Improving Traps for Spotted Lanternflies, Lycorma delicatula (Hemiptera: Fulgoridae), by Leveraging Their Own Signals
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Sites and Timing
2.2. Trap Description
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoover, K.; Iavorivska, L.; Lavely, E.K.; Uyi, O.; Walsh, B.; Swackhamer, E.; Johnson, A.; Eissenstat, D.M. Effects of long-term feeding by spotted lanternfly (Hemiptera: Fulgoridae) on ecophysiology of common hardwood host trees. Environ. Entomol. 2023, 52, 888–899. [Google Scholar] [CrossRef]
- Barringer, L.E.; Donovall, L.R.; Spichiger, S.-E.; Lynch, D.; Henry, D. The first new world record of Lycorma delicatula (Insecta: Hemiptera: Fulgoridae). Entomol. News 2015, 125, 20–23. [Google Scholar] [CrossRef]
- Hao, Y.; Dietrich, C.H.; Dai, W. Structure and Sensilla of the Mouthparts of the Spotted Lanternfly Lycorma delicatula (Hemiptera: Fulgoromorpha: Fulgoridae), a Polyphagous Invasive Planthopper. PLoS ONE 2016, 11, e0156640. [Google Scholar] [CrossRef]
- Barringer, L.; Ciafré, C.M. Worldwide Feeding Host Plants of Spotted Lanternfly, with Significant Additions from North America. Environ. Entomol. 2020, 49, 999–1011. [Google Scholar] [CrossRef]
- Urban, J.M.; Leach, H. Biology and management of the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), in the United States. Annu. Rev. Entomol. 2023, 68, 151–167. [Google Scholar] [CrossRef]
- Dara, S.K.; Barringer, L.; Arthurs, S.P. Lycorma delicatula (Hemiptera: Fulgoridae): A new invasive pest in the United States. J. Integr. Pest Manag. 2015, 6, 20. [Google Scholar] [CrossRef]
- Urban, J.M. Perspective: Shedding light on spotted lanternfly impacts in the USA. Pest Manag. Sci. 2020, 76, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Fuller, A.K.; Augustine, B.C.; Clifton, E.H.; Hajek, A.E.; Blumenthal, A.; Beese, J.; Hurt, A.; Brown-Lima, C.J. Effectiveness of canine-assisted surveillance and human searches for early detection of invasive spotted lanternfly. Ecosphere 2024, 15, e70113. [Google Scholar] [CrossRef]
- Keller, J.A.; Hoover, K. Approach to surveying egg masses of the invasive spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 2023, 52, 759–767. [Google Scholar] [CrossRef]
- Dechaine, A.C.; Sutphin, M.; Leskey, T.C.; Salom, S.M.; Kuhar, T.P.; Pfeiffer, D.G. Phenology of Lycorma delicatula (Hemiptera: Fulgoridae) in Virginia, USA. Environ. Entomol. 2021, 50, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bao, K.; Xin, B.; Cao, L.; Wei, K.; Dang, Y.; Yang, Z.; Lv, Z.; Wang, X. The biology and management of the invasive pest spotted lanternfly, Lycorma delicatula White (Hemiptera: Fulgoridae). J. Plant Dis. Prot. 2023, 130, 1155–1174. [Google Scholar] [CrossRef]
- Maciejewski, C.; Lippitt, K.; Ringholm, E.; Katzenmoyer, J.; Van Huynh, A. Using Google Trends to improve monitoring of the invasive spotted lanternfly in the United States. Biol. Invasions 2025, 27, 150. [Google Scholar] [CrossRef]
- Harner, A.D.; Leach, H.L.; Briggs, L.; Centinari, M. Prolonged phloem feeding by the spotted lanternfly, an invasive planthopper, alters resource allocation and inhibits gas exchange in grapevines. Plant Direct 2022, 6, e452. [Google Scholar] [CrossRef]
