Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = mixed mesh

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4948 KB  
Article
Residence Time Distribution of Variable Viscosity Fluids in the Stirred Tank
by Guangshuo Wu, Linxi Li, Zhipeng Li, Junhao Wang and Zhengming Gao
Processes 2025, 13(9), 2997; https://doi.org/10.3390/pr13092997 - 19 Sep 2025
Viewed by 185
Abstract
Stirred tanks are widely used in polymerization processes, where the residence time distribution (RTD) significantly affects monomer conversion and polymer quality. In this study, the RTD in the stirred tank with both constant and variable viscosity fluids was investigated numerically. To account for [...] Read more.
Stirred tanks are widely used in polymerization processes, where the residence time distribution (RTD) significantly affects monomer conversion and polymer quality. In this study, the RTD in the stirred tank with both constant and variable viscosity fluids was investigated numerically. To account for the viscosity evolution during polymerization, a model relating fluid viscosity to the mean age of the fluid was developed. After verifying mesh and time step independence, the effects of impeller speed, fluid space time, and viscosity varying on RTD were examined in both single-tank and two-tank configurations. Compared to the constant-viscosity fluids, the variable-viscosity fluid shows different flow behaviors such as dead zones and short-circuiting. Analysis based on the number of tanks in series showed that increasing impeller speed and extending space time can enhance mixing efficiency, where the improved mixing in the second stage of the two-tank configuration eliminated the concentration fluctuations caused by recirculating flow in the first tank, which may result in a more uniform RTD curves. Full article
Show Figures

Figure 1

20 pages, 2932 KB  
Article
Manganese-Based Electrocatalysts for Acidic Oxygen Evolution: Development and Performance Evaluation
by Giulia Cuatto, Elenia De Meis, Hilmar Guzmán and Simelys Hernández
Nanomaterials 2025, 15(18), 1434; https://doi.org/10.3390/nano15181434 - 18 Sep 2025
Viewed by 209
Abstract
Currently, the growing demand for sustainable hydrogen makes the oxygen evolution reaction (OER) increasingly important. To boost the performance of electrochemical cells for water electrolysis, both cathodic and anodic sides need to be optimized. Noble metal catalysts for the OER suffer from high [...] Read more.
Currently, the growing demand for sustainable hydrogen makes the oxygen evolution reaction (OER) increasingly important. To boost the performance of electrochemical cells for water electrolysis, both cathodic and anodic sides need to be optimized. Noble metal catalysts for the OER suffer from high costs and limited availability; therefore, developing efficient, low-cost alternatives is crucial. This work investigates manganese-based materials as potential noble-metal-free catalysts. Mn antimonates, Mn chlorates, and Mn bromates were synthesized using ultrasound-assisted techniques to enhance phase composition and homogeneity. Physicochemical characterizations were performed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM), together with energy-dispersive X-ray spectroscopy (EDX) and surface area analyses. All samples exhibited a low surface area and inter-particle porosity within mixed crystalline phases. Among the catalysts, Mn7.5O10Br3, synthesized via ultrasound homogenization (30 min at 59 kHz) and calcined at 250 °C, showed the highest OER activity. Drop-casted on Fluorine-Doped Tin Oxide (FTO)-coated Ti mesh, it achieved an overpotential of 153 mV at 10 mA cm−2, with Tafel slopes of 103 mV dec−1 and 160 mV dec−1 at 1, 2, and 4 mA cm−2 and 6, 8, 10, and 11 mA cm−2, respectively. It also demonstrated good short-term stability (1 h) in acidic media, with a strong signal-to-noise ratio. Its short-term stability is comparable to that of the benchmark IrO2, with a potential drift of 15 mV h−1 and a standard deviation of 3 mV for the best-performing electrode. The presence of multiple phases suggests room for further optimization. Overall, this study provides a practical route for designing noble metal-free Mn-based OER catalysts. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

