Artificial Intelligence in Clinical Medicine: Challenges Across Diagnostic Imaging, Clinical Decision Support, Surgery, Pathology, and Drug Discovery
Abstract
1. Introduction
2. Methods
2.1. Search Strategy and Selection Criteria
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Screening and Data Extraction
2.5. Quality Assessment
2.6. Statistical Analyses
3. Results
3.1. Diagnostic Imaging (Radiology)
3.2. Clinical Decision Support Systems
3.3. Surgery and Robotics
3.4. Pathology (Digital and Computational Pathology)
3.5. AI in Diagnosis
3.6. AI in Prognostication and Ancillary Testing
3.7. Drug Discovery and Development
4. Discussion
4.1. Summary of Key Findings
4.2. Integration and Human–AI Synergy
4.3. Challenges and Limitations
4.4. Black Box Transparency
4.5. Regulatory and Validation Hurdles
4.6. Ethical and Legal Considerations
4.7. Future Directions
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | List |
AI | Artificial Intelligence |
AUC | Area Under the Curve |
CAMELYON | Cancer Metastases in Lymph Nodes |
CDSS | Clinical Decision Support System(s) |
CONSORT-AI | Consolidated Standards of Reporting Trials—Artificial Intelligence |
CT | Computed Tomography |
ECG | Electrocardiogram |
EHR | Electronic Health Record(s) |
FDA | Food and Drug Administration |
ICU | Intensive Care Unit |
MeSH | Medical Subject Headings |
ML | Machine Learning |
MRI | Magnetic Resonance Imaging |
NLP | Natural Language Processing |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
ROC | Receiver Operating Characteristic |
SD | Standard Deviation |
SPIRIT-AI | Standard Protocol Items: Recommendations for Interventional Trials–Artificial Intelligence |
References
- Buchanan, B.G.; Shortliffe, E.H. Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project; The Addison-Wesley Series in Artificial Intelligence; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1984. [Google Scholar]
- Najjar, R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics 2023, 13, 2760. [Google Scholar] [CrossRef] [PubMed]
- Shortliffe, E. Computer-Based Medical Consultations: MYCIN; Elsevier: Amsterdam, The Netherlands, 2012; Volume 2. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Rodriguez-Ruiz, A.; Lång, K.; Gubern-Merida, A.; Broeders, M.; Gennaro, G.; Clauser, P.; Helbich, T.H.; Chevalier, M.; Tan, T.; Mertelmeier, T.; et al. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison with 101 Radiologists. J. Natl. Cancer Inst. 2019, 111, 916–922. [Google Scholar] [CrossRef]
- Vasey, B.; Ursprung, S.; Beddoe, B.; Taylor, E.H.; Marlow, N.; Bilbro, N.; Watkinson, P.; McCulloch, P. Association of Clinician Diagnostic Performance with Machine Learning-Based Decision Support Systems: A Systematic Review. JAMA Netw. Open 2021, 4, e211276. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Ogut, E.; Yildirim, F.B.; Senol, Y.; Senol, A.U. Comprehensive evaluation of the educational impact and effectiveness of specialized study modules in cross-sectional anatomy: A study on student engagement and learning outcomes. BMC Med. Educ. 2025, 25, 514. [Google Scholar] [CrossRef]
- Ogut, E. Anatomical and clinical relevance of Kager’s triangle: Diagnostic approaches and therapeutic implications for related pathologies. J. Orthop. Surg. Res. 2025, 20, 682. [Google Scholar] [CrossRef]
- Qiang, B.; Chen, R.; Zhou, M.; Pang, Y.; Zhai, Y.; Yang, M. Convolutional Neural Networks-Based Object Detection Algorithm by Jointing Semantic Segmentation for Images. Sensors 2020, 20, 5080. [Google Scholar] [CrossRef] [PubMed]
