Compressive Strength Prediction of Green Concrete with Recycled Glass-Fiber-Reinforced Polymers Using a Machine Learning Approach
Abstract
1. Introduction
2. Methods for Reusing GFRP Waste in Concrete
2.1. Using GFRP Waste as a Powder or Fine Aggregate Substitute
2.2. Using GFRP Waste as Fibrous Reinforcement
- (a)
- Using Recycled Short Fibers
- (b)
- Using “FRP Needles” or “Slender Elements”
- (c)
- Using Macro-Fibers
3. Research Significance
4. Dataset
5. Machine Learning Model Performance Assessments
5.1. XGBoost Model and Optimization
5.2. Model Performance Evaluation
5.3. Feature Importance
5.4. Partial Dependence Plots (PDPs)
5.5. Local SHAP Analysis
6. Limitations and Future Studies
7. Conclusions
- The incorporation of recycled GFRPs was found to be most effective at a limited dosage. Compressive strength was observed to decrease significantly when the GFRP content exceeded the threshold of 100 kg/m3.
- A strong negative correlation (−0.53) was quantified between the amount of GFRPs and the compressive strength, confirming its detrimental impact at higher volumes.
- The form of the recycled material was identified as a critical performance factor. Powder (type 1) and fibrous (type 3) forms were shown to have a positive effect on strength, while the coarse aggregate form (type 2) was consistently associated with a reduction in strength.
- The machine learning model, XGBoost, was developed and achieved a high predictive accuracy, evidenced by a coefficient of determination (R2) of 0.8284 and a root mean square error (RMSE) of 4.37 MPa on the test dataset.
- Through SHAP analysis, the water-to-cement ratio (W/C) and the GFRP amount were quantitatively confirmed as the two most influential input parameters on the model’s output, governing the compressive strength.
- Based on partial dependence plots (PDPs), the water-to-cement ratio was shown to have a negative relationship with strength, with optimal performance observed at a ratio below 0.4.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, A.; Charak, A.; Biligiri, K.P.; Pandurangan, V. Glass and Carbon Fiber Reinforced Polymer Composite Wastes in Pervious Concrete: Material Characterization and Lifecycle Assessment. Resour. Conserv. Recycl. 2022, 182, 106304. [Google Scholar] [CrossRef]
- Gonçalves, R.M.; Martinho, A.; Oliveira, J.P. Recycling of Reinforced Glass Fibers Waste: Current Status. Materials 2022, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, J. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability 2022, 14, 16855. [Google Scholar] [CrossRef]
- Wang, P.; Ke, L.; Wu, H.; Leung, C.K.Y. Lowering Exposure PH for Durability Enhancement of Glass Fiber Reinforcement Polymer (GFRP) Rebars. Constr. Build. Mater. 2022, 354, 129131. [Google Scholar] [CrossRef]
- Yang, S.; Lan, T.; Wang, M.; Sun, Z.; Wang, S. Modeling and Evaluation of the Fracture Resistance of Alkali-Resistant Glass Fibre Reinforced Concrete under Different Loading Rates. Eng. Fract. Mech. 2024, 306, 110231. [Google Scholar] [CrossRef]
- Ma, H.; Yang, S.; Xu, Y.; Chen, P.; Wang, L. Dynamic Mechanical Properties of Slag Mortar with Alkali-Resistant Glass Fiber. Buildings 2022, 12, 266. [Google Scholar] [CrossRef]
- Fu, B.; Xu, G.-T.; Peng, W.-S.; Huang, J.-Z.; Zou, Q.-Q.; Kuang, Y.-D. Performance Enhancement of Recycled Coarse Aggregate Concrete by Incorporating with Macro Fibers Processed from Waste GFRP. Constr. Build. Mater. 2024, 411, 134166. [Google Scholar] [CrossRef]
