurizio Pinna, and Alberto Basset. 2025. "Effect of Surrounding Detritus on Phragmites australis Litter Decomposition: Evidence from Laboratory Aquatic Microcosms" Limnological Review 25, no. 3: 34. https://doi.org/10.3390/limnolrev25030034
APA StyleSangiorgio, F., Santagata, D., Vignes, F., Pinna, M., & Basset, A. (2025). Effect of Surrounding Detritus on Phragmites australis Litter Decomposition: Evidence from Laboratory Aquatic Microcosms. Limnological Review, 25(3), 34. https://doi.org/10.3390/limnolrev25030034