20 pages, 847 KB  
Review
Artificial Intelligence in Clinical Medicine: Challenges Across Diagnostic Imaging, Clinical Decision Support, Surgery, Pathology, and Drug Discovery
by Eren Ogut
Clin. Pract. 2025, 15(9), 169; https://doi.org/10.3390/clinpract15090169 - 16 Sep 2025
Viewed by 557
Abstract
Aims/Background: The growing integration of artificial intelligence (AI) into clinical medicine has opened new possibilities for enhancing diagnostic accuracy, therapeutic decision-making, and biomedical innovation across several domains. This review is aimed to evaluate the clinical applications of AI across five key domains of [...] Read more.
Aims/Background: The growing integration of artificial intelligence (AI) into clinical medicine has opened new possibilities for enhancing diagnostic accuracy, therapeutic decision-making, and biomedical innovation across several domains. This review is aimed to evaluate the clinical applications of AI across five key domains of medicine: diagnostic imaging, clinical decision support systems (CDSS), surgery, pathology, and drug discovery, highlighting achievements, limitations, and future directions. Methods: A comprehensive PubMed search was performed without language or publication date restrictions, combining Medical Subject Headings (MeSH) and free-text keywords for AI with domain-specific terms. The search yielded 2047 records, of which 243 duplicates were removed, leaving 1804 unique studies. After screening titles and abstracts, 1482 records were excluded due to irrelevance, preclinical scope, or lack of patient-level outcomes. Full-text review of 322 articles led to the exclusion of 172 studies (no clinical validation or outcomes, n = 64; methodological studies, n = 43; preclinical and in vitro-only, n = 39; conference abstracts without peer-reviewed full text, n = 26). Ultimately, 150 studies met inclusion criteria and were analyzed qualitatively. Data extraction focused on study context, AI technique, dataset characteristics, comparator benchmarks, and reported outcomes, such as diagnostic accuracy, area under the curve (AUC), efficiency, and clinical improvements. Results: AI demonstrated strong performance in diagnostic imaging, achieving expert-level accuracy in tasks such as cancer detection (AUC up to 0.94). CDSS showed promise in predicting adverse events (sepsis, atrial fibrillation), though real-world outcome evidence was mixed. In surgery, AI enhanced intraoperative guidance and risk stratification. Pathology benefited from AI-assisted diagnosis and molecular inference from histology. AI also accelerated drug discovery through protein structure prediction and virtual screening. However, challenges included limited explainability, data bias, lack of prospective trials, and regulatory hurdles. Conclusions: AI is transforming clinical medicine, offering improved accuracy, efficiency, and discovery. Yet, its integration into routine care demands rigorous validation, ethical oversight, and human-AI collaboration. Continued interdisciplinary efforts will be essential to translate these innovations into safe and effective patient-centered care. Full article
Show Figures

