Reviving Urban Landscapes: Harnessing Pervious Concrete Pavements with Recycled Materials for Sustainable Stormwater Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.2.1. Test Specimen Casting
2.2.2. Stormwater Samples Collection
2.2.3. Experimental Setup Preparation
2.2.4. Analysis of Hydraulic Properties and Water Quality Parameters
2.2.5. Analysis of Mechanical and Physical Properties
3. Results and Discussion
3.1. Filtered Stormwater Water Quality Analysis
- Average Value = average of the filtered stormwater samples
- Raw Water Value = initial value of the parameter in the raw water sample
3.1.1. pH
3.1.2. Electrical Conductivity (EC)
3.1.3. Turbidity
3.1.4. Total Suspended Solids (TSS)
3.1.5. Colour
3.1.6. Chemical Oxygen Demand (COD)
3.1.7. Orthophosphate (PO43−)
3.1.8. Nitrate
3.2. Analysis of Mechanical, Physical, and Hydraulic Properties
3.2.1. Compressive Strength
3.2.2. Infiltration Rate
3.2.3. Correlation Between the Porosity, Infiltration Rate, and TSS Removal Efficiency
3.3. Summary of the Mechanical, Physical and Hydraulic Properties
3.4. Significance of This Research Work to the Growing Environmental Concerns
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Malaviya, P.; Singh, A. Constructed wetlands for management of Urban Stormwater Runoff. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2153–2214. [Google Scholar] [CrossRef]
- Pitt, R.; Field, R.; Lalor, M.; Brown, M. Urban Stormwater Toxic Pollutants: Assessment, sources, and treatability. Water Environ. Res. 1995, 67, 260–275. [Google Scholar] [CrossRef]
- Winston, R.J.; Arend, K.; Dorsey, J.D.; Hunt, W.F. Water quality performance of a permeable pavement and stormwater harvesting treatment train stormwater control measure. Blue-Green Syst. 2020, 2, 91–111. [Google Scholar] [CrossRef]
- Beecham, S.; Pezzaniti, D.; Kandasamy, J. Stormwater treatment using permeable pavements. Proc. Inst. Civ. Eng.-Water Manag. 2012, 165, 161–170. [Google Scholar] [CrossRef]
- Nguyen, M.-K.; Lin, C.; Nguyen, H.-L.; Le, V.-R.; Kl, P.; Singh, J.; Chang, S.W.; Um, M.-J.; Nguyen, D.D. Emergence of microplastics in the aquatic ecosystem and their potential effects on health risks: The insights into Vietnam. J. Environ. Manag. 2023, 344, 118499. [Google Scholar] [CrossRef]
- Harada, S. Application of porous concrete infiltration techniques to street stormwater inlets that simultaneously mitigate against non-point heavy metal pollution and stormwater runoff reduction in urban areas: Catchment-scale evaluation of the potential of discrete and small-scale techniques. Water 2023, 15, 1998. [Google Scholar] [CrossRef]
- Chandrappa, A.K.; Biligiri, K.P. Pervious concrete as a sustainable pavement material—Research findings and future prospects: A state-of-the-art review. Constr. Build. Mater. 2016, 111, 262–274. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.T.; Holland, T.J.; Kayhanian, M. The use of reflective and permeable pavements as a potential practice for Heat Island mitigation and Stormwater Management. Environ. Res. Lett. 2013, 8, 015023. [Google Scholar] [CrossRef]
- Kevern, J.; Haselbach, L.; Schaefer, V. Hot Weather Comparative Heat Balances in Pervious Concrete and Impervious Concrete Pavement Systems. J. Heat Isl. Inst. Int. 2012, 7, 231–237. [Google Scholar]
- Abdel Rahman, R.O.; El-Kamash, A.M.; Hung, Y.-T. Permeable concrete barriers to control water pollution: A Review. Water 2023, 15, 3867. [Google Scholar] [CrossRef]
- Lopez, N.; Collado, E.; Diacos, L.A.; Morente, H.D. Evaluation of pervious concrete utilizing recycled HDPE as partial replacement of coarse aggregate with acrylic as additive. MATEC Web Conf. 2019, 258, 01018. [Google Scholar] [CrossRef]
