Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (577)

Search Parameters:
Keywords = mix recycled aggregates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9171 KB  
Article
Effects of Mineral Admixtures and Mixing Techniques on the Performance of Steel Fibre-Reinforced Recycled Aggregate Concrete
by Muhammad Qaisar and Muhammad Yaqub
Buildings 2025, 15(21), 4010; https://doi.org/10.3390/buildings15214010 - 6 Nov 2025
Viewed by 182
Abstract
In this work, the synergistic effects of mineral admixtures and advanced mixing processes are systematically accounted for steel fibre-reinforced recycled aggregate concrete (SFR-RAC). It studies the improvement of performance optimization in SFR-RAC, inherently weak ITZ by adding 0.5% hooked steel fibres and replacing [...] Read more.
In this work, the synergistic effects of mineral admixtures and advanced mixing processes are systematically accounted for steel fibre-reinforced recycled aggregate concrete (SFR-RAC). It studies the improvement of performance optimization in SFR-RAC, inherently weak ITZ by adding 0.5% hooked steel fibres and replacing cement with ground granulated blast furnace slag (25–50%), fly ash (20–40%) and silica fume (7–14%). The efficiency of double-mixing (DM) and triple-mixing (TM) procedures were comprehensively evaluated. Results showed that mineral admixtures could improve mortar-aggregate interface bond, and the triple-mix technique contributed to such improvement. The maximum performance was observed for the combination of 7%SF with triple mixing (7%SF-TM), which presented increased compressive, tensile and flexural strengths by 7–18%, 12–29%, and 16–31% respectively. The durability was significantly improved, and the water resistance could increase by 53% with addition of 7%SF-TM, chloride penetration depth reduced by 86% when incorporated with 25%GGBS-TM, acid attack decreased by 84% with addition of 14%SF-TM. Microstructural analysis (SEM, XRD) confirmed that these enhancements stem from a denser matrix and refined ITZ due to increased C–S–H formation. This study confirms that the strategic integration of fibre reinforcement, pozzolanic admixtures and optimized mixing protocols presents a viable pathway for producing sustainable concrete from construction waste. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 9776 KB  
Article
Development of Eco-Friendly Construction Materials for 3D Printing Using Fly Ash and Demolition Waste
by Marcin Maroszek, Magdalena Rudziewicz, Syed Muzammil Ali Shah, Doan Hung Tran and Marek Hebda
Buildings 2025, 15(21), 3988; https://doi.org/10.3390/buildings15213988 - 5 Nov 2025
Viewed by 333
Abstract
The study investigates the potential of using Vietnam fly ash (FA) as a substitute for traditional Portland cement to reduce both the volume of landfilled waste and the carbon footprint of concrete mixtures, while maintaining adequate mechanical performance of the produced elements. Additionally, [...] Read more.
The study investigates the potential of using Vietnam fly ash (FA) as a substitute for traditional Portland cement to reduce both the volume of landfilled waste and the carbon footprint of concrete mixtures, while maintaining adequate mechanical performance of the produced elements. Additionally, the incorporation of construction and demolition waste, recycled brick aggregate (BR), as a partial aggregate substitute was investigated to enhance the sustainability and resource efficiency of composite formulations. Five mixes, including a reference, were produced by casting and three-dimensional concrete printing (3DCP). Printability (flow table), water absorption (gravimetry and infrared thermography), and flexural/compressive behavior were assessed; printed specimens were tested parallel and perpendicular to the layer plane. Recycled additions reduced flow by 15–22%, yet all mixes remained printable. Printed specimens showed higher capillary uptake than cast ones. In flexure, modified mixtures composition exhibited 50% lower peak stress than the reference. Cast elements outperformed printed ones: the printed reference was 33% weaker than its cast counterpart, and other mixes were 10–15% lower. In compression, printed specimens loaded perpendicular to layers reached 6–7 MPa (35% below cast), whereas parallel loading yielded up to 3.5 MPa with larger scatter. The findings confirm the feasibility of utilizing secondary raw materials in 3DCP formulations to support resource efficiency and carbon footprint reduction in the construction industry. Full article
(This article belongs to the Topic Solid Waste Recycling in Civil Engineering Materials)
Show Figures

