Topic Editors

Department of Mechanical Engineering and Mechatronics, Ariel University, Ramat HaGolan St 65, Ariel 4077625, Israel
Dr. Xiang Zhou
School of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China

Enhanced Oil Recovery Technologies, 4th Edition

Abstract submission deadline
30 September 2026
Manuscript submission deadline
30 November 2026
Viewed by
1854

Topic Information

Dear Colleagues,

This Topic is a continuation of the previous successful Topic “Enhanced Oil Recovery Technologies, 3rd Edition”.

For many years, there has been a clear trend of increasing energy demand. Despite the energy transition, oil and natural gas will remain as the main energy source for the next several dozen years. As the reservoir is depleted during primary recovery, oil recovery becomes increasingly difficult, even though the deposits are not yet completely recovered. Therefore, it is essential to develop innovative methods to increase oil recovery from known reservoirs. Enhanced oil recovery (EOR) has been considered as the most promising technology to increase the recovery factor.

This topic has been proposed to international journals to further disseminate the results of basic research, laboratory investigations and field testing or implementation in areas of the following topics:

  • Studies of Fluids and Interfaces in Porous Media;
  • Complex interfacial rheology and multiphase flow;
  • Fundamental Research on Surfactants and Polymers;
  • Development of Techniques for Gas Flooding (CO2, N2, Foam, etc.);
  • Thermal Recovery;
  • Emerging Technologies, including Smart Water and Microbial EOR;
  • Hybrid Technology;
  • Related Technologies, including carbon capture and sequestration (CCS).
  • Artificial intelligence/machine learning/deep learning applications in EOR techniques

Dr. Jan Vinogradov
Dr. Xiang Zhou
Topic Editors

Keywords

  • interfacial behavior
  • multiphase flow
  • wettability alteration
  • oil recovery factor
  • machine learning
  • unconventional resources

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.5 5.5 2011 19.8 Days CHF 2400 Submit
Energies
energies
3.2 7.3 2008 16.2 Days CHF 2600 Submit
Fluids
fluids
1.8 4.0 2016 21.7 Days CHF 1800 Submit
Gels
gels
5.3 7.6 2015 12.5 Days CHF 2100 Submit
Processes
processes
2.8 5.5 2013 16 Days CHF 2400 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (3 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
27 pages, 10877 KB  
Article
Engineering and Technological Approaches to Well Killing in Hydrophilic Formations with Simultaneous Oil Production Enhancement and Water Shutoff Using Selective Polymer-Inorganic Composites
by Valery Meshalkin, Rustem Asadullin, Sergey Vezhnin, Alexander Voloshin, Rida Gallyamova, Annaguly Deryaev, Vladimir Dokichev, Anvar Eshmuratov, Lyubov Lenchenkova, Artem Pavlik, Anatoly Politov, Victor Ragulin, Danabek Saduakassov, Farit Safarov, Maksat Tabylganov, Aleksey Telin and Ravil Yakubov
Energies 2025, 18(17), 4721; https://doi.org/10.3390/en18174721 - 4 Sep 2025
Viewed by 422
Abstract
Well-killing operations in water-sensitive hydrophilic formations are often complicated by extended well clean-up periods and, in some cases, failure to restore the well’s production potential post-kill. Typical development targets exhibiting these properties include the Neocomian and Jurassic deposits of fields in Western Siberia [...] Read more.
Well-killing operations in water-sensitive hydrophilic formations are often complicated by extended well clean-up periods and, in some cases, failure to restore the well’s production potential post-kill. Typical development targets exhibiting these properties include the Neocomian and Jurassic deposits of fields in Western Siberia and Western Kazakhstan. This paper proposes a well-killing method incorporating simultaneous near-wellbore treatment. In cases where heavy oil components (asphaltenes, resins, or paraffins) are deposited in the near-wellbore zone, their removal with a solvent results in post-operation flow rates that exceed pre-restoration levels. For wells not affected by asphaltene, resin, and paraffin deposits, killing is performed using a blocking pill of invert emulsion stabilized with an emulsifier and hydrophobic nanosilica. During filtration into the formation, this emulsion does not break but rather reforms according to the pore throat sizes. Flow rates in such wells typically match pre-restoration levels. The described engineering solution proves less effective when the well fluid water cut exceeds 60%. For wells exhibiting premature water breakthrough that have not yet produced their estimated oil volume, the water source is identified, and water shutoff operations are conducted. This involves polymer-gel systems crosslinked with resorcinol and paraform, reinforced with inorganic components such as chrysotile microdispersions, micro- and nanodispersions of shungite mineral, and gas black. Oscillation testing identified the optimal additive concentration range of 0.6–0.7 wt%, resulting in a complex modulus increase of up to 25.7%. The most effective polymer-inorganic composite developed by us, incorporating gas black, demonstrates high water shutoff capability (residual resistance factor ranges from 12.5 to 65.0 units within the permeability interval of 151.7 to 10.5 mD). Furthermore, the developed composites exhibit the ability to selectively reduce water permeability disproportionately more than oil permeability. Filtration tests confirmed that the residual permeability to oil after placing the blocking composition with graphene is 6.75 times higher than that to water. Consequently, such treatments reduce the well water cut. Field trials confirmed the effectiveness of the developed polymer-inorganic composite systems. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 4th Edition)
Show Figures