- Salehi, A.W.; Khan, S.; Gupta, G.; Alabduallah, B.I.; Almjally, A.; Alsolai, H.; Siddiqui, T.; Mellit, A. A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope. Sustainability 2023, 15, 5930. [Google Scholar] [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Tabuchi, H.; Ishitobi, N.; Deguchi, H.; Nakaniida, Y.; Tanaka, H.; Akada, M.; Tanabe, M. Large-scale observational study of AI-based patient and surgical material verification system in ophthalmology: Real-world evaluation in 37 529 cases. BMJ Qual. Saf. 2025, 34, 433–442. [Google Scholar] [CrossRef]
- Heo, J. Application of Artificial Intelligence in Acute Ischemic Stroke: A Scoping Review. Neurointervention 2025, 20, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Melo Sierra, N.; Hernández Rincón, E.H.; Osorio Betancourt, G.A.; Ramos Chaparro, P.A.; Diaz Quijano, D.M.; Barbosa, S.D.; Hernandez Restrepo, M.; Uriza Sinisterra, G. Use of artificial intelligence in the management of stroke: Scoping review. Front. Radiol. 2025, 5, 1593397. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Wang, X.; Zhao, Y. A calibrated deep learning ensemble for abnormality detection in musculoskeletal radiographs. Sci. Rep. 2021, 11, 9097. [Google Scholar] [CrossRef]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 2018, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J.; et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef]
- Varghese, C.; Harrison, E.M.; O’Grady, G.; Topol, E.J. Artificial intelligence in surgery. Nat. Med. 2024, 30, 1257–1268. [Google Scholar] [CrossRef]
- Försch, S.; Klauschen, F.; Hufnagl, P.; Roth, W. Artificial Intelligence in Pathology. Dtsch. Arztebl. Int. 2021, 118, 194–204. [Google Scholar] [CrossRef]
- Ocana, A.; Pandiella, A.; Privat, C.; Bravo, I.; Luengo-Oroz, M.; Amir, E.; Gyorffy, B. Integrating artificial intelligence in drug discovery and early drug development: A transformative approach. Biomark. Res. 2025, 13, 45. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Mayo, R.C.; Kent, D.; Sen, L.C.; Kapoor, M.; Leung, J.W.T.; Watanabe, A.T. Reduction of False-Positive Markings on Mammograms: A Retrospective Comparison Study Using an Artificial Intelligence-Based CAD. J. Digit. Imaging 2019, 32, 618–624. [Google Scholar] [CrossRef]
- Goisauf, M.; Cano Abadía, M. Ethics of AI in Radiology: A Review of Ethical and Societal Implications. Front. Big Data 2022, 5, 850383. [Google Scholar] [CrossRef]
- Ibrahim, H.; Liu, X.; Rivera, S.C.; Moher, D.; Chan, A.W.; Sydes, M.R.; Calvert, M.J.; Denniston, A.K. Reporting guidelines for clinical trials of artificial intelligence interventions: The SPIRIT-AI and CONSORT-AI guidelines. Trials 2021, 22, 11. [Google Scholar] [CrossRef]
- Chen, W.; Liu, X.; Zhang, S.; Chen, S. Artificial intelligence for drug discovery: Resources, methods, and applications. Mol. Ther. Nucleic Acids 2023, 31, 691–702. [Google Scholar] [CrossRef]
- Abbaker, N.; Minervini, F.; Guttadauro, A.; Solli, P.; Cioffi, U.; Scarci, M. The future of artificial intelligence in thoracic surgery for non-small cell lung cancer treatment a narrative review. Front. Oncol. 2024, 14, 1347464. [Google Scholar] [CrossRef]
- Grossarth, S.; Mosley, D.; Madden, C.; Ike, J.; Smith, I.; Huo, Y.; Wheless, L. Recent Advances in Melanoma Diagnosis and Prognosis Using Machine Learning Methods. Curr. Oncol. Rep. 2023, 25, 635–645. [Google Scholar] [CrossRef]
- Lin, T.H.; Chung, H.Y.; Jian, M.J.; Chang, C.K.; Lin, H.H.; Yen, C.T.; Tang, S.H.; Pan, P.C.; Perng, C.L.; Chang, F.Y.; et al. AI-Driven Innovations for Early Sepsis Detection by Combining Predictive Accuracy with Blood Count Analysis in an Emergency Setting: Retrospective Study. J. Med. Internet Res. 2025, 27, e56155. [Google Scholar] [CrossRef]