- Song, M.K. Damage by Lycorma delicatula and Chemical Control in Vineyards. Master’s Thesis, Chunbuk National University, Cheongju, Republic of Korea, 2010. [Google Scholar]
- Murman, K.; Setliff, G.P.; Pugh, C.V.; Toolan, M.J.; Canlas, I.; Cannon, S.; Abreu, L.; Fetchen, M.; Zhang, L.; Warden, M.L.; et al. Distribution, survival, and development of spotted lanternfly on host plants found in North America. Environ. Entomol. 2020, 49, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Nixon, L.J.; Jones, S.K.; Tang, L.; Urban, J.; Felton, K.; Leskey, T.C. Survivorship and development of the invasive Lycorma delicatula (Hemiptera: Fulgoridae) on wild and cultivated temperate host plants. Environ. Entomol. 2022, 51, 222–228. [Google Scholar] [CrossRef]
- Avanesyan, A.; Lamp, W.O. Use of molecular gut content analysis to decipher the range of food plants of the invasive spotted lanternfly, Lycorma delicatula. Insects 2020, 11, 215. [Google Scholar] [CrossRef]
- Leach, H.; Biddinger, D.J.; Krawczyk, G.; Smyers, E.; Urban, J.M. Evaluation of insecticides for control of the spotted lanternfly, Lycorma delicatula, (Hemiptera: Fulgoridae), a new pest of fruit in the Northeastern US. Crop Prot. 2019, 124, 104833. [Google Scholar] [CrossRef]
- Lewis, P.; Davila-Flores, A.; Wallis, E. An effective trap for spotted lanternfly egg masses. Front. Insect Sci. 2023, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Lee, G.-Y.; Shin, Y.-H.; Kim, G.-H. Chemical control effect against spot clothing wax cicada, Lycorma delicatula (Hemiptera: Fulgoridae) nymphs and adults. Korean J. Pestic. Sci. 2010, 14, 440–445. [Google Scholar]
- Ding, J.; Wu, Y.; Zheng, H.; Fu, W.; Reardon, R.; Liu, M. Assessing potential biological control of the invasive plant, tree-of-heaven, Ailanthus altissima. Biocontrol Sci. Technol. 2006, 16, 547–566. [Google Scholar]
- Gómez Marco, F.; Yanega, D.; Ruiz, M.; Hoddle, M.S. Proactive classical biological control of Lycorma delicatula (Hemiptera: Fulgoridae) in California (US): Host range testing of Anastatus orientalis (Hymenoptera: Eupelmidae). Front. Insect Sci. 2023, 3, 1134889. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Park, Y.-L.; Leskey, T.C. A review of biology and management of Lycorma delicatula (Hemiptera: Fulgoridae), an emerging global invasive species. J. Asia Pac. Entomol. 2019, 22, 589–596. [Google Scholar] [CrossRef]
- Park, J.-D.; Kim, M.-Y.; Lee, S.-G.; Shin, S.-C.; Kim, J.; Park, I.-K. Biological characteristics of Lycorma delicatula and the control effects of some insecticides. Korean J. Appl. Entomol. 2009, 48, 53–57. [Google Scholar] [CrossRef]
- Cooperband, M.F.; Wickham, J.; Cleary, K.; Spichiger, S.-E.; Zhang, L.; Baker, J.; Canlas, I.; Derstine, N.; Carrillo, D. Discovery of three kairomones in relation to trap and lure development for spotted lanternfly (Hemiptera: Fulgoridae). J. Econ. Entomol. 2019, 112, 671–682. [Google Scholar] [CrossRef]
