Validation of Self-Adaptive Turbulence Eddy Simulation for Double and Triple Swirling Turbulent Flows
Abstract
1. Introduction
2. Modeling Approach
2.1. The Early-Stage SATES Model
2.2. The Newly Developed SATES-Mixed Model
2.3. Swirling Flow Test Cases and Numerical Setup
3. Results and Discussion
3.1. Results of the Double Swirling Combustor (GTMC)
3.2. Results of the Three-Stage Swirling Combustor
4. Conclusions
- (1)
- The new SATES-Mixed model can effectively combine the advantages of the LES-Smag and LES-WALE sub-grid models at different flow regimes in swirling flow applications. It enables both high-accuracy and high-efficiency swirling turbulent flow simulation for multi-stage swirling combustors, providing a valuable reference for industrial applications.
- (2)
- The improved SATES-Mixed model shows better adaptability to complex flow features due to the complex geometric characteristics of the combustor. While maintaining sufficient accuracy, it reduces the grid sensitivity compared to conventional LES models.
- (3)
- In the dual-stage swirling combustor GTMC, the swirling flow structure exhibits a typical V-shaped configuration, and the PVC shows single-vortex-tube characteristics. The single-vortex-tube PVC demonstrates oscillation features at the root with periodic evolution of the vortex core. In the downstream region, the PVC structure evolves from large-scale vortex to small-scale vortex.
- (4)
- The three-stage swirler combustor flow features not only distinct PVC large-scale vortex structures but also strong unsteady flow characteristics including single-vortex-tube splitting into dual vortices and subsequent recombination. The interacting vortices exhibit temporal root-crossing and mid-section twisting interactions. The SATES-Mixed model accurately predicts these complex vortex systems, offering insights for flow field topology in industrial-relevant swirling combustors.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stöhr, M.; Boxx, I.; Carter, C.; Meier, W. Dynamics of Lean Blowout of a Swirl-Stabilized Flame in a Gas Turbine Model Combustor. Proc. Combust. Inst. 2011, 33, 2953–2960. [Google Scholar] [CrossRef]
- Steinberg, A.M.; Arndt, C.M.; Meier, W. Parametric Study of Vortex Structures and Their Dynamics in Swirl-Stabilized Combustion. Proc. Combust. Inst. 2013, 34, 3117–3125. [Google Scholar] [CrossRef]
- Terhaar, S.; Oberleithner, K.; Paschereit, C.O. Impact of Steam-Dilution on the Flame Shape and Coherent Structures in Swirl-Stabilized Combustors. Combust. Sci. Technol. 2014, 186, 889–911. [Google Scholar] [CrossRef]
- Syred, N. A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems. Prog. Energy Combust. Sci. 2006, 32, 93–161. [Google Scholar] [CrossRef]
- Spencer, A.; McGuirk, J.J.; Midgley, K. Vortex Breakdown in Swirling Fuel Injector Flows. J. Eng. Gas Turbines Power 2008, 130, 021503. [Google Scholar] [CrossRef]
- Candel, S.B. Combustion Dynamics and Control: Progress And Challenges. Proc. Combust. Inst. 2002, 29, 1–28. [Google Scholar] [CrossRef]
- Han, M.; Han, X.; Wang, X.; Li, L. Thermoacoustic Instabilities with Varying Geometries of the Main-Stage Exit in a Centrally Staged Burner. Phys. Fluids 2022, 34, 125112. [Google Scholar] [CrossRef]
- Paschereit, C.O.; Gutmark, E. The Effectiveness of Passive Combustion Control Methods. In American Society of Mechanical Engineers Digital Collection, Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, 14–17 June 2004; American Society of Mechanical Engineers: New York, NY, USA, 2008; pp. 361–374. [Google Scholar]
- Wu, Y.; Carlsson, C.; Szasz, R.; Peng, L.; Fuchs, L.; Bai, X.S. Effect of Geometrical Contraction on Vortex Breakdown of Swirling Turbulent Flow in a Model Combustor. Fuel 2016, 170, 210–225. [Google Scholar] [CrossRef]
- Liu, T.; Bai, F.; Zhao, Z.; Lin, Y.; Du, Q.; Peng, Z. Large Eddy Simulation Analysis on Confined Swirling Flows in a Gas Turbine Swirl Burner. Energies 2017, 10, 2081. [Google Scholar] [CrossRef]
- Candel, S.; Durox, D.; Schuller, T.; Bourgouin, J.-F.; Moeck, J.P. Dynamics of Swirling Flames. Annu. Rev. Fluid Mech. 2014, 46, 147–173. [Google Scholar] [CrossRef]