Figure 1

27 pages, 7061 KB  
Article
Evaluation of the Influence of Different Color Glass on Cementitious Mortar Properties
by Leonardo Caniato Martioli, Maria Eduarda Almeida Gomes, Cézar Augusto Casagrande, Marcelo Henrique F. Medeiros and Lidiane Fernanda Jochem
Buildings 2025, 15(21), 3925; https://doi.org/10.3390/buildings15213925 - 30 Oct 2025
Viewed by 275
Abstract
The growing generation of solid waste, driven by urbanization and industrialization, represents one of today’s greatest environmental challenges. The construction industry can play a key role in this scenario by incorporating recycling and waste reuse practices. Glass, a fully recyclable material, is still [...] Read more.
The growing generation of solid waste, driven by urbanization and industrialization, represents one of today’s greatest environmental challenges. The construction industry can play a key role in this scenario by incorporating recycling and waste reuse practices. Glass, a fully recyclable material, is still largely disposed of in landfills. A promising alternative is the use of ground glass in cementitious materials, partially or completely replacing cement or aggregates. Thus, in this paper, the effect of partially replacing Portland cement with ground glass of different colors including green, blue, transparent, amber, and colorful (all colors used mixed) in proportions of 15 and 35% in mortars was evaluated. The ground glasses were characterized by laser granulometry and chemical analysis. The properties of the mortars were then evaluated in the fresh and hardened state (apparent specific gravity, mechanical strength, water absorption, and open porosity). Regarding workability, the highest improvement observed was 6.8% for the 35% colored glass series compared to the reference series. In terms of entrapped air, there was an increase of up to 18.8% in the 35% green glass series. At 28 days of hydration, the 15% colored glass series obtained a 33% increase in flexural strength compared to the REF series. In the microstructure, it was found that a 15% glass presence was sufficient to reduce the portlandite index from 16.04 to 13.53, while a 35% glass presence was sufficient to reduce it to 7.51% portlandite, equivalent to a 54% reduction, suggesting significant potential for the reaction of the finer glass fractions with portlandite. This study suggests that the use of glass waste in a cementitious matrix can provide an environmentally appropriate alternative for recycling this material, contributing to a sustainable application and increased recycling rates of glass waste. Full article
Show Figures

Figure 1

32 pages, 18102 KB  
Article
Sustainable Concrete Using Porcelain and Clay Brick Waste as Partial Sand Replacement: Evaluation of Mechanical and Durability Properties
by Mustafa Thaer Hasan, Alaa A. Abdul-Hamead and Farhad M. Othman
Constr. Mater. 2025, 5(4), 78; https://doi.org/10.3390/constrmater5040078 - 29 Oct 2025
Viewed by 275
Abstract
The increasing demand for sustainable construction materials has prompted the recycling of construction and demolition waste in concrete manufacturing. This study investigates the feasibility of utilizing porcelain and brick waste as partial substitutes for natural sand in concrete with the objective of improving [...] Read more.
The increasing demand for sustainable construction materials has prompted the recycling of construction and demolition waste in concrete manufacturing. This study investigates the feasibility of utilizing porcelain and brick waste as partial substitutes for natural sand in concrete with the objective of improving sustainability and preserving mechanical and durability characteristics. The experimental program was conducted in three consecutive phases. During the initial phase, natural sand was partially substituted with porcelain waste powder (PWP) and brick waste powder (BWP) in proportions of 25%, 50%, and 75% of the weight of the fine aggregate. During the second phase, polypropylene fibers were mixed at a dosage of 0.5% by volume fraction to enhance tensile and flexural properties. During the third phase, zinc oxide nanoparticles (ZnO-NPs) were utilized as a partial substitute for cement at concentrations of 0.5% and 1% to improve microstructure and strength progression. Concrete samples were tested at curing durations of 7, 28, and 91 days. The assessed qualities encompassed workability, density, water absorption, porosity, compressive strength, flexural strength, and splitting tensile strength. Microstructural characterization was conducted utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The findings indicated that porcelain waste powder markedly surpassed brick waste powder in all mechanical and durability-related characteristics, particularly at 25% and 50% sand replacement ratios. The integration of polypropylene fibers enhanced fracture resistance and ductility. Moreover, the incorporation of zinc oxide nanoparticles improved hydration, optimized the pore structure, and resulted in significant enhancements in compressive and tensile strength throughout prolonged curing durations. The best results were obtained with a mix of 50% porcelain sand aggregate, 1% zinc oxide nanoparticles as cement replacement, and 0.5% polypropylene fibers, for which the improvements in compressive strength, flexural strength, and splitting tensile strength were 39.5%, 46.2%, and 60%, respectively, at 28 days. The results confirm the feasibility of using porcelain and brick waste as sand replacements in concrete, as well as polypropylene fiber-reinforced concrete and polypropylene fiber-reinforced concrete mixed with zinc oxide nanoparticles as a sustainable option for construction purposes. Full article
Show Figures