- Desko, M.; Schiebel, C.; Silverman, S.; Bickel, J.; Felton, K.; Chandler, J.L. The Probability of Spotted Lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), Escape Differs Among Life Stages and Between Two Trapping Techniques Commonly Used by Landowners, Sticky Bands and Duct Tape. Great Lakes Entomol. 2020, 53, 10. [Google Scholar] [CrossRef]
- Choi, D.-S.; Kim, D.-I.; Ko, S.-J.; Kang, B.-R.; Park, J.-D.; Kim, S.-G.; Choi, K.-J. Environmentally-friendly control methods and forecasting the hatching time Lycorma delicatula (Hemiptera: Fulgoridae) in Jeonnam Province. Korean J. Appl. Entomol. 2012, 51, 371–376. [Google Scholar] [CrossRef]
- Francese, J.A.; Cooperband, M.F.; Murman, K.M.; Cannon, S.L.; Booth, E.G.; Devine, S.M.; Wallace, M.S. Developing traps for the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). Environ. Entomol. 2020, 49, 269–276. [Google Scholar] [CrossRef]
- Nixon, L.J.; Leach, H.; Barnes, C.; Urban, J.; Kirkpatrick, D.M.; Ludwick, D.C.; Short, B.; Pfeiffer, D.G.; Leskey, T.C. Development of behaviorally based monitoring and biosurveillance tools for the invasive spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 2020, 49, 1117–1126. [Google Scholar] [CrossRef]
- Booth, E.G.; Devine, S.M.; Franzen, E.K.L.; Murman, K.M.; Cooperband, M.F.; Francese, J.A. Improving survey methods for the spotted lanternfly (Hempitera: Fulgoridae): Influence of collection device, tree host, and lure on trap catch and detection. Forests 2025, 16, 1138. [Google Scholar] [CrossRef]
- Nixon, L.J.; Barnes, C.; Deecher, E.; Madalinska, K.; Nielsen, A.; Urban, J.; Leskey, T.C. Evaluating deployment strategies for spotted lanternfly (Lycorma delicatula Hemiptera: Fulgoridae) traps. J. Econ. Entomol. 2023, 116, 426–434. [Google Scholar] [CrossRef]
- Cooperband, M.F.; Wickham, J.; Warden, M. Factors guiding the orientation of nymphal spotted lanternfly, Lycorma delicatula. Insects 2023, 14, 279. [Google Scholar] [CrossRef] [PubMed]
- Faal, H.; Cooperband, M.F. Antennal sensitivity of spotted lanternflies, Lycorma delicatula: Differential electrophysiological responses of males and females to compounds derived from host plants and conspecifics. Insects 2024, 15, 162. [Google Scholar] [CrossRef] [PubMed]
- Dweck, H.K.M.; Rutledge, C.E. The subapical labial sensory organ of spotted lanternfly Lycorma delicatula. Open Biol. 2024, 14, 230438. [Google Scholar] [CrossRef] [PubMed]
- Derstine, N.T.; Meier, L.; Canlas, I.; Murman, K.; Cannon, S.; Carrillo, D.; Wallace, M.; Cooperband, M.F. Plant volatiles help mediate host plant selection and attraction of the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae): A generalist with a preferred host. Environ. Entomol. 2020, 49, 1049–1062. [Google Scholar] [CrossRef] [PubMed]
- Cooperband, M.F.; Murman, K.M. Spotted lanternflies respond to natural pheromone lures for mate-finding and oviposition. Insects 2024, 15, 447. [Google Scholar] [CrossRef]
- Faal, H.; Canlas, I.; Carrillo, D.; Cooperband, M.F. Evidence of pheromone use in a fulgorid, spotted lanternfly. Forests 2022, 13, 1639. [Google Scholar] [CrossRef]