- Al-Abdeli, Y.M.; Masri, A.R. Precession and Recirculation in Turbulent Swirling Isothermal Jets. Combust. Sci. Technol. 2004, 176, 645–665. [Google Scholar] [CrossRef]
- Al-Abdeli, Y.M.; Masri, A.R. Review of Laboratory Swirl Burners and Experiments for Model Validation. Exp. Therm. Fluid Sci. 2015, 69, 178–196. [Google Scholar] [CrossRef]
- Masri, A.R. Challenges for Turbulent Combustion. Proc. Combust. Inst. 2021, 38, 121–155. [Google Scholar] [CrossRef]
- Ren, Z.; Lu, Z.; Hou, L.; Lu, L. Numerical Simulation of Turbulent Combustion: Scientific Challenges. Sci. China Phys. Mech. Astron. 2014, 57, 1495–1503. [Google Scholar] [CrossRef]
- Mani, M.; Dorgan, A.J. A Perspective on the State of Aerospace Computational Fluid Dynamics Technology. Annu. Rev. Fluid Mech. 2023, 55, 431–457. [Google Scholar] [CrossRef]
- Bose, S.T.; Park, G.I. Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows. Annu. Rev. Fluid Mech. 2018, 50, 535–561. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Larsson, J. Wall-Modeling in Large Eddy Simulation: Length Scales, Grid Resolution, and Accuracy. Phys. Fluids 2012, 24, 015105. [Google Scholar] [CrossRef]
- Luo, G.; Dai, H.; Dai, L.; Qian, Y.; Sha, C.; Zhang, Y.; Wu, B. Review on Large Eddy Simulation of Turbulent Premixed Combustion in Tubes. J. Therm. Sci. 2020, 29, 853–867. [Google Scholar] [CrossRef]
- Benim, A.C.; Deniz Canal, C.; Boke, Y.E. A Validation Study for RANS Based Modelling of Swirling Pulverized Fuel Flames. Energies 2021, 14, 7323. [Google Scholar] [CrossRef]
- Komarek, T.; Polifke, W. Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner. J. Eng. Gas Turbines Power 2010, 132, 061503. [Google Scholar] [CrossRef]
- Sentyabov, A.V.; Gavrilov, A.A.; Dekterev, A.A. Investigation of Turbulence Models for Computation of Swirling Flows. Thermophys. Aeromech. 2011, 18, 73–85. [Google Scholar] [CrossRef]
- Zhou, L. A Review for Measurements and Simulations of Swirling Gas-Particle Flows. Exp. Comput. Multiph. Flow 2023, 5, 133–141. [Google Scholar] [CrossRef]
- Chaouat, B. The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows. Flow Turbul. Combust. 2017, 99, 279–327. [Google Scholar] [CrossRef] [PubMed]
- Spalart, P.R. Strategies for Turbulence Modelling and Simulations. Int. J. Heat Fluid Flow 2000, 21, 252–263. [Google Scholar] [CrossRef]
- Spalart, P.R. Detached-Eddy Simulation. Annu. Rev. Fluid Mech. 2009, 41, 181–202. [Google Scholar] [CrossRef]
- Paik, J.; Sotiropoulos, F. Numerical Simulation of Strongly Swirling Turbulent Flows through an Abrupt Expansion. Int. J. Heat Fluid Flow 2010, 31, 390–400. [Google Scholar] [CrossRef]
- Hamba, F. Log-Layer Mismatch and Commutation Error in Hybrid RANS/LES Simulation of Channel Flow. Int. J. Heat Fluid Flow 2009, 30, 20–31. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, D.; Xu, J.; Tokhi, M.O.; Karimi, H.R. Predicting Unsteady Heat-Fluid Interaction Features and Nonlinear Acoustic Behaviors in Standing-Wave Thermoacoustic Engines Using Unsteady RANS, LES and Hybrid URANS/LES Methods. Int. Commun. Heat Mass Transf. 2023, 142, 106617. [Google Scholar] [CrossRef]
- Han, X.; Krajnović, S. An Efficient Very Large Eddy Simulation Model for Simulation of Turbulent Flow. Int. J. Numer. Methods Fluids 2013, 71, 1341–1360. [Google Scholar] [CrossRef]
- Han, X.; Krajnović, S. Validation of a Novel Very Large Eddy Simulation Method for Simulation of Turbulent Separated Flow. Int. J. Numer. Methods Fluids 2013, 73, 436–461. [Google Scholar] [CrossRef]
- Jeong, E.; Girimaji, S.S. Partially Averaged Navier–Stokes (PANS) Method for Turbulence Simulations—Flow Past a Square Cylinder. J. Fluids Eng. 2010, 132, 121203. [Google Scholar] [CrossRef]
- Foroutan, H.; Yavuzkurt, S. A Partially-Averaged Navier–Stokes Model for the Simulation of Turbulent Swirling Flow with Vortex Breakdown. Int. J. Heat Fluid Flow 2014, 50, 402–416. [Google Scholar] [CrossRef]