Figure 1

24 pages, 5172 KB  
Article
Reviving Urban Landscapes: Harnessing Pervious Concrete Pavements with Recycled Materials for Sustainable Stormwater Management
by Thilini A. Gunathilake, Kushan D. Siriwardhana, Nandika Miguntanna, Nadeeka Miguntanna, Upaka Rathnayake and Nitin Muttil
Water 2025, 17(21), 3096; https://doi.org/10.3390/w17213096 - 29 Oct 2025
Viewed by 340
Abstract
This study examines the effectiveness of pervious concrete pavements as a sustainable and cost-effective stormwater management technique, particularly by incorporating locally sourced recycled materials into their design. It evaluates the stormwater treatment potential of three pervious concrete pavement types incorporating recycled plastic, glass, [...] Read more.
This study examines the effectiveness of pervious concrete pavements as a sustainable and cost-effective stormwater management technique, particularly by incorporating locally sourced recycled materials into their design. It evaluates the stormwater treatment potential of three pervious concrete pavement types incorporating recycled plastic, glass, and crushed concrete aggregates, with six design variations produced using 25% and 50% replacements of coarse aggregates from these materials. The key properties of pervious concrete, namely compressive strength, porosity, unit weight, and infiltration, and key water quality indicators, namely pH, electrical conductivity (EC), total suspended solids (TSS), colour, turbidity, chemical oxygen demand (COD), nitrate (NO3), and orthophosphate (PO43−), were analysed. Results indicated an overall improvement in the quality of the stormwater runoff passed through all pervious concrete pavements irrespective of composition. Notable reductions in turbidity, TSS, colour, COD, PO43−, and NO3 underscored the effectiveness of pervious concrete containing waste materials in the treatment of stormwater runoff. Pervious concrete pavements with 25% recycled concrete exhibited optimal performance in reducing TSS, COD, and PO43− levels, while the 50% recycled concrete variant excelled in diminishing turbidity. However, the study found that the use of recycled materials in pervious concrete pavements affects properties like compressive strength and infiltration rate differently. While incorporating 25% and 50% recycled concrete aggregates did not significantly reduce compressive strength, the effectiveness of stormwater treatment varied based on the mix design and type of recycled material used. Thus, this study highlights the potential of utilizing recycled waste materials in pervious concrete pavements for sustainable stormwater management. Full article
Show Figures