- Holzer, K.; Poor, C. Reduction of Runoff Pollutants from Major Arterial Roads Using Porous Pavement. Sustainability 2024, 16, 7506. [Google Scholar] [CrossRef]
- Lim, T.C.; Welty, C. Effects of spatial configuration of imperviousness and Green Infrastructure Networks on hydrologic response in a residential sewershed. Water Resour. Res. 2017, 53, 8084–8104. [Google Scholar] [CrossRef]
- Sonebi, M.; Bassuoni, M.; Yahia, A. Pervious concrete: Mix Design. properties and applications. RILEM Tech. Lett. 2016, 1, 109–115. [Google Scholar] [CrossRef]
- Legret, M.; Colandini, V. Effects of a porous pavement with reservoir structure on runoff water: Water quality and fate of heavy metals. Water Sci. Technol. 1999, 39, 111–117. [Google Scholar] [CrossRef]
- Zhang, K.; Yong, F.; McCarthy, D.T.; Deletic, A. Predicting long term removal of heavy metals from porous pavements for stormwater treatment. Water Res. 2018, 142, 236–245. [Google Scholar] [CrossRef]
- Mullaney, J.; Lucke, T. Practical Review of Pervious Pavement Designs. CLEAN–Soil Air Water 2013, 42, 111–124. [Google Scholar] [CrossRef]
- Antunes, L.N.; Ghisi, E.; Thives, L.P. Permeable Pavements Life Cycle Assessment: A literature review. Water 2018, 10, 1575. [Google Scholar] [CrossRef]
- Vij, D. Urbanization and solid waste management in India: Present practices and future challenges. Procedia-Soc. Behav. Sci. 2012, 37, 437–447. [Google Scholar] [CrossRef]
- Kipkurui, A. An Assessment of Industrial Solid Waste Management in Eldoret. Ph.D. Dissertation, University of Nairobi, Nairobi, Kenya, 1997. [Google Scholar]
- Akhtar, A.; Sarmah, A.K. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 2018, 186, 262–281. [Google Scholar] [CrossRef]
- Nejad, S.S.; Abedi-Koupai, J.; Mostafazadeh-Fard, S.; Behfarnia, K. Treatment of urban stormwater using adsorbent porous concrete. Proc. Inst. Civ. Eng.-Water Manag. 2018, 171, 328–334. [Google Scholar] [CrossRef]
- Xie, H.-Z.; Li, L.G.; Ng, P.-L.; Liu, F. Effects of solid waste reutilization on the performance of Pervious Concrete: A Review. Sustainability 2023, 15, 6105. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P. A scientometric review of waste material utilization in concrete for sustainable construction. Case Stud. Constr. Mater. 2021, 15, e00683. [Google Scholar] [CrossRef]
- Bhutta, M.A.R.; Hasanah, N.; Farhayu, N.; Hussin, M.W.; Tahir, M.b.M.; Mirza, J. Properties of porous concrete from waste crushed concrete (recycled aggregate). Constr. Build. Mater. 2013, 47, 1243–1248. [Google Scholar] [CrossRef]
- Zaharieva, R.; Buyle-Bodin, F.; Skoczylas, F.; Wirquin, E. Assessment of the surface permeation properties of recycled aggregate concrete. Cem. Concr. Compos. 2003, 25, 223–232. [Google Scholar] [CrossRef]
- Toghroli, A.; Shariati, M.; Sajedi, F.; Ibrahim, Z.; Koting, S.; Mohamad, E.T.; Khorami, M. A review on pavement porous concrete using recycled waste materials. Smart Struct. Syst. 2018, 22, 433–440. [Google Scholar]
- Lizárraga-Mendiola, L.; López-León, L.D.; Vázquez-Rodríguez, G.A. Municipal solid waste as a substitute for virgin materials in the construction industry: A review. Sustainability 2022, 14, 16343. [Google Scholar] [CrossRef]
- Yahia, A.; Kabagire, K.D. New approach to proportion pervious concrete. Constr. Build. Mater. 2014, 62, 38–46. [Google Scholar] [CrossRef]
- Suresh Babu, T. Study and Comparision of Mechanical Properties, Durability and Permeability of M15, M20, M25 Grades of Pervious Concrete with Conventional Concrete. Int. J