- Faal, H.; Canlas, I.J.; Cossé, A.; Jones, T.H.; Carrillo, D.; Cooperband, M.F. Investigating photodegredation of spotted lanternfly body volatiles as a potential pheromone synthesis pathway. Insects 2023, 14, 551. [Google Scholar] [CrossRef]
- Faal, H.; Meier, L.R.; Canlas, I.J.; Murman, K.; Wallace, M.S.; Carrillo, D.; Cooperband, M.F. Volatiles from male honeydew excretions attract conspecific male spotted lanternflies, Lycorma delicatula (Hemiptera: Fulgoridae). Front. Insect Sci. 2022, 2, 982965. [Google Scholar] [CrossRef]
- Rohde, B.B.; Cooperband, M.F.; Canlas, I.; Mankin, R.W. Evidence of receptivity to vibroacoustic stimuli in the spotted lanternfly. J. Econ. Entomol. 2022, 115, 2116–2120. [Google Scholar] [CrossRef]
- Cooperband, M.F.; Dean, A.; Canlas, I.; Krugner, R.; Stella, S.; Murman, K.M.; Kaye, K.T. First Report of Vibrational Communication in a Fulgorid. In Forest Pest Methods Laboratory 2024 Accomplishment Report; Davila-Flores, A., Booth, E., Hoover, A., Eds.; Animal and Plant Health Inspection Service; U.S. Department of Agriculture: Buzzards Bay, MA, USA, 2025; p. 9. [Google Scholar]
- Tan, K.H.; Nishida, R.; Jang, E.B.; Shelly, T.E. Pheromones, male lures, and trapping of tephritid fruit flies. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies: Lures, Area-Wide programs, and Trade Implications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 15–74. [Google Scholar]
- Suckling, D.M.; Levy, M.C.; Roselli, G.; Mazzoni, V.; Ioriatti, C.; Deromedi, M.; Cristofaro, M.; Anfora, G. Live traps for adult brown marmorated stink bugs. Insects 2019, 10, 376. [Google Scholar] [CrossRef]
- D’adamo, P.; Lozada, M.; Corley, J. Conspecifics enhance attraction of Vespula germanica (Hymenoptera: Vespidae) foragers to food baits. Ann. Entomol. Soc. Am. 2003, 96, 685–688. [Google Scholar] [CrossRef]
- Do Bae, S.; Kim, H.J.; Park, S.T. Attractiveness of conspecific stink bugs to adult stink bug-baited traps in soybean fields. J. Asia Pac. Entomol. 2012, 15, 148–151. [Google Scholar] [CrossRef]
- Allison, J.D.; Slippers, B.; Bouwer, M.; Hurley, B.P. Simulated leks increase the capture of female Sirex noctilio in the absence of host volatiles. Int. J. Pest Manag. 2021, 67, 58–64. [Google Scholar] [CrossRef]
- Kehat, M.; Genizi, A.; Greenberg, S. The use of traps baited with live females or synthetic pheromone as a tool for improving control programs of the cotton leaf-worm, Spodoptera littoralis (Boisd.), in cotton fields in Israel. Phytoparasitica 1975, 3, 3–18. [Google Scholar] [CrossRef]
- Landolt, P.J. Attraction of female cabbage looper moths (Lepidoptera: Noctuidae) to males in the field. Fla. Entomol. 1995, 78, 96–100. [Google Scholar] [CrossRef]
- Beroza, M.; Bierl, B.; Knipling, E.; Tardif, J. The activity of the gypsy moth sex attractant disparlure vs. that of the live female moth. J. Econ. Entomol. 1971, 64, 1527–1529. [Google Scholar] [CrossRef]
- Burks, C.S.; Higbee, B.S. Impact of trap design and density on effectiveness of a commercial pheromone lure for monitoring navel orangeworm (Lepidoptera: Pyralidae). J. Econ. Entomol. 2015, 108, 600–610. [Google Scholar] [CrossRef][Green Version]