Figure 1

17 pages, 3358 KB  
Article
Effects of Abscisic Acid Induction on the Underground Weed Inhibition Strategies of Allelopathic and Non-Allelopathic Rice Accessions
by Jiayu Li, Ting Wang, Xinyi Ye, Shuyu Chen, Yanping Wang and Changxun Fang
Plants 2025, 14(18), 2813; https://doi.org/10.3390/plants14182813 - 9 Sep 2025
Viewed by 537
Abstract
Despite our preliminary research about the inductive effect of exogenous abscisic acid (ABA) on the weed-suppressive activity of rice in a hydroponic system, there is a lack of knowledge regarding the induction mechanism for ABA application to enhance the ability for weed control [...] Read more.
Despite our preliminary research about the inductive effect of exogenous abscisic acid (ABA) on the weed-suppressive activity of rice in a hydroponic system, there is a lack of knowledge regarding the induction mechanism for ABA application to enhance the ability for weed control underground. Here, two pot experiments using rice–barnyard grass mixed culture were conducted to investigate the effects of exogenous ABA treatment on weed inhibition strategies in both allelopathic rice PI312777 (PI) and non-allelopathic rice Lemont (Le). The largest observed weed inhibition changes in the two rice accessions both occurred with the 9 μmol/L ABA treatment. ABA induction on PI significantly increases the inhibitory effect on the plant height of barnyard grass with root contact and root segregation by 25.7% and 19.1%, respectively, with 23.5% increases observed in Le rice with root contact and no significant increases in plants with root segregation with nylon mesh. ABA induction also significantly increased the root distribution in the soil of Le. Compared with the uninduced group, ABA treatment significantly elevated the total amounts of reversibly adsorbed phenolic acids in the two soil layers of PI and the irreversibly adsorbed phenolic acids in Le soil layers. Furthermore, exogenous ABA could change the bacterial composition in rhizosphere soil of the two rice accessions, with the change in the species composition in the rhizosphere soil of the allelopathic rice PI being greater. Importantly, the bacterial compositions (Anaerolineales, Bacteroidales, and Myxococcale) in the PI rhizosphere soil of rice induced by ABA were more related to the contents of reversibly adsorbed phenolic acids in the soil. However, the core bacterial compositions that promote plant growth (Sphingomonadales, Cyanobacteriales, and Rhizobiales) in the Le rhizosphere soil were more related to the contents of irreversibly adsorbed phenolic acids in the soil. These findings suggested that the ABA induction mainly changed root distribution and core bacterial compositions in Le to enhance resource competition, whereas it stimulated the release of reversibly adsorbed phenolic acids to modulate the specific bacterial compositions in rhizosphere soil of PI and to strengthen allelopathic effects. Full article
(This article belongs to the Special Issue Weed Management and Control in Paddy Fields)
Show Figures

Figure 1

20 pages, 910 KB  
Article
The Instability in the Dimensions of Polynomial Splines of Mixed Smoothness over T-Meshes
by Pengxiao Wang
Mathematics 2025, 13(17), 2886; https://doi.org/10.3390/math13172886 - 6 Sep 2025
Viewed by 390
Abstract
Mixed-smoothness splines facilitate localized control over smoothness; however, the issue of dimensional instability in mixed-smoothness spline spaces remains unstudied in the existing literature. This paper studies such instabilities over T-meshes, where different orders of smoothness are required across interior mesh segments. Using the [...] Read more.
Mixed-smoothness splines facilitate localized control over smoothness; however, the issue of dimensional instability in mixed-smoothness spline spaces remains unstudied in the existing literature. This paper studies such instabilities over T-meshes, where different orders of smoothness are required across interior mesh segments. Using the smoothing cofactor-conformality method, we introduce a constraint on T-meshes to derive a stable dimension formula for mixed-smoothness spline spaces. Furthermore, we show dimensional instability in cases involving T-cycles and nested T-cycles. By defining a singularity factor for each T-cycle, we demonstrate that both dimensional instabilities and structural degenerations are associated with these singularity factors. The work contributes to a deeper understanding of spline spaces defined over non-tensor-product structures. Full article
Show Figures

Figure 1

16 pages, 2835 KB  
Article
Improving Traps for Spotted Lanternflies, Lycorma delicatula (Hemiptera: Fulgoridae), by Leveraging Their Own Signals
by Miriam F. Cooperband and Kelly M. Murman
Insects 2025, 16(9), 930; https://doi.org/10.3390/insects16090930 - 4 Sep 2025
Viewed by 616
Abstract
The spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae) (SLF), is a damaging invasive pest and generalist phloem feeder that has been found in 18 states in the United States. It has a complex multimodal communication system involving semiochemicals, emitted both from their honeydew and [...] Read more.
The spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae) (SLF), is a damaging invasive pest and generalist phloem feeder that has been found in 18 states in the United States. It has a complex multimodal communication system involving semiochemicals, emitted both from their honeydew and their bodies, and substrate-borne vibrations. Sensitive and effective traps for detection and survey are essential management tools, but no potent lures for SLF exist yet. We sought to test an alternative that relies on live-trapped SLF acting as lures to improve trap efficacy after the first SLF is captured. SLF circle traps were modified by replacing the commonly used plastic collection bag with a mesh bag pinned to the tree trunk. These allowed the trapped SLF to remain alive and generate signals through the mesh bag, thus leveraging their natural modes of communication to draw additional SLF into the traps. We compared mesh and plastic bags over three years targeting fourth instars and adults and found that prior to oviposition, circle traps with mesh bags captured significantly more fourth instar (70% mesh: 30% plastic) and adult SLF (59% mesh: 41% plastic) compared to plastic bags, but during oviposition time, the results were mixed. Full article
Show Figures