Figure 1

18 pages, 4025 KB  
Article
Research on the Mechanism of Reverse Sand Addition in Horizontal Shale Gas Well Fracturing Based on Intergranular Erosion of Proppants in near Wellbore Fractures
by Xuanyu Liu, Faxin Yi, Song Guo, Meijia Zhu and Yujie Bai
Appl. Sci. 2025, 15(17), 9589; https://doi.org/10.3390/app15179589 - 30 Aug 2025
Viewed by 448
Abstract
To improve fracturing support efficiency of terrestrial shale oil reservoirs with uneven proppant placement, this study used complex mesh flat-plate simulations and ANSYS FLUENT (2020) simulations to test four sand addition processes. Proppants were 70/140 mesh quartz sand with a density of 2650 [...] Read more.
To improve fracturing support efficiency of terrestrial shale oil reservoirs with uneven proppant placement, this study used complex mesh flat-plate simulations and ANSYS FLUENT (2020) simulations to test four sand addition processes. Proppants were 70/140 mesh quartz sand with a density of 2650 kg/m3 and 40/70 mesh ceramic particles with a density of 2000 kg/m3, and the carrier was hydroxypropyl guar gum fracturing fluid with a viscosity of 4.46–13.4 mPa·s at 25 °C. Alternating sand addition performed best: sand-laying efficiency reached 52 percent, 10 percentage points higher than continuous sand addition and 12 percentage points higher than mixed sand addition; sand embankment void area was 1400 cm2, 18.3 percent lower than continuous sand addition; proppant entry into secondary cracks increased 23.8 percent compared with reverse sand addition; at branch crack Position 2, 1.3 m from the inlet and at a 90-degree angle, its equilibrium height was 210 mm and paving rate 0.131. This study fills gaps of no systematic multi-process comparison and insufficient quantification of crack geometry–sand parameter coupling in existing research; its novelty lies in the unified visualization comparison of four processes, revealing geometry–parameter coupling and integrating experiment simulation; the optimal scheme also improves fracture support efficiency 21.5 percent compared with conventional continuous sand addition. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 4th Edition)
Show Figures

Figure 1

19 pages, 12170 KB  
Article
Development and Interfacial Mechanism of Epoxy Soybean Oil-Based Semi-Liquid Gel Materials for Wellbore Sealing Applications
by Yuexin Tian, Yintao Liu, Haifeng Dong, Xiangjun Liu and Jinjun Huang
Gels 2025, 11(7), 482; https://doi.org/10.3390/gels11070482 - 22 Jun 2025
Viewed by 604
Abstract
In this study, a novel semi-liquid gel material based on bisphenol A-type epoxy resin (E51), methylhexahydrophthalic anhydride (MHHPA), and epoxidized soybean oil (ESO) was developed for high-performance wellbore sealing. The gel system exhibits tunable gelation times ranging from 1 to 10 h (±0.5 [...] Read more.
In this study, a novel semi-liquid gel material based on bisphenol A-type epoxy resin (E51), methylhexahydrophthalic anhydride (MHHPA), and epoxidized soybean oil (ESO) was developed for high-performance wellbore sealing. The gel system exhibits tunable gelation times ranging from 1 to 10 h (±0.5 h) and maintains a low viscosity of <100 ± 2 mPa·s at 25 °C, enabling efficient injection into the wellbore. The optimized formulation achieved a compressive strength exceeding 112.5 ± 3.1 MPa and a breakthrough pressure gradient of over 50 ± 2.8 MPa/m with only 0.9 PV dosage. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of a dense, crosslinked polyester network. Interfacial adhesion was significantly enhanced by the incorporation of 0.25 wt% octadecyltrichlorosilane (OTS), yielding an adhesion layer thickness of 391.6 ± 12.7 nm—approximately 9.89 times higher than that of the unmodified system. Complete degradation was achieved within 48 ± 2 h at 120 °C using a γ-valerolactone and p-toluenesulfonic acid solution. These results demonstrate the material’s potential as a high-strength, injectable, and degradable sealing solution for complex subsurface environments. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 4th Edition)
Show Figures

Figure 1

Back to TopTop