- Zhou, Y.; Weng, Y.; Li, L.; Hu, B.; Huang, X.; Zhu, Z. Recycled GFRP Aggregate Concrete Considering Aggregate Grading: Compressive Behavior and Stress–Strain Modeling. Polymers 2022, 14, 581. [Google Scholar] [CrossRef] [PubMed]
- Aziz, F.N.A.A.; Tan, A.R.; Bakar, N.B.; Nasir, N.A.M. Properties of Concrete with Glass Fibre Reinforced Polymer Waste as Partial Replacement of Fine Aggregate. J. Phys. Conf. Ser. 2023, 2521, 012015. [Google Scholar] [CrossRef]
- Zhao, T.; Lv, Y.; Chen, J.; Song, P.; Sun, M.; Zhang, X.; Huang, L. Effect of Glass Fiber-Reinforced Plastic Waste on the Mechanical Properties of Concrete and Evaluation of Its Feasibility for Reuse in Concrete Applications. Materials 2023, 16, 6772. [Google Scholar] [CrossRef]
- Soltani, A.; Tarighat, A.; Rostami, R.; Tavakoli, D.; Moradi, A. Investigation of Mechanical Properties of Concrete with Clinoptilolite and Silica Fume Using Taguchi Method. Innov. Infrastruct. Solut. 2024, 9, 77. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, Q.; Hou, S.; Shen, X. Effects of Multi-Sized Glass Fiber-Reinforced Polymer Waste on Hydration and Mechanical Properties of Cement-Based Materials. J. Build. Eng. 2025, 102, 112070. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, M.; Wang, L.; Ma, G. Experimental Study on Mechanical Property and Microstructure of Cement Mortar Reinforced with Elaborately Recycled GFRP Fiber. Cem. Concr. Compos. 2021, 117, 103908. [Google Scholar] [CrossRef]
- Baturkin, D.; Hisseine, O.A.; Masmoudi, R.; Tagnit-Hamou, A.; Metiche, S.; Massicotte, L. Mechanical Performance of Concrete Incorporating Waste Glass Fiber-Reinforced Polymer Materials from Recycled Wind Turbine Blades. In Proceedings of the Canadian Society of Civil Engineering Annual Conference 2022; Springer: Cham, Switzerland, 2024; pp. 859–870. [Google Scholar]
- Revilla-Cuesta, V.; Espinosa, A.B.; Serrano-López, R.; Skaf, M.; Manso, J.M. Mechanical Properties of Concrete Mixes with Selectively Crushed Wind Turbine Blade: Comparison with Raw-Crushing. Materials 2024, 17, 6299. [Google Scholar] [CrossRef] [PubMed]
- El Bitouri, Y.; Fofana, B.; Léger, R.; Perrin, D.; Ienny, P. The Effects of Replacing Sand with Glass Fiber-Reinforced Polymer (GFRP) Waste on the Mechanical Properties of Cement Mortars. Eng 2024, 5, 266–281. [Google Scholar] [CrossRef]
- Mazen Hilles, M.; Ziara, M.M. Mechanical Behavior of High Strength Concrete Reinforced with Glass Fiber Reinforced Polymer. J. Civ. Environ. Eng. 2018, 8, 1000318. [Google Scholar] [CrossRef]
- Jin, Z.; Liang, K.; Liu, C.; Yang, G.; Cui, K.; Mao, S. Mechanical Properties and Life Cycle Assessment (LCA) of Waste Glass Reinforced Concrete. J. Build. Eng. 2024, 96, 110643. [Google Scholar] [CrossRef]
- Chen, L.; Nouri, Y.; Allahyarsharahi, N.; Naderpour, H.; Rezazadeh Eidgahee, D.; Fakharian, P. Optimizing Compressive Strength Prediction in Eco-Friendly Recycled Concrete via Artificial Intelligence Models. Multiscale Multidiscip. Model. Exp. Des. 2025, 8, 24. [Google Scholar] [CrossRef]
- Singh, P.; Namdeo, A.; Garg, C.; Agarwal, K.M. Machine Learning Approach to Predict Compressive Strength of Green Sustainable Concrete. In Advances in Engineering Materials; Springer: Singapore, 2021; pp. 543–556. [Google Scholar]
- Mater, Y.; Kamel, M.; Karam, A.; Bakhoum, E. ANN-Python Prediction Model for the Compressive Strength of Green Concrete. Constr. Innov. 2023, 23, 340–359. [Google Scholar] [CrossRef]