Figure 1

23 pages, 5738 KB  
Article
Study on Alkali-Activated Slag Mortar Based on Co-Modified Recycled Fine Aggregate with Nano-SiO2 and Sodium Silicate Integrating Waste Liquid Recycling
by Qiushi Su, Changbai Wang, Jimin Liu and Qinghua Liu
Materials 2025, 18(21), 4889; https://doi.org/10.3390/ma18214889 - 25 Oct 2025
Viewed by 423
Abstract
The widespread use of recycled fine aggregate (RFA) is hindered by its porous and weak adhered mortar. In this study, a nano-SiO2–sodium silicate mixed solution (NMS) was used to soak and strengthen the adhered mortar. Alkali-activated slag was adopted as the [...] Read more.
The widespread use of recycled fine aggregate (RFA) is hindered by its porous and weak adhered mortar. In this study, a nano-SiO2–sodium silicate mixed solution (NMS) was used to soak and strengthen the adhered mortar. Alkali-activated slag was adopted as the cementitious material, and the resulting treated waste liquid (RNMS) was recycled as a sodium silicate source for the alkali activator. The effects of modified RFA (MRFA) incorporation and RNMS use on the performance, economic, and environmental benefits of alkali-activated slag recycled fine aggregate mortar (AASRM) were evaluated. Compared with the control group, mortars using only MRFA showed significantly improved performance, with a 28-day compressive strength increase of 57.6% (reaching 38.3 MPa) and enhanced workability. The capillary water absorption and 90-day drying shrinkage rates decreased by 49.5% and 40.2%, respectively. Microstructural analysis revealed that NMS treatment promoted the formation of additional C-(N)-A-S-H gel, thereby densifying the surface of the RFA and strengthening the interfacial transition zone (ITZ). More importantly, using RNMS as the alkali activator source maintained the excellent performance of the AASRM mortar, with the compressive strength reaching 95.6% of that prepared with a fresh alkali activator, while effectively reducing material costs and embodied carbon. This study not only successfully applies MRFA in alkali-activated mortar systems but also provides an effective approach for the in situ recycling of treated waste liquid. Full article
Show Figures

Figure 1

23 pages, 5320 KB  
Article
Mechanical and Fatigue Performance of Recycled Concrete Aggregate Blended with Waste Tyre Rubber Stabilised with Slag for Pavement Application
by Fatima Juveria, Janitha Migunthanna, Pathmanathan Rajeev and Jay Sanjayan
Buildings 2025, 15(21), 3852; https://doi.org/10.3390/buildings15213852 - 24 Oct 2025
Viewed by 277
Abstract
Waste tyre rubber (TR) from end-of-life tyres poses a major environmental challenge. Therefore, recycling this waste into useful applications contributes to sustainable waste management strategies and supports a circular economy. Rubber possesses properties that can enhance the flexibility and ductility of pavements, making [...] Read more.
Waste tyre rubber (TR) from end-of-life tyres poses a major environmental challenge. Therefore, recycling this waste into useful applications contributes to sustainable waste management strategies and supports a circular economy. Rubber possesses properties that can enhance the flexibility and ductility of pavements, making it a feasible material for use in road infrastructure. This study investigates the mechanical and fatigue performance of recycled concrete aggregates (RCA) mixed with waste TR. RCA was partially replaced at three different levels: 5%, 10% and 15% by weight. To mitigate the loss in mechanical strength associated with rubber inclusion, the TR + RCA mixes were stabilised through geopolymerisation using slag as a precursor. The unconfined compressive strength (UCS) increased with higher binder content. For instance, the mix containing 15% TR and stabilised with 5% slag geopolymer achieved a UCS of only 0.7 MPa, whereas increasing the binder content to 15% raised the UCS to 2.2 MPa. Similarly, resilient modulus improved with increasing slag content. Results from the four-point bending fatigue test showed that replacing RCA with rubber particles enhanced the fatigue performance of the mixes. The initial fatigue modulus of 100% RCA mix stabilised with 15% binder was 13,690 MPa, which reduced to 9740 MPa when 10% TR was introduced. In contrast, the number of cycles to reach half the initial modulus increased by four times when the TR content was raised from 0% to 15%. Microstructural observations of the slag-stabilised TR + RCA mixes showed improved microstructure due to geopolymerisation. Only insignificant traces of arsenic (<0.0008 mg/L) and barium (<0.000208 mg/L) were present in the TR + RCA mixes, while all other concerning heavy metals, including mercury and lead, were not detected in the leaching test. This indicates that there is no potential risk of soil or groundwater contamination, confirming the environmental safety of using slag geopolymer-stabilised TR + RCA mixes in subbase applications. Full article
(This article belongs to the Special Issue Analysis of Performance in Green Concrete Structures)
Show Figures