Figure 1

12 pages, 561 KB  
Systematic Review
A Systematic Review of the Effect of Osteoporosis on Radiographic Outcomes, Complications, and Reoperation Rate in Cervical Deformity
by Ishan Shah, Elizabeth A. Lechtholz-Zey, Mina Ayad, Brandon S. Gettleman, Emily Mills, Hannah Shelby, Andy Ton, William J. Karakash, Apurva Prasad, Jeffrey C. Wang, Ram K. Alluri and Raymond J. Hah
J. Clin. Med. 2025, 14(17), 6196; https://doi.org/10.3390/jcm14176196 - 2 Sep 2025
Viewed by 519
Abstract
Background/Objectives: The purpose of this review was to determine the impact of osteoporosis on outcomes after surgery for cervical deformity. Cervical deformity involves abnormal curvature or misalignment of the cervical spine, often resulting in a significant loss of quality of life and requiring [...] Read more.
Background/Objectives: The purpose of this review was to determine the impact of osteoporosis on outcomes after surgery for cervical deformity. Cervical deformity involves abnormal curvature or misalignment of the cervical spine, often resulting in a significant loss of quality of life and requiring surgical correction. While osteoporosis has been associated with hardware failure including screw loosening and cage migration in spine surgery, its role in cervical deformity remains unclear. Existing studies report mixed findings with regard to postoperative sequelae in patients with osteoporosis undergoing surgical correction of cervical deformity. Methods: A systematic review using PRISMA guidelines and MeSH terms involving spine surgery for cervical deformity and osteoporosis was performed. The Medline (PubMed) database was searched from 1990 to August 2022 using the following terms: “osteoporosis” AND “cervical” AND (“outcomes” OR “revision” OR “reoperation” OR “complication”). This review focused on radiographic outcomes, as well as post-operative complications. Results: Eight studies were included in the final analysis. Three papers assessed risk factors for the development of post-operative distal junctional kyphosis (DJK), but only one found osteoporosis as a predictor for DJK. Although three studies found that osteoporosis was not significantly associated with the incidence of surgical complications, one highlights osteoporosis as a predictor of complications at 90 days postoperatively (p < 0.001) and another associates osteoporosis with overall poor outcomes (p = 0.021). Furthermore, one study assessing the relationship between osteoporosis and reoperation found no association. Conclusions: Overall, our systematic review suggests that in patients undergoing surgery for cervical deformity, osteoporosis is not predictive of the need for reoperation or the development of postoperative complications, such as DJK, dysphagia, superficial infection, and others. These findings highlight the need for further study regarding the role of osteoporosis in surgical correction of cervical deformity. Full article
(This article belongs to the Special Issue Treatment and Prognosis of Spinal Surgery)
Show Figures