- Calvin, D.D.; Keller, J.; Rost, J.; Walsh, B.; Biddinger, D.; Hoover, K.; Treichler, B.; Johnson, A.; Roush, R.T. Spotted Lanternfly (Hemiptera: Fulgoridae) Nymphal Dispersion Patterns and Their Influence on Field Experiments. Environ. Entomol. 2021, 50, 1490–1504. [Google Scholar] [CrossRef]
- Keena, M. What Would Spotted Lanternfly (Lycorma delicatula) Life History Look Like if it Established in Stockton, CA? In Proceedings of the 2024 Spotted Lanternfly Research & Technology Development Meeting, Wooster, OH, USA, 16–17 October 2024; pp. 3–4. [Google Scholar]
- Belouard, N.; Behm, J.E. Multiple paternity in the invasive spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 2023, 52, 949–955. [Google Scholar] [CrossRef]
- Cooperband, M.F.; Murman, K. Responses of adult spotted lanternflies to artificial aggregations composed of all males or females. Front. Insect Sci. 2022, 2, 981832. [Google Scholar] [CrossRef] [PubMed]
- Cardé, R.T. Defining attraction and aggregation pheromones: Teleological versus functional perspectives. J. Chem. Ecol. 2014, 40, 519–520. [Google Scholar] [CrossRef]
- Siderhurst, M.S.; Murman, K.M.; Kaye, K.T.; Wallace, M.S.; Cooperband, M.F. Radio telemetry and harmonic radar tracking of the spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae). Insects 2024, 15, 17. [Google Scholar] [CrossRef]
- Domingue, M.J.; Cooperband, M.F.; Baker, T.C. Skewed adult sex ratios observed early in the North American invasion of Lycorma delicatula (Hemiptera: Fulgoridae). J. Asia Pac. Entomol. 2020, 23, 425–429. [Google Scholar] [CrossRef]
- Liu, H.; Hunter, M. Spatial Distribution, Seasonal Dynamics, and Sex Ratio of Lycorma delicatula (Hemiptera: Fulgoridae) Adults on Tree of Heaven. Psyche A J. Entomol. 2022, 2022, 4775718. [Google Scholar] [CrossRef]
- Nakashita, A.; Wang, Y.; Lu, S.; Shimada, K.; Tsuchida, T. Ecology and genetic structure of the invasive spotted lanternfly Lycorma delicatula in Japan where its distribution is slowly expanding. Sci. Rep. 2022, 12, 1543. [Google Scholar] [CrossRef]
- Mazzoni, V.; Eriksson, A.; Anfora, G.; Lucchi, A.; Virant-Doberlet, M. Active space and the role of amplitude in plant-borne vibrational communication. In Studying Vibrational Communication; Springer: Berlin/Heidelberg, Germany, 2014; pp. 125–145. [Google Scholar]
- Mankin, R.; Arbogast, R.; Kendra, P.; Weaver, D. Active spaces of pheromone traps for Plodia interpunctella (Lepidoptera: Pyralidae) in enclosed environments. Environ. Entomol. 1999, 28, 557–565. [Google Scholar] [CrossRef]
- Linn, C., Jr.; Campbell, M.; Roelofs, W. Pheromone components and active spaces: What do moths smell and where do they smell it? Science 1987, 237, 650–652. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.D.; Tiller, B.; Windmill, J.F.; Krugner, R.; Narins, P.M. Transmission of the frequency components of the vibrational signal of the glassy-winged sharpshooter, Homalodisca vitripennis, within and between grapevines. J. Comp. Physiol. A 2019, 205, 783–791. [Google Scholar] [CrossRef]
- Schlyter, F. Sampling range, attraction range, and effective attraction radius: Estimates of trap efficiency and communication distance in coleopteran pheromone and host attractant systems 1. J. Appl. Entomol. 1992, 114, 439–454. [Google Scholar] [CrossRef]
- Hoddle, M.; Millar, J.; Hoddle, C.; Zou, Y.; McElfresh, J.; Lesch, S. Field optimization of the sex pheromone of Stenoma catenifer (Lepidoptera: Elachistidae): Evaluation of lure types, trap height, male flight distances, and number of traps needed per avocado orchard for detection. Bull. Entomol. Res. 2011, 101, 145–152. [Google Scholar] [CrossRef]
- Willis, M.A.; Murlis, J.; Cardé, R.T. Pheromone-mediated upwind flight of male gypsy moths, Lymantria dispar, in a forest. Physiol. Entomol. 1991, 16, 507–521. [Google Scholar] [CrossRef]
- Zapponi, L.; Nieri, R.; Zaffaroni-Caorsi, V.; Pugno, N.M.; Mazzoni, V. Vibrational calling signals improve the efficacy of pheromone traps to capture the brown marmorated stink bug. J. Pest Sci. 2023, 96, 587–597. [Google Scholar] [CrossRef]
- Fouani, J.M.; Bonet, M.; Zaffaroni-Caorsi, V.; Nieri, R.; Verrastro, V.; Anfora, G.; Mazzoni, V. Diel vibrational activity of Halyomorpha halys and its implications for enhancing bimodal traps. Entomol. Exp. Appl. 2024, 172, 1166–1175. [Google Scholar] [CrossRef]
Dates a,b | Rotation | Trapping Period | Block Samples (N) |
---|---|---|---|
2022 a | |||
8/2–8/16 | 1 | 4th to Early-1 | 13 |
8/16–8/30 | 2 | Early-1 to Early-2 | 13 |
9/13–9/27 | 3 c | Mid to Late-1 | 13 |
9/27–10/12 | 4 | Late-1 to Late-2 | 13 |
10/12–10/26 | 5 | Late-2 to Late-3 | 13 |
2023 a | |||
7/24–8/14 | 1 | 4th to Early-1 | 13 |
8/14–8/28 | 2 | Early-1 | 14 |
8/28–9/11 | 3 | Early-2 | 14 |
9/11–9/25 | 4 | Mid to Late-1 | 14 |
9/25–10/10 | 5 | Late-1 to Late-2 | 14 |
10/10–10/25 | 6 | Late-2 to Late-3 | 13 |
2024 b | |||
7/17–8/6 | 1 | 4th to Early-1 | 26 |
8/7–8/23 | 2 | Early-1 | 32 |
8/24–9/8 | 3 | Early-2 | 23 |
9/9–9/20 | 4 | Mid | 20 |
9/21–10/4 | 5 | Late-1 | 26 |
10/5–10/18 | 6 | Late-2 | 20 |
10/19–11/6 | 7 | Late-3 | 19 |
Stage | Treatment | Alive (%) | Feeding Posture (%) | Total SLF (Dead + Alive) |
---|---|---|---|---|
4th instar | ||||
Mesh | 4 (29%) | 1 (7%) | 14 | |
Plastic | 1 (6%) | - | 17 | |
Adult | ||||
Mesh | 708 (45%) | 375 (24%) | 1558 | |
Plastic | 6 (1%) | - | 521 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooperband, M.F.; Murman, K.M. Improving Traps for Spotted Lanternflies, Lycorma delicatula (Hemiptera: Fulgoridae), by Leveraging Their Own Signals. Insects 2025, 16, 930. https://doi.org/10.3390/insects16090930
Cooperband MF, Murman KM. Improving Traps for Spotted Lanternflies, Lycorma delicatula (Hemiptera: Fulgoridae), by Leveraging Their Own Signals. Insects. 2025; 16(9):930. https://doi.org/10.3390/insects16090930
Chicago/Turabian StyleCooperband, Miriam F., and Kelly M. Murman. 2025. "Improving Traps for Spotted Lanternflies, Lycorma delicatula (Hemiptera: Fulgoridae), by Leveraging Their Own Signals" Insects 16, no. 9: 930. https://doi.org/10.3390/insects16090930
APA StyleCooperband, M. F., & Murman, K. M. (2025). Improving Traps for Spotted Lanternflies, Lycorma delicatula (Hemiptera: Fulgoridae), by Leveraging Their Own Signals. Insects, 16(9), 930. https://doi.org/10.3390/insects16090930