Figure 1

29 pages, 2291 KB  
Systematic Review
Emerging Trends in the Use of Recycled Sand in Mortar: A Systematic Review
by Thaís Renata de S. Sampaio, Rodrigo Pierott, Carina Mariane Stolz, Mayara Amario and Assed N. Haddad
Buildings 2025, 15(21), 3841; https://doi.org/10.3390/buildings15213841 - 24 Oct 2025
Viewed by 359
Abstract
This systematic review applies the PRISMA methodology (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) to evaluate the use of recycled sand, obtained from construction and demolition waste (CDW), in mortars for civil construction. A total of 24 studies published between 2020 and [...] Read more.
This systematic review applies the PRISMA methodology (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) to evaluate the use of recycled sand, obtained from construction and demolition waste (CDW), in mortars for civil construction. A total of 24 studies published between 2020 and 2025 were analyzed, retrieved from the Scopus and Web of Science databases. The main objective is to assess the technical feasibility and environmental benefits of recycled sand in mortars, while addressing research gaps such as the lack of standardized methodologies and the limited understanding of durability at higher replacement levels. Given the significant resource consumption and waste generation in the construction sector, the study highlights emerging trends in adopting recycled sand as a sustainable alternative to natural aggregates. Findings indicate that optimal replacement levels range between 30 and 50% in ordinary Portland cement (OPC) mortars, and up to 100% in geopolymer mixtures when appropriate processing and activation methods are applied, without compromising mechanical performance. Reported benefits include cost reduction, lower carbon footprint, and enhanced compactness. However, challenges such as higher porosity and the need for optimized mix designs, and high heterogeneity of CDW sources and processing methods remain. Overall, the review confirms that recycled sand is a technically viable and environmentally beneficial material for mortar production, though future research must focus on harmonizing test protocols and long-term performance evaluation. In addition, a bibliometric analysis was conducted to map scientific output on this topic, identifying key countries, journals, and publication trends. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

37 pages, 8931 KB  
Article
Predicting the Properties of Polypropylene Fiber Recycled Aggregate Concrete Using Response Surface Methodology and Machine Learning
by Hany A. Dahish and Mohammed K. Alkharisi
Buildings 2025, 15(20), 3709; https://doi.org/10.3390/buildings15203709 - 15 Oct 2025
Viewed by 334
Abstract
The use of recycled coarse aggregate (RCA) concrete and polypropylene fibers (PPFs) presents a sustainable alternative in concrete production. However, the non-linear and interactive effects of RCA and PPF on both fresh and hardened properties are not yet fully quantified. This study employs [...] Read more.
The use of recycled coarse aggregate (RCA) concrete and polypropylene fibers (PPFs) presents a sustainable alternative in concrete production. However, the non-linear and interactive effects of RCA and PPF on both fresh and hardened properties are not yet fully quantified. This study employs Response Surface Methodology (RSM) and the Random Forest (RF) algorithm with K-fold cross-validation to predict the combined effect of using recycled coarse aggregate (RCA) as a partial replacement for natural coarse aggregate and polypropylene fiber (PPF) on the engineering properties of RCA-PPF concrete, addressing the critical need for a robust, data-driven modeling framework. A dataset of 144 tested samples obtained from literature was utilized to develop and validate the prediction models. Three input variables were considered in developing the proposed prediction models, namely, RCA, PPF, and curing age (Age). The examined responses were compressive strength (CS), tensile strength (TS), ultrasonic pulse velocity (UPV), and water absorption (WA). To assess the developed models, statistical metrics were calculated, and analysis of variance (ANOVA) was employed. Afterwards, the responses were optimized using optimization in RSM. The optimal results of responses by maximizing TS, CS, and UPV and minimizing WA were achieved at a PPF of 3% by volume of concrete and an RCA of approximately 100% replacing natural coarse aggregate, highlighting optimal reuse of recycled aggregate, with an AGE of 83.6 days. The RF model demonstrated superior performance, significantly outperforming the RSM model. Feature importance analysis via SHAP values was employed to identify the most effective parameters on the predictions. The results confirm that ML techniques provide a powerful and accurate tool for optimizing sustainable concrete mixes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 2721 KB  
Article
Compressive Strength Prediction of Green Concrete with Recycled Glass-Fiber-Reinforced Polymers Using a Machine Learning Approach
by Pouyan Fakharian, Reza Bazrgary, Ali Ghorbani, Davoud Tavakoli and Younes Nouri
Polymers 2025, 17(20), 2731; https://doi.org/10.3390/polym17202731 - 11 Oct 2025
Viewed by 719
Abstract
Fiber-reinforced polymer (FRP) materials are increasingly used in the construction and transportation industries, generating growing volumes of waste. This study applied a machine learning model to predict the compressive strength of eco-friendly concrete incorporating recycled glass-fiber-reinforced polymer (GFRP) waste. Based on 119 laboratory [...] Read more.
Fiber-reinforced polymer (FRP) materials are increasingly used in the construction and transportation industries, generating growing volumes of waste. This study applied a machine learning model to predict the compressive strength of eco-friendly concrete incorporating recycled glass-fiber-reinforced polymer (GFRP) waste. Based on 119 laboratory mixes, the model achieved a good prediction accuracy (R2 = 0.8284 on the test set). The analysis indicated that compressive strength tends to decrease at higher GFRP dosages, with relatively favorable performance observed at low contents. The two most influential factors were the water-to-cement ratio and the total GFRP content. The physical form of the recycled material was also important: powders and fibers generally showed positive effects, while coarse aggregate replacement was less effective. This machine learning-based approach offers preliminary quantitative guidance on mix design with GFRP waste and highlights opportunities for reusing industrial by-products in more sustainable concretes. Full article
Show Figures