- Malheiro, V.; Santos, B.; Figueiras, A.; Mascarenhas-Melo, F. The Potential of Artificial Intelligence in Pharmaceutical Innovation: From Drug Discovery to Clinical Trials. Pharmaceuticals 2025, 18, 788. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Ogut, E. Mathematical and Dynamic Modeling of the Anatomical Localization of the Insula in the Brain. Neuroinformatics 2025, 23, 29. [Google Scholar] [CrossRef]
- Shademan, M.; Mei, H.; van Engelen, B.; Ariyurek, Y.; Kloet, S.; Raz, V. PABPN1 loss-of-function causes APA-shift in oculopharyngeal muscular dystrophy. HGG Adv. 2024, 5, 100269. [Google Scholar] [CrossRef]
- Rosenthal, J.; Beecy, A.; Sabuncu, M. Rethinking clinical trials for medical AI with dynamic deployments of adaptive systems. NPJ Digit. Med. 2025, 8, 252. [Google Scholar] [CrossRef] [PubMed]
- Alis, D.; Tanyel, T.; Meltem, E.; Seker, M.E.; Seker, D.; Karakaş, H.M.; Karaarslan, E.; Öksüz, İ. Choosing the right artificial intelligence solutions for your radiology department: Key factors to consider. Diagn. Interv. Radiol. 2024, 30, 357–365. [Google Scholar] [CrossRef]
- Salinas, M.P.; Sepúlveda, J.; Hidalgo, L.; Peirano, D.; Morel, M.; Uribe, P.; Rotemberg, V.; Briones, J.; Mery, D.; Navarrete-Dechent, C. A systematic review and meta-analysis of artificial intelligence versus clinicians for skin cancer diagnosis. NPJ Digit. Med. 2024, 7, 125. [Google Scholar] [CrossRef]
- Khalifa, M.; Albadawy, M. AI in diagnostic imaging: Revolutionising accuracy and efficiency. Comput. Methods Programs Biomed. Update 2024, 5, 100146. [Google Scholar] [CrossRef]
- Oren, O.; Gersh, B.J.; Bhatt, D.L. Artificial intelligence in medical imaging: Switching from radiographic pathological data to clinically meaningful endpoints. Lancet Digit. Health 2020, 2, e486–e488. [Google Scholar] [CrossRef]
- Strubchevska, O.; Kozyk, M.; Kozyk, A.; Strubchevska, K. The Role of Artificial Intelligence in Diagnostic Radiology. Cureus 2024, 16, e72173. [Google Scholar] [CrossRef] [PubMed]
- Guni, A.; Varma, P.; Zhang, J.; Fehervari, M.; Ashrafian, H. Artificial Intelligence in Surgery: The Future is Now. Eur. Surg. Res. 2024, 65, 22–39. [Google Scholar] [CrossRef]
- Barut, C.; Ogut, E.; Karaer, E.; Yavuz, M. Anatomy Study Preferences of Medical Students in Relation to Gender, Academic Year and Geographical Distribution: Considerations for Anatomy Education Approaches. Bratisl. Med. J. 2025, 126, 482–498. [Google Scholar] [CrossRef]
- Koçak, B.; Ponsiglione, A.; Stanzione, A.; Bluethgen, C.; Santinha, J.; Ugga, L.; Huisman, M.; Klontzas, M.E.; Cannella, R.; Cuocolo, R. Bias in artificial intelligence for medical imaging: Fundamentals, detection, avoidance, mitigation, challenges, ethics, and prospects. Diagn. Interv. Radiol. 2024, 31, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Cruz Rivera, S.; Liu, X.; Chan, A.W.; Denniston, A.K.; Calvert, M.J. Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. Nat. Med. 2020, 26, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Acosta, J.N.; Shakeri, Z.; Ioannidis, J.P.A.; Topol, E.J.; Rajpurkar, P. Randomised controlled trials evaluating artificial intelligence in clinical practice: A scoping review. Lancet Digit. Health 2024, 6, e367–e373. [Google Scholar] [CrossRef]
- Duda, R.O.; Shortliffe, E.H. Expert Systems Research. Science 1983, 220, 261–268. [Google Scholar] [CrossRef] [PubMed]
Studies | Year | Topic | Clinical Area | AI Method | Key Findings |
---|---|---|---|---|---|
Najjar et al. [2] | 2023 | Lung nodule detection | Diagnostic Imaging (Radiology) | Deep Learning | Outperformed radiologists in CT imaging |
Rodriguez-Ruiz et al. [6] | 2019 | Breast cancer detection | Diagnostic Imaging (Radiology) | Deep Learning | Comparable accuracy to radiologists in mammography screening |