Figure 1

18 pages, 4025 KB  
Article
Research on the Mechanism of Reverse Sand Addition in Horizontal Shale Gas Well Fracturing Based on Intergranular Erosion of Proppants in near Wellbore Fractures
by Xuanyu Liu, Faxin Yi, Song Guo, Meijia Zhu and Yujie Bai
Appl. Sci. 2025, 15(17), 9589; https://doi.org/10.3390/app15179589 - 30 Aug 2025
Viewed by 537
Abstract
To improve fracturing support efficiency of terrestrial shale oil reservoirs with uneven proppant placement, this study used complex mesh flat-plate simulations and ANSYS FLUENT (2020) simulations to test four sand addition processes. Proppants were 70/140 mesh quartz sand with a density of 2650 [...] Read more.
To improve fracturing support efficiency of terrestrial shale oil reservoirs with uneven proppant placement, this study used complex mesh flat-plate simulations and ANSYS FLUENT (2020) simulations to test four sand addition processes. Proppants were 70/140 mesh quartz sand with a density of 2650 kg/m3 and 40/70 mesh ceramic particles with a density of 2000 kg/m3, and the carrier was hydroxypropyl guar gum fracturing fluid with a viscosity of 4.46–13.4 mPa·s at 25 °C. Alternating sand addition performed best: sand-laying efficiency reached 52 percent, 10 percentage points higher than continuous sand addition and 12 percentage points higher than mixed sand addition; sand embankment void area was 1400 cm2, 18.3 percent lower than continuous sand addition; proppant entry into secondary cracks increased 23.8 percent compared with reverse sand addition; at branch crack Position 2, 1.3 m from the inlet and at a 90-degree angle, its equilibrium height was 210 mm and paving rate 0.131. This study fills gaps of no systematic multi-process comparison and insufficient quantification of crack geometry–sand parameter coupling in existing research; its novelty lies in the unified visualization comparison of four processes, revealing geometry–parameter coupling and integrating experiment simulation; the optimal scheme also improves fracture support efficiency 21.5 percent compared with conventional continuous sand addition. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 4th Edition)
Show Figures

Figure 1

21 pages, 12271 KB  
Article
Validation of Self-Adaptive Turbulence Eddy Simulation for Double and Triple Swirling Turbulent Flows
by Tao Chen, Bo Wang, Zhaoyang Xia and Xingsi Han
Energies 2025, 18(16), 4249; https://doi.org/10.3390/en18164249 - 9 Aug 2025
Viewed by 513
Abstract
In the present study, a recently developed improved Self-Adaptive Turbulence Eddy Simulation (SATES) turbulence model (marked as SATES-Mixed), is validated for the simulation of complex multiple swirling turbulent flows. The new SATES-Mixed method aims to enhance both the performances in the wall region [...] Read more.
In the present study, a recently developed improved Self-Adaptive Turbulence Eddy Simulation (SATES) turbulence model (marked as SATES-Mixed), is validated for the simulation of complex multiple swirling turbulent flows. The new SATES-Mixed method aims to enhance both the performances in the wall region as well as the free shear layer region. For comparisons, the Large Eddy Simulation (LES) with WALE and Smagorinsky sub-grid model is also conducted with the same numerical setups. Compared with the original widely used SATES model, the SATES-Mixed model inherits the low grid sensitivity and high accuracy for free turbulence while improving the calculation accuracy in the near-wall regions. Therefore, the prediction ability of the SATES-Mixed model is validated in challenging complex swirling flows encountered in multi-stage swirl combustion chambers. Good overall agreement between SATES-Mixed and experiments is observed with relatively coarse mesh, which is even better than the LES-WALE results. The SATES-Mixed model accurately captures the typical single-vortex tube PVC evolution characteristics in a double swirling combustor (GTMC) and effectively models the complex interactions between single/double vortex tubes in a three-stage swirling combustor, including their intertwined twisting motions and mutually evolving processes. Full article
(This article belongs to the Special Issue Numerical Simulation Techniques for Fluid Flows and Heat Transfer)
Show Figures

Figure 1

18 pages, 5838 KB  
Article
Experimental Study on Effective Propping of Multi-Level Fractures Using Micro-Proppants
by Xiao Sun, Jingfu Mu, Xing Guo, Bo Cao, Tang Tang and Tao Zhang
Processes 2025, 13(8), 2503; https://doi.org/10.3390/pr13082503 - 8 Aug 2025
Viewed by 395
Abstract
In deep shale gas fracturing, the narrow width of micro fractures presents a challenge for conventional proppants (40/70 mesh, 70/140 mesh), which often fail to enter branch fractures, resulting in inadequate effective support volume. To address this, a high-efficiency propping strategy is proposed [...] Read more.
In deep shale gas fracturing, the narrow width of micro fractures presents a challenge for conventional proppants (40/70 mesh, 70/140 mesh), which often fail to enter branch fractures, resulting in inadequate effective support volume. To address this, a high-efficiency propping strategy is proposed based on the hybrid use of micro-proppants and conventional proppants. Utilizing a proppant transport experiment device, the effects of proppant size ratios and injection timing on proppant distribution were investigated to determine the optimal design parameters. The results indicate that the 200/400 mesh micro-proppant can effectively enter the distal micro fractures, thereby mitigating the problem of the non-uniform distribution of the proppant within the fracture network. To ensure effective propping of secondary fractures, the optimal pumping sequence is to inject quartz sand first, followed by ceramic proppants. The recommended ratio of 70/140 mesh quartz sand to 40/70 mesh ceramic proppants is 7:3. Additionally, for blended injection, the optimal mixing ratio of 70/140 mesh quartz sand to micro-proppant is 8:2. Field trials at the L-X1 well in the LZ block demonstrate that this strategy significantly boosts post-fracturing production, with test yields increasing 2.4 to 4 times. Full article
Show Figures

Figure 1

14 pages, 2309 KB  
Article
Modification of Bitumen with Mechanochemically Devulcanized Crumb Rubber
by Anar Akkenzheyeva, Akkenzhe Bussurmanova, Uzilkhan Yensegenova, Viktors Haritonovs, Remo Merijs Meri, Yerzhan Imanbayev, Yerbolat Ayapbergenov, Serik Sydykov and Aibar Murzabekov
Processes 2025, 13(8), 2489; https://doi.org/10.3390/pr13082489 - 7 Aug 2025
Viewed by 553
Abstract
This study investigates the modification of bitumen using mechanochemically devulcanized crumb rubber. The objective of this research is to enhance the performance characteristics of bituminous binders while addressing the inherent limitations associated with conventional crumb rubber (CCR), such as insufficient dispersion, elevated viscosity, [...] Read more.
This study investigates the modification of bitumen using mechanochemically devulcanized crumb rubber. The objective of this research is to enhance the performance characteristics of bituminous binders while addressing the inherent limitations associated with conventional crumb rubber (CCR), such as insufficient dispersion, elevated viscosity, and phase instability. Preliminary chemical activation of the crumb rubber was performed using a planetary ball mill, followed by thermomechanical devulcanization on a two-roll open mixing mill. Structural features of the devulcanized crumb rubber were analyzed using infrared spectroscopy, which confirmed the breakdown of S–S bonds. This study presents a comparative analysis of the performance characteristics of rubber–bitumen binders produced using both conventional rubber crumb (CRC) and devulcanized rubber crumb (DRC). The use of DCR, obtained mechanochemically from rubber waste, improved penetration, Fraass breaking point and the ring and ball softening point on average at high concentrations (20; 25% crumb rubber) compared to conventional crumb rubber by 33%, 66% and 2.4%, respectively. Optical microscopy revealed the formation of a uniform mesh-like rubber structure within the bitumen matrix, which contributes to enhanced performance characteristics of the modified binder and improved mechanical strength of the material. The key contribution of this work lies in the development and experimental validation of an efficient approach to deep devulcanization of crumb rubber via mechanochemical activation using readily available nitrogen-containing reagents. Furthermore, the study establishes a direct correlation between the degree of devulcanization, the dispersion quality of rubber particles within the bitumen matrix, and the resultant performance characteristics of the modified binder. Full article
(This article belongs to the Special Issue Green Chemistry: From Wastes to Value-Added Products (2nd Edition))
Show Figures

Figure 1

24 pages, 5054 KB  
Article
Technology for the Production of Energy Briquettes from Bean Stalks
by Krzysztof Mudryk, Jarosław Frączek, Joanna Leszczyńska and Mateusz Krotowski
Energies 2025, 18(15), 4009; https://doi.org/10.3390/en18154009 - 28 Jul 2025
Viewed by 615
Abstract
Biomass is gaining increasing importance as a renewable energy source in the global energy mix, offering a viable alternative to fossil fuels and contributing to the decarbonization of the energy sector. Among various types of biomass, agricultural residues such as bean stalks represent [...] Read more.
Biomass is gaining increasing importance as a renewable energy source in the global energy mix, offering a viable alternative to fossil fuels and contributing to the decarbonization of the energy sector. Among various types of biomass, agricultural residues such as bean stalks represent a promising feedstock for the production of solid biofuels. This study analyzes the impact of particle size and selected briquetting parameters (pressure and temperature) on the physical quality of briquettes made from bean stalks. The experimental procedure included milling the raw material using #8, #12, and #16 mesh screens, followed by compaction under pressures of 27, 37, and 47 MPa. Additionally, the briquetting die was heated to 90 °C to improve the mechanical durability of the briquettes. The results showed that both particle size and die temperature significantly influenced the quality of the produced briquettes. Briquettes made from the 16 mm fraction, compacted at 60 °C and 27 MPa, exhibited a durability of 55.76%, which increased to 82.02% when the die temperature was raised to 90 °C. Further improvements were achieved by removing particles smaller than 1 mm. However, these measures did not enable achieving a net calorific value above 14.5 MJ·kg−1. Therefore, additional work was undertaken, involving the addition of biomass with higher calorific value to the bean stalk feedstock. In the study, maize straw and miscanthus straw were used as supplementary substrates. The results allowed for determining their minimum proportions required to exceed the 14.5 MJ·kg−1 threshold. In conclusion, bean stalks can serve as a viable feedstock for the production of solid biofuels, especially when combined with other biomass types possessing more favorable energy parameters. Their utilization aligns with the concept of managing local agricultural residues within decentralized energy systems and supports the development of sustainable bioenergy solutions. Full article
Show Figures

Figure 1

19 pages, 1165 KB  
Article
Expansion of Mechanical Biological Residual Treatment Plant with Fermentation Stage for Press Water from Organic Fractions Involving a Screw Press
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Recycling 2025, 10(4), 141; https://doi.org/10.3390/recycling10040141 - 16 Jul 2025
Viewed by 430
Abstract
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the [...] Read more.
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the employed screw press, such as pressure, liquid-to-MSFF, feeding quantity per hour, and press basket mesh size, to enhance volatile solids and biogas recovery in the generated press water for anaerobic digestion. Experiments were performed at the full-scale facility to evaluate the efficiency of screw press extraction with other pretreatment methods, like press extrusion, wet pulping, and hydrothermal treatment. The results indicated that hydrolysis of the organic fractions in MSFF was the most important factor for improving organic extraction from the MSFF to press water for fermentation. Optimal hydrolysis efficiency was achieved with a digestate and process water-to-MSFF of approximately 1000 L/ton, with a feeding rate between 8.8 and 14 tons per hour. Increasing pressure from 2.5 to 4.0 bar had minimal impact on press water properties or biogas production, regardless of the press basket size. The highest volatile solids (29%) and biogas (50%) recovery occurred at 4.0 bar pressure with a 1000 L/ton liquid-to-MSFF. Further improvements could be achieved with longer mixing times before pressing. These findings demonstrate the technical feasibility of the pressing system for preparing an appropriate substrate for the fermentation process, underscoring the potential for optimizing the system. However, further research is required to assess the cost–benefit balance. Full article
Show Figures

Figure 1

25 pages, 14432 KB  
Article
Source Term-Based Synthetic Turbulence Generator Applied to Compressible DNS of the T106A Low-Pressure Turbine
by João Isler, Guglielmo Vivarelli, Chris Cantwell, Francesco Montomoli, Spencer Sherwin, Yuri Frey, Marcus Meyer and Raul Vazquez
Int. J. Turbomach. Propuls. Power 2025, 10(3), 13; https://doi.org/10.3390/ijtpp10030013 - 4 Jul 2025
Viewed by 720
Abstract
Direct numerical simulations (DNSs) of the T106A low-pressure turbine were conducted for various turbulence intensities and length scales to investigate their effects on flow behaviour and transition. A source-term formulation of the synthetic eddy method (SEM) was implemented in the Nektar++ spectral/hp [...] Read more.
Direct numerical simulations (DNSs) of the T106A low-pressure turbine were conducted for various turbulence intensities and length scales to investigate their effects on flow behaviour and transition. A source-term formulation of the synthetic eddy method (SEM) was implemented in the Nektar++ spectral/hp element framework to introduce anisotropic turbulence into the flow field. A single sponge layer was imposed, which covers the inflow and outflow regions just downstream and upstream of the inflow and outflow boundaries, respectively, to avoid acoustic wave reflections on the boundary conditions. Additionally, in the T106A model, mixed polynomial orders were utilized, as Nektar++ allows different polynomial orders for adjacent elements. A lower polynomial order was employed in the outflow region to further assist the sponge layer by coarsening the mesh and diffusing the turbulence near the outflow boundary. Thus, this study contributes to the development of a more robust and efficient model for high-fidelity simulations of turbine blades by enhancing stability and producing a more accurate flow field. The main findings are compared with experimental and DNS data, showing good agreement and providing new insights into the influence of turbulence length scales on flow separation, transition, wake behaviour, and loss profiles. Full article
Show Figures

Graphical abstract

18 pages, 5286 KB  
Article
The Influence of Sheet Layer Combination Modes on Mechanical Property of Self-Piercing Riveting Joint in Three-Layer Sheets
by Zhaohui Hu, Shuai Mo and Yuxuan Wang
Appl. Mech. 2025, 6(3), 51; https://doi.org/10.3390/applmech6030051 - 3 Jul 2025
Viewed by 439
Abstract
Unlike previous studies focusing on two-layer structures or single-parameter effects, this work systematically investigates the influence of sheet layer combination modes on the mechanical properties of three-layer AA6063-T6 self-piercing riveting (SPR) joints through a combination of experimental testing and numerical simulation. Shear and [...] Read more.
Unlike previous studies focusing on two-layer structures or single-parameter effects, this work systematically investigates the influence of sheet layer combination modes on the mechanical properties of three-layer AA6063-T6 self-piercing riveting (SPR) joints through a combination of experimental testing and numerical simulation. Shear and cross-tensile tests were conducted on three-layer AA6063-T6 SPR joints with three distinct sheet layer combinations: T1 (top/middle: 100 × 40 mm2, bottom: 40 × 40 mm2), T2 (top/bottom: 100 × 40 mm2, middle: 40 × 40 mm2), and T3 (middle/bottom: 100 × 40 mm2, top: 40 × 40 mm2). Experimental results reveal significant differences in joint strength and failure modes across the three combinations. T3 joints exhibited the highest shear strength (9.16 kN) but the lowest cross-tensile strength (3.56 kN), whereas T1 joints showed the highest cross-tensile strength (4.97 kN) but moderate shear strength (8.76 kN). A high-fidelity finite element model was developed to simulate the SPR joint under varying sheet layer combinations, incorporating precise geometric details (0.25 mm mesh at critical zones) and advanced contact algorithms (friction coefficient μ = 0.2). Numerical simulations revealed the stress distribution and failure mechanisms under shear and cross-tensile loading, aligning well with experimental observations. Analysis highlights that the mechanical performance of the joint is governed by two key factors: (1) the stress redistribution in sheet layers due to combination mode variations, and (2) the interlocking strength between the rivet and sheets. These findings provide practical guidelines for optimizing sheet layer combinations in lightweight automotive structures subjected to mixed loading conditions. Full article
Show Figures

Figure 1

Back to TopTop