Figure 1

20 pages, 3124 KB  
Article
Research and Application of Assembled SC Coal Gangue External Wallboard
by Yajie Yan, Jisen Yang, Jinhui Wu, Le Yang, Qiang Zhao and Peipeng Wang
Buildings 2025, 15(19), 3545; https://doi.org/10.3390/buildings15193545 - 2 Oct 2025
Viewed by 345
Abstract
Given that the stock of coal gangue is increasing annually, and especially considering the problem of resource utilization after the spontaneous combustion of coal gangue accumulations with large thickness, the post-spontaneous combustion of coal gangue (SC coal gangue) from Yangquan, Shanxi, was selected [...] Read more.
Given that the stock of coal gangue is increasing annually, and especially considering the problem of resource utilization after the spontaneous combustion of coal gangue accumulations with large thickness, the post-spontaneous combustion of coal gangue (SC coal gangue) from Yangquan, Shanxi, was selected as a research object. After crushing and screening, SC coal gangue was used as a coarse and fine aggregate, and through concrete mix design and a trial mix of concrete and mix ratio adjustment, concrete of strength grade C20 was obtained. Through experiments, the strength, elastic modulus, frost resistance, carbonation depth and other performance indicators of the concrete were measured. Using the SC coal gangue concrete, a 20 mm thick SC coal gangue panel was designed and manufactured. Through experimental tests, the bearing capacity, hanging force, impact resistance, impermeability and other properties of the board met the requirements of the relevant standards for building wallboard. For the SC coal gangue panel composite rock wool, its heat transfer coefficient decreased by 34.0%, air sound insulation was 45 dB, and the self-weight of the external wallboard was reduced by 37.5%, so the related performance was better than the requirements of the current standard. The research results have been successfully applied to an office building project in Shanxi, China. Using SC coal gangue to make the external wallboard of the building, the reduction and recycling of solid waste are realized. In addition, the production of wall panels has been industrialized, thereby improving the construction efficiency. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 694 KB  
Article
Mechanical Performance and Durability of Concretes with Partial Replacement of Natural Aggregates by Construction and Demolition Waste
by Thamires Alves da Silveira, Rafaella dos Passos Nörnberg, Marcelo Subtil Santi, Renata Rabassa Morales, Alessandra Buss Tessaro, Hebert Luis Rosseto, Rafael de Avila Delucis and Guilherme Hoehr Trindade
Waste 2025, 3(4), 32; https://doi.org/10.3390/waste3040032 - 30 Sep 2025
Viewed by 407
Abstract
This study investigated the mechanical performance and durability of concretes produced with varying proportions of recycled coarse aggregate from construction and demolition waste (CDW), ranging from 0% to 100% replacement of natural coarse aggregate, using recycled aggregates derived from crushed concrete and mortar [...] Read more.
This study investigated the mechanical performance and durability of concretes produced with varying proportions of recycled coarse aggregate from construction and demolition waste (CDW), ranging from 0% to 100% replacement of natural coarse aggregate, using recycled aggregates derived from crushed concrete and mortar debris, characterized by lower density and high water absorption (~9%) compared to natural aggregates. A key contribution of this research lies in the inclusion of intermediate replacement levels (20%, 25%, 45%, 50%, and 65%), which are less explored in the literature and allow a more refined identification of performance thresholds. Fresh-state parameters (slump), axial compressive strength (7 and 28 days), total immersion water absorption, sorptivity, and chloride ion penetration depth (after 90 days of immersion in a 3.5% NaCl solution) were evaluated. The results indicate that, up to 50% CDW content, the concrete maintains slump (≥94 mm), characteristic strength (≥37.2 MPa at 28 days), and chloride penetration (≤14.1 mm) within the limits for moderate exposure conditions, in accordance with ABNT: NBR 6118. Water absorption doubled from 4.5% (0% CDW) to 9.5% (100% CDW), reflecting the higher porosity and adhered mortar on the recycled aggregate, which necessitates adjustments to the water–cement ratio and SSD pre-conditioning to preserve workability and minimize sorptivity. Concretes with more than 65% CDW exhibited chloride penetration depths exceeding 15 mm, potentially compromising durability without additional mitigation. The judicious incorporation of CDW, combined with optimized mix design practices and the use of supplementary cementitious materials (SCMs), demonstrates technical viability for reducing environmental impacts without significantly impairing the structural performance or service life of the concrete. Full article
(This article belongs to the Special Issue Use of Waste Materials in Construction Industry)
Show Figures