- Shah, S.A.R.; Azab, M.; Seif ElDin, H.M.; Barakat, O.; Anwar, M.K.; Bashir, Y. Predicting Compressive Strength of Blast Furnace Slag and Fly Ash Based Sustainable Concrete Using Machine Learning Techniques: An Application of Advanced Decision-Making Approaches. Buildings 2022, 12, 914. [Google Scholar] [CrossRef]
- Sapkota, S.C.; Saha, P.; Das, S.; Meesaraganda, L.V.P. Prediction of the Compressive Strength of Normal Concrete Using Ensemble Machine Learning Approach. Asian J. Civ. Eng. 2024, 25, 583–596. [Google Scholar] [CrossRef]
- Islam, M.M.; Das, P.; Rahman, M.M.; Naz, F.; Kashem, A.; Nishat, M.H.; Tabassum, N. Prediction of Compressive Strength of High-Performance Concrete Using Optimization Machine Learning Approaches with SHAP Analysis. J. Build. Pathol. Rehabil. 2024, 9, 94. [Google Scholar] [CrossRef]
- Musleh, F.; Taha, R.; Musleh, A.R. Comparative Analysis of Machine Learning Techniques for Concrete Compressive Strength Prediction. In Proceedings of the 2023 4th International Conference on Data Analytics for Business and Industry (ICDABI), Online, 25–26 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 146–151. [Google Scholar]
- Ghanizadeh, A.R.; Tavana Amlashi, A.; Dessouky, S.; Ebrahimi, S.A. A Comparison of Novel Hybrid Ensemble Learners to Predict the Compressive Strength of Green Engineering Materials: A Case of Concrete Composed of Rice Husk Ash. Eur. J. Environ. Civ. Eng. 2024, 28, 3264–3291. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, F.; Zhou, M.; Sabri, M.M.S.; Huang, J. Intelligent Design of Construction Materials: A Comparative Study of AI Approaches for Predicting the Strength of Concrete with Blast Furnace Slag. Materials 2022, 15, 4582. [Google Scholar] [CrossRef]
- Vihas, C.; Rao, P.R.; Kumar, D.S.; Sena Reddy, V.V.; Abhilash, N. Machine Learning-Based Prediction of Concrete Compressive Strength Incorporating GGBS. Procedia Struct. Integr. 2025, 70, 461–468. [Google Scholar] [CrossRef]
- Kumar, M.; Sree, T.N.D. Genetic Programming Based Compressive Strength Prediction Model for Green Concrete. Mater. Today Proc. 2023, 1–6. [Google Scholar] [CrossRef]
- Varma, B.V.; Prasad, E.V.; Singha, S. Study on Predicting Compressive Strength of Concrete Using Supervised Machine Learning Techniques. Asian J. Civ. Eng. 2023, 24, 2549–2560. [Google Scholar] [CrossRef]
- Asokan, P.; Osmani, M.; Price, A.D.F. Assessing the Recycling Potential of Glass Fibre Reinforced Plastic Waste in Concrete and Cement Composites. J. Clean. Prod. 2009, 17, 821–829. [Google Scholar] [CrossRef]
- Correia, J.R.; Almeida, N.M.; Figueira, J.R. Recycling of FRP Composites: Reusing Fine GFRP Waste in Concrete Mixtures. J. Clean. Prod. 2011, 19, 1745–1753. [Google Scholar] [CrossRef]
- Fox, T. Recycling Wind Turbine Blade Composite Material as Aggregate in Concrete. Master’s Thesis, Iowa State University, Ames, IA, USA, 2016. [Google Scholar]
- Yazdanbakhsh, A.; Bank, L.C.; Rieder, K.-A.; Tian, Y.; Chen, C. Concrete with Discrete Slender Elements from Mechanically Recycled Wind Turbine Blades. Resour. Conserv. Recycl. 2018, 128, 11–21. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A.R. The Impact Resistance and Mechanical Properties of Reinforced Self-Compacting Concrete with Recycled Glass Fibre Reinforced Polymers. J. Clean. Prod. 2016, 124, 312–324. [Google Scholar] [CrossRef]
- Rodin III, H.; Nassiri, S.; Englund, K.; Fakron, O.; Li, H. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance. Constr. Build. Mater. 2018, 187, 738–751. [Google Scholar] [CrossRef]
- Baturkin, D.; Hisseine, O.A.; Masmoudi, R.; Tagnit-Hamou, A.; Massicotte, L. Valorization of Recycled FRP Materials from Wind Turbine Blades in Concrete. Resour. Conserv. Recycl. 2021, 174, 105807. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Bank, L.C.; Chen, C.; Tian, Y. FRP-Needles as Discrete Reinforcement in Concrete. J. Mater. Civ. Eng. 2017, 29, 4017175. [Google Scholar] [CrossRef]
- Hu, B.; Weng, Y.; Zhou, Y.; Li, W.; Huang, X.; Guo, M. Overcoming the Weakness of Recycled GFRP Aggregate Concrete: FRP Confining and Its Design Method. Constr. Build. Mater. 2024, 445, 137780. [Google Scholar] [CrossRef]
- Fu, B.; Liu, K.C.; Chen, J.F.; Teng, J.G. Concrete Reinforced with Macro Fibres Recycled from Waste GFRP. Constr. Build. Mater. 2021, 310, 125063. [Google Scholar] [CrossRef]
- Shahria Alam, M.; Slater, E.; Muntasir Billah, A.H.M. Green Concrete Made with RCA and FRP Scrap Aggregate: Fresh and Hardened Properties. J. Mater. Civ. Eng. 2013, 25, 1783–1794. [Google Scholar] [CrossRef]
- Cheng, C.-S.; Xu, Y.-B.; Xiao, C.-Y.; Fu, B.; Gao, R.-F.; Kuang, Y.-D. Behavior of Confined Concrete with Recycled Glass Fiber-Reinforced Polymer Needles as Coarse Aggregates under Axial Compression. J. Build. Eng. 2023, 71, 106453. [Google Scholar] [CrossRef]
- Li, Z.-D.; Huang, S.-Q.; Feng, Y.-X.; Cheng, C.-S.; Fu, B. Enhancing Performance of Concrete with Glass Fiber-Reinforced Polymer Short Rebars as Coarse Aggregates by Confinement. J. Build. Eng. 2024, 87, 109041. [Google Scholar] [CrossRef]
- García, D.; Vegas, I.; Cacho, I. Mechanical Recycling of GFRP Waste as Short-Fiber Reinforcements in Microconcrete. Constr. Build. Mater. 2014, 64, 293–300. [Google Scholar] [CrossRef]
- Asokan, P.; Osmani, M.; Price, A.D.F. Improvement of the Mechanical Properties of Glass Fibre Reinforced Plastic Waste Powder Filled Concrete. Constr. Build. Mater. 2010, 24, 448–460. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, D.; Huang, L.; Ji, Y.; Yan, Y.; Zhu, H.; Tang, J. Investigation on the Utilization of Fiber Clusters Recycled from Waste HFRP Bars in Concrete. Constr. Build. Mater. 2024, 421, 135775. [Google Scholar] [CrossRef]
- Abdo, M.; Toumpanaki, E.; Diambra, A.; Bank, L. Recycling of FRP Wind Blade Waste Material in Concrete. In Proceedings of the Fibre Polymer Composites in Construction, Milton Keynes, UK, 5 September 2024. [Google Scholar]
- Manso-Morato, J.; Hurtado-Alonso, N.; Serrano-López, R.; Revilla-Cuesta, V.; Ortega-López, V. Long-Term Mechanical Performance of Concrete with High Amounts of Wind Turbine Blade Mixed Waste: Analysis of Temporal Evolution Mechanisms. Case Stud. Constr. Mater. 2025, 23, e05194. [Google Scholar] [CrossRef]
- Nouri, Y.; Ghanizadeh, A.R.; Safi Jahanshahi, F.; Fakharian, P. Data-Driven Prediction of Axial Compression Capacity of GFRP-Reinforced Concrete Column Using Soft Computing Methods. J. Build. Eng. 2025, 101, 111831. [Google Scholar] [CrossRef]
- Fakharian, P.; Nouri, Y.; Ghanizadeh, A.R.; Safi Jahanshahi, F.; Naderpour, H.; Kheyroddin, A. Bond Strength Prediction of Externally Bonded Reinforcement on Groove Method (EBROG) Using MARS-POA. Compos. Struct. 2024, 349–350, 118532. [Google Scholar] [CrossRef]
- Shabani Ammari, A.; Nouri, Y.; Ghasemi Jouneghani, H.; Hosseini, S.A.; Rayegani, A.; Ebrahimi, M.; Heydari, P. Flexural Strengthening of Corroded Steel Beams with CFRP by Using the End Anchorage: Experimental, Numerical, and Machine Learning Methods. Case Stud. Constr. Mater. 2025, 23, e04966. [Google Scholar] [CrossRef]
- Nouri, Y.; Ghanbari, M.A.; Fakharian, P. An Integrated Optimization and ANOVA Approach for Reinforcing Concrete Beams with Glass Fiber Polymer. Decis. Anal. J. 2024, 11, 100479. [Google Scholar] [CrossRef]
- Ammari, A.S.; Hosseini, S.A.; Mohammadrahimi, A.; Nouri, Y.; Rayegani, A.; Ebrahimi, M.; Heydari, P. CFRP Strengthened Corroded Steel Columns: An Experimental, Numerical, and Machine Learning Investigation. Structures 2025, 80, 109981. [Google Scholar] [CrossRef]
- Feng, D.-C.; Wang, W.-J.; Mangalathu, S.; Taciroglu, E. Interpretable XGBoost-SHAP Machine-Learning Model for Shear Strength Prediction of Squat RC Walls. J. Struct. Eng. 2021, 147, 4021173. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Mousavi, S.S.; Dehestani, M. An Ensemble Learning-Based Prediction Model for the Compressive Strength Degradation of Concrete Containing Superabsorbent Polymers (SAP). Sci. Rep. 2024, 14, 18535. [Google Scholar] [CrossRef]
- Tran, V.Q. Data-driven Approach for Investigating and Predicting of Compressive Strength of Fly Ash–Slag Geopolymer Concrete. Struct. Concr. 2023, 24, 7419–7444. [Google Scholar] [CrossRef]
- Ghrici, A.A.; Benzaamia, A.; Mezzoudj, F.; Medjahed, C.; Ghrici, M. SHAP-Enhanced Tree-Based Regression for Predicting the Compressive Strength of High Performance Concrete. Constr. Build. Mater. 2025, 495, 143602. [Google Scholar] [CrossRef]
- Takefuji, Y. Beyond XGBoost and SHAP: Unveiling True Feature Importance. J. Hazard. Mater. 2025, 488, 137382. [Google Scholar] [CrossRef] [PubMed]
Parameter | Minimum | Maximum | Mean | Standard Deviation | (Q1) | (Q3) |
---|---|---|---|---|---|---|
FA (kg/m3) | 300.4 | 1503 | 770.61 | 265.93 | 632 | 852.8 |
CA (kg/m3) | 0 | 1335 | 753.63 | 497.5 | 207.5 | 1215 |
Cement (kg/m3) | 150.8 | 940 | 442.57 | 165.01 | 333 | 501 |
Water (kg/m3) | 67.9 | 319.6 | 199.097 | 58.43 | 163.4 | 236.5 |
W/C | 0.34 | 0.71 | 0.46 | 0.072 | 0.40 | 0.5 |
GFRPs (kg/m3) | 0 | 1292 | 92.02 | 170.83 | 14 | 99 |
Size (mm) | 0 | 100 | 20.17 | 30.50 | 0.25 | 20 |
Type | Powder = 1 | Coarse aggregate = 2 | Fiber = 3 | |||
fc (MPa) | 5.5 | 70.25 | 37.72 | 12.84 | 29.4 | 46.11 |
N | 119 |
Hyper-Parameter | Colsample by Tree | Learning Rate | Maximum Depth | Number of Estimators | Subsample | Random State |
---|---|---|---|---|---|---|
Optimum value | 0.9155 | 0.1081 | 8 | 87 | 0.9746 | 42 |
Phase | R2 | MSE | RMSE | MAE |
---|---|---|---|---|
Train | 0.9994 | 0.0931 | 0.3051 | 0.1492 |
Test | 0.8284 | 15.31 | 6.3701 | 2.6965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakharian, P.; Bazrgary, R.; Ghorbani, A.; Tavakoli, D.; Nouri, Y. Compressive Strength Prediction of Green Concrete with Recycled Glass-Fiber-Reinforced Polymers Using a Machine Learning Approach. Polymers 2025, 17, 2731. https://doi.org/10.3390/polym17202731
Fakharian P, Bazrgary R, Ghorbani A, Tavakoli D, Nouri Y. Compressive Strength Prediction of Green Concrete with Recycled Glass-Fiber-Reinforced Polymers Using a Machine Learning Approach. Polymers. 2025; 17(20):2731. https://doi.org/10.3390/polym17202731
Chicago/Turabian StyleFakharian, Pouyan, Reza Bazrgary, Ali Ghorbani, Davoud Tavakoli, and Younes Nouri. 2025. "Compressive Strength Prediction of Green Concrete with Recycled Glass-Fiber-Reinforced Polymers Using a Machine Learning Approach" Polymers 17, no. 20: 2731. https://doi.org/10.3390/polym17202731
APA StyleFakharian, P., Bazrgary, R., Ghorbani, A., Tavakoli, D., & Nouri, Y. (2025). Compressive Strength Prediction of Green Concrete with Recycled Glass-Fiber-Reinforced Polymers Using a Machine Learning Approach. Polymers, 17(20), 2731. https://doi.org/10.3390/polym17202731