- Chaouat, B.; Schiestel, R. Hybrid RANS/LES Simulations of the Turbulent Flow over Periodic Hills at High Reynolds Number Using the PITM Method. Comput. Fluids 2013, 84, 279–300. [Google Scholar] [CrossRef]
- Lee, C.; Jiang, X. Flow Structures in Transitional and Turbulent Boundary Layers. Phys. Fluids 2019, 31, 111301. [Google Scholar] [CrossRef]
- Xia, Z.; Han, X.; Mao, J. Assessment and Validation of Very-Large-Eddy Simulation Turbulence Modeling for Strongly Swirling Turbulent Flow. AIAA J. 2020, 58, 148–163. [Google Scholar] [CrossRef]
- Wu, W.; Xie, N.; Min, Y.; Han, X.; Ma, Y.; Yan, Z. Self-Adaptive Turbulence Eddy Simulation for Complex Flows on a High-Order Finite Differencing PHengLEI-HyOrder Solver. Aeronaut. J. 2025, 129, 2036–2054. [Google Scholar] [CrossRef]
- Speziale, C.G. Turbulence Modeling for Time-Dependent RANS and VLES: A Review. AIAA J. 1998, 36, 173–184. [Google Scholar] [CrossRef]
- Nicoud, F.; Ducros, F. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- Johansen, S.T.; Wu, J.; Shyy, W. Filter-Based Unsteady RANS Computations. Int. J. Heat Fluid Flow 2004, 25, 10–21. [Google Scholar] [CrossRef]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Lyn, D.A.; Rodi, W. The Flapping Shear Layer Formed by Flow Separation from the Forward Corner of a Square Cylinder. J. Fluid Mech. 1994, 267, 353–376. [Google Scholar] [CrossRef]
- Bazdidi-Tehrani, F.; Bodaghi, D.; Kiamansouri, M. Large Eddy Simulation of Flow and Pollutant Dispersion in a Street Canyon: Analysis of Performance of Various Inflow Turbulence Generation Techniques. Environ. Fluid Mech. 2023, 23, 1283–1312. [Google Scholar] [CrossRef]
- Meier, U.; Heinze, J.; Freitag, S.; Hassa, C. Spray and Flame Structure of a Generic Injector at Aeroengine Conditions. J. Eng. Gas Turbines Power 2011, 134, 031503. [Google Scholar] [CrossRef]
- Meier, W.; Duan, X.R.; Weigand, P. Investigations of Swirl Flames in a Gas Turbine Model Combustor. Combust. Flame 2006, 144, 225–236. [Google Scholar] [CrossRef]
- Ali, A.B.S.; Kriaa, W.; Mhiri, H.; Bournot, P. Detached-Eddy Simulations (DES) of a Complex Swirl Stabilized Gas Turbine Model Combustor. Int. J. Energy Environ. 2016, 7, 397. [Google Scholar]
- Zhang, P.; Park, J.-W.; Wu, B.; Zhao, X. Large Eddy Simulation/Thickened Flame Model Simulations of a Lean Partially Premixed Gas Turbine Model Combustor. Combust. Theory Model. 2021, 25, 1296–1323. [Google Scholar] [CrossRef]
- Widenhorn, A.; Noll, B.; Aigner, M. Numerical Characterization of the Reacting Flow in a Swirled Gasturbine Model Combustor. In High Performance Computing in Science and Engineering ’08; Nagel, W.E., Kröner, D.B., Resch, M.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 365–380. ISBN 978-3-540-88301-2. [Google Scholar]
- Widenhorn, A.; Noll, B.; Aigner, M. Numerical Study of a Non-Reacting Turbulent Flow in a Gas-Turbine Model Combustor. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Pope, S.B. Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows. New J. Phys. 2004, 6, 35. [Google Scholar] [CrossRef]
- Lilly, D.K. The Representation of Small-Scale Tubulence in Numerical Simulation Experiments. In Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights, NY, USA, 14–15 November 1966; pp. 195–210. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Wang, B.; Xia, Z.; Han, X. Validation of Self-Adaptive Turbulence Eddy Simulation for Double and Triple Swirling Turbulent Flows. Energies 2025, 18, 4249. https://doi.org/10.3390/en18164249
Chen T, Wang B, Xia Z, Han X. Validation of Self-Adaptive Turbulence Eddy Simulation for Double and Triple Swirling Turbulent Flows. Energies. 2025; 18(16):4249. https://doi.org/10.3390/en18164249
Chicago/Turabian StyleChen, Tao, Bo Wang, Zhaoyang Xia, and Xingsi Han. 2025. "Validation of Self-Adaptive Turbulence Eddy Simulation for Double and Triple Swirling Turbulent Flows" Energies 18, no. 16: 4249. https://doi.org/10.3390/en18164249
APA StyleChen, T., Wang, B., Xia, Z., & Han, X. (2025). Validation of Self-Adaptive Turbulence Eddy Simulation for Double and Triple Swirling Turbulent Flows. Energies, 18(16), 4249. https://doi.org/10.3390/en18164249