Graphical abstract

37 pages, 2119 KB  
Review
Recycled Components in 3D Concrete Printing Mixes: A Review
by Marcin Maroszek, Magdalena Rudziewicz and Marek Hebda
Materials 2025, 18(19), 4517; https://doi.org/10.3390/ma18194517 - 28 Sep 2025
Cited by 1 | Viewed by 1655
Abstract
Rapid population growth and accelerating urbanization are intensifying the demand for construction materials, particularly concrete, which is predominantly produced with Portland cement and natural aggregates. This reliance imposes substantial environmental burdens through resource depletion and greenhouse gas emissions. Within the framework of sustainable [...] Read more.
Rapid population growth and accelerating urbanization are intensifying the demand for construction materials, particularly concrete, which is predominantly produced with Portland cement and natural aggregates. This reliance imposes substantial environmental burdens through resource depletion and greenhouse gas emissions. Within the framework of sustainable construction, recycled aggregates and industrial by-products such as fly ash, slags, crushed glass, and other secondary raw materials have emerged as viable substitutes in concrete production. At the same time, three-dimensional concrete printing (3DCP) offers opportunities to optimize material use and minimize waste, yet it requires tailored mix designs with controlled rheological and mechanical performance. This review synthesizes current knowledge on the use of recycled construction and demolition waste, industrial by-products, and geopolymers in concrete mixtures for 3D printing applications. Particular attention is given to pozzolanic activity, particle size effects, mechanical strength, rheology, thermal conductivity, and fire resistance of recycled-based composites. The environmental assessment is considered through life-cycle analysis (LCA), emphasizing carbon footprint reduction strategies enabled by recycled constituents and low-clinker formulations. The analysis demonstrates that recycled-based 3D printable concretes can maintain or enhance structural performance while mix-level (cradle-to-gate, A1–A3) LCAs of printable mixes report CO2 reductions typically in the range of ~20–50% depending on clinker substitution and recycled constituents—with up to ~48% for fine recycled aggregates when accompanied by cement reduction and up to ~62% for mixes with recycled concrete powder, subject to preserved printability. This work highlights both opportunities and challenges, outlining pathways for advancing durable, energy-efficient, and environmentally responsible 3D-printed construction materials. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials (Second Edition))
Show Figures