Vasey et al. [7] | 2021 | Clinical decision support effectiveness | Clinical Decision Support | ML | Mixed evidence on improving diagnostic accuracy |
Gulshan [13] | 2019 | AI in diabetic retinopathy screening | Diagnostic Imaging (Ophthalmology) | Deep Learning | Comparable performance to ophthalmologists in screening |
Heo et al. [15], Sierra et al. [16] | 2025 | AI in stroke imaging | Diagnostic Imaging (Radiology) | Deep Learning | Improved rapid identification of ischemic strokes |
Rajkomar et al. [18] | 2018 | Outcome prediction from EHR | Clinical Decision Support | Deep Learning | Accurate predictions of mortality, readmission, and length of stay |
Attia et al. [19] | 2019 | Electrocardiogram (ECG) analysis for atrial fibrillation | Clinical Decision Support | Deep Learning | Identified asymptomatic atrial fibrillation from normal ECG |
Varghese et al. [20] | 2024 | AI in surgery | Surgery | Robotics, Machine Learning | AI enhanced surgical precision and intraoperative guidance |
Försch et al. [21] | 2021 | AI detection of lymph node metastases | Pathology | Image Analysis | Improved pathologist sensitivity for metastatic detection |
Ocana et al. [22] | 2025 | AI in drug discovery | Drug Discovery | ML | Accelerated identification of therapeutic targets and drugs |
Jumper [23] | 2021 | AlphaFold for protein structure | Drug Discovery | Deep Learning | Predicted protein structures, aiding structure-based drug design |
Mayo et al. [24] | 2019 | AI-based mammography CAD | Diagnostic Imaging (Radiology) | Deep Learning | Reduced false-positive marks and improved efficiency |
Goisauf et al. [25] | 2022 | Ethics in AI for radiology | Diagnostic Imaging (Radiology) | Review | Highlighted transparency and ethical considerations |
Ibrahim et al. [26] | 2021 | AI guidelines (Clinical Trials) | General Clinical AI | Review | Established guidelines for clinical trials involving AI |
Chen et al. [27] | 2023 | AI methods in drug discovery | Drug Discovery | ML | Reviewed methodologies accelerating drug development |
Abbaker [28] | 2024 | AI for thoracic surgery in cancer treatment | Surgery | ML | Enabled detailed surgical skill evaluations |
Grossarth [29] | 2023 | AI prognostication in melanoma | Pathology | ML | Predicted 5-year survival accurately from pathology slides |
Lin et al. [30] | 2023 | AI early warning for sepsis | Clinical Decision Support | ML | High sensitivity for early sepsis detection in ICU |
Malheiro [31] | 2025 | AI-driven adaptive clinical trials | Drug Discovery | ML | Enabled adaptive trial designs for faster and efficient trials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogut, E. Artificial Intelligence in Clinical Medicine: Challenges Across Diagnostic Imaging, Clinical Decision Support, Surgery, Pathology, and Drug Discovery. Clin. Pract. 2025, 15, 169. https://doi.org/10.3390/clinpract15090169
Ogut E. Artificial Intelligence in Clinical Medicine: Challenges Across Diagnostic Imaging, Clinical Decision Support, Surgery, Pathology, and Drug Discovery. Clinics and Practice. 2025; 15(9):169. https://doi.org/10.3390/clinpract15090169
Chicago/Turabian StyleOgut, Eren. 2025. "Artificial Intelligence in Clinical Medicine: Challenges Across Diagnostic Imaging, Clinical Decision Support, Surgery, Pathology, and Drug Discovery" Clinics and Practice 15, no. 9: 169. https://doi.org/10.3390/clinpract15090169
APA StyleOgut, E. (2025). Artificial Intelligence in Clinical Medicine: Challenges Across Diagnostic Imaging, Clinical Decision Support, Surgery, Pathology, and Drug Discovery. Clinics and Practice, 15(9), 169. https://doi.org/10.3390/clinpract15090169