Mechanical Design Technologies for Beam, Plate and Shell Structures (3rd Edition)

A special issue of Applied Mechanics (ISSN 2673-3161).

Deadline for manuscript submissions: 28 February 2025 | Viewed by 1469

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
Interests: dynamics; vibration and damping; smart materials and structures; computational and experimental mechanics; mechatronics and structural control; structural acoustics; impact and wave propagation; structural health monitoring; composite structures; machine design; 3D printing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue ensues from the Special Issue entitled "Mechanical Design Technologies for Beam, Plate and Shell Structures (2nd Volume)" (https://www.mdpi.com/journal/applmech/special_issues/S96V3166RC), published in Applied Mechanics.

This Special Issue will collate theoretical studies and applied works on state-of-the-art computational modeling and experimental techniques used in the mechanical design of general structural engineering systems embodying beam, plate, and shell structural elements. We welcome papers detailing advances in fundamental theories, approximation methods, computational techniques, and experimental testing technologies, and those addressing modern trends and complicating effects, such as complex shapes, multi-layered structures, lattice designs, material anisotropy, structural damping treatments, smart structures, 3D-printed parts and structures, or more complicated points of analysis (such as non-linear material and geometric behaviors, multi-scale approaches, dynamic analyses, and multi-physics design activities).

Dr. César M. A. Vasques
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Mechanics is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • beam
  • plate
  • shell
  • computational methods
  • experimental techniques
  • complicating effects
  • structural analysis
  • mechanical design
  • 3D-printed structures

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 8089 KiB  
Article
Seismic and Post-Seismic Ductility and Forces of Mid-Story Pin Moment-Resisting Frames Based on Scale of Local Deformation of I-Beam’s Segments
by Atsushi Suzuki, Ruiyu Che and Yoshihiro Kimura
Appl. Mech. 2024, 5(4), 938-963; https://doi.org/10.3390/applmech5040052 - 4 Dec 2024
Viewed by 382
Abstract
A mid-story pin system to avoid moment-resisting frame column failure during seismic action was proposed recently. The solution consists of a reinforced concrete (RC) pier protruding from the foundations, the steel column connected with the superstructure, and plates and the anchor bolt working [...] Read more.
A mid-story pin system to avoid moment-resisting frame column failure during seismic action was proposed recently. The solution consists of a reinforced concrete (RC) pier protruding from the foundations, the steel column connected with the superstructure, and plates and the anchor bolt working as a pinned connection in between. This paper utilizes shell finite element analysis (FEA) models to examine the demanded column-to-beam strength ratio to keep the column elastic and maximize the story drift at the moment of beam buckling of the frame. The method of calculating post-seismic residual strength based on maximal buckling deformation of the beam is also proposed. Full article
Show Figures

Figure 1

21 pages, 15765 KiB  
Article
Improvement of Stockbridge Damper Design for Cable-Stayed Bridges
by Adél Olosz, Balázs Kövesdi, Péter Hegyi and László Dunai
Appl. Mech. 2024, 5(4), 818-838; https://doi.org/10.3390/applmech5040046 - 12 Nov 2024
Viewed by 446
Abstract
Stockbridge dampers are widely used to mitigate the vibrations of cable-stayed bridges and of many other cable-suspended or cable structures exposed to the action of pedestrians, traffic or wind load. Within the current research work, one of the most effective and likely used [...] Read more.
Stockbridge dampers are widely used to mitigate the vibrations of cable-stayed bridges and of many other cable-suspended or cable structures exposed to the action of pedestrians, traffic or wind load. Within the current research work, one of the most effective and likely used damper types, the Stockbridge damper, was investigated to support its design and application within the daily engineering praxis. The Stockbridge damper has a relatively simple structural layout, which ensures its modular design allows it to easily adapt the damper to cables having different dynamic properties (eigenfrequencies, mass, etc.). This paper focuses on two main research areas: (i) to understand the static and dynamic behaviour of the damper and the stay cable interaction to investigate the effectiveness of its damping; (ii) to study the sensitivity of the natural frequencies of the damper to the design parameters. The final aim of the research is to develop a simple design method that is easy to apply in engineering practice and allows the efficient adaptation of the Stockbridge damper to different cable-stayed bridges. Key findings include the recommendation to position the damper at approximately 20% of the cable length for optimal attenuation, the importance of detuning to maintain effectiveness under varying cable forces, and the observation that increasing the damper mass improves efficiency, particularly for detuned elements. Full article
Show Figures

Figure 1

Back to TopTop