Figure 1

20 pages, 6706 KB  
Article
Effect of Warm-Mix Additive USP on the Performance of Rubberized Asphalt and Fiber-Reinforced Rubberized Asphalt RAP Interlayer
by Jianhang Han, Bin Ding, Yong Hua, Wenbo Liu and Jun Li
Polymers 2025, 17(19), 2616; https://doi.org/10.3390/polym17192616 - 27 Sep 2025
Viewed by 455
Abstract
To address the dual challenges of cryogenic performance degradation and excessive VOC emissions in rubberized asphalt, this study proposes a synergistic optimization strategy using a polymer-based warm-mix additive (USP). The effects of USP on the rheological behavior, VOC emission characteristics, and mechanical performance [...] Read more.
To address the dual challenges of cryogenic performance degradation and excessive VOC emissions in rubberized asphalt, this study proposes a synergistic optimization strategy using a polymer-based warm-mix additive (USP). The effects of USP on the rheological behavior, VOC emission characteristics, and mechanical performance of polymer-modified asphalt and fiber-reinforced RAP interlayers were systematically investigated. The results indicate that 5% USP optimally improves low-temperature flexibility (141.1% increase in ductility, 28.48% reduction in creep stiffness) while maintaining adequate high-temperature stability, and simultaneously achieves an 82.01% reduction in total VOC emissions at 150 °C. Microscopic analysis and DIC tests confirm that USP enhances polymer–asphalt–aggregate interactions, leading to improved adhesion, reduced water permeability, and extended fatigue life. This work provides a fundamental understanding of polymer–binder–aggregate synergy and offers a practical pathway toward greener, high-performance recycled asphalt pavement technologies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

29 pages, 8542 KB  
Article
Frost Resistance of Fully Recycled Coarse Aggregate Concrete in Saline-Soil Regions: Seasonal Freezing
by Shefeng Guo, Jin Wu, Haoxiang Luan, Dadi Lin, Shan Wang, Ziyu Ji, Yuhao Chen and Min Li
Buildings 2025, 15(18), 3402; https://doi.org/10.3390/buildings15183402 - 19 Sep 2025
Viewed by 426
Abstract
With global sustainable construction growth, fully recycled coarse aggregate concrete (RCAC)—eco-friendly for cutting construction waste and reducing natural aggregate over-exploitation—has poor durability in seasonally freezing saline-soil regions (e.g., Tumushuke, Xinjiang): freeze-thaw and salt ions (NaCl, Na2SO4) cause microcracking, faster [...] Read more.
With global sustainable construction growth, fully recycled coarse aggregate concrete (RCAC)—eco-friendly for cutting construction waste and reducing natural aggregate over-exploitation—has poor durability in seasonally freezing saline-soil regions (e.g., Tumushuke, Xinjiang): freeze-thaw and salt ions (NaCl, Na2SO4) cause microcracking, faster performance decline, and shorter service life, limiting its use and requiring better salt freeze resistance. To address this, a field survey of Tumushuke’s saline soil was first conducted to determine local salt type and concentration, based on which a matching 12% NaCl + 4% Na2SO4 mixed salt solution was prepared. RCAC specimens modified with fly ash (FA), silica fume (SF), and polypropylene fiber (PPF) were then fabricated, cured under standard conditions (20 ± 2 °C, ≥95% relative humidity), and subjected to rapid freeze-thaw cycling in the salt solution. Multiple macro-performance and microstructural indicators (appearance, mass loss, relative dynamic elastic modulus (RDEM), porosity, microcracks, and corrosion products) were measured post-cycling. Results showed the mixed salt solution significantly exacerbated RCAC’s freeze-thaw damage, with degradation severity linked to cycle count and admixture dosage. The RCAC modified with 20% FA and 0.9% PPF exhibited optimal salt freeze resistance: after 125 cycles, its RDEM retention reached 75.98% (6.60% higher than the control), mass loss was only 0.28% (67.80% lower than the control), and its durability threshold (RDEM > 60%) extended to 200 cycles. Mechanistic analysis revealed two synergistic effects for improved performance: (1) FA optimized pore structure by filling capillaries, reducing space for pore water freezing and salt penetration; (2) PPF enhanced crack resistance by bridging microcracks, suppressing crack initiation/propagation from freeze-thaw expansion and salt crystallization. A “pore optimization–ion blocking–fiber crack resistance” triple synergistic protection model was proposed, which clarifies admixture-modified RCAC’s salt freeze damage mechanism and provides theoretical/technical guidance for its application in extreme seasonally freezing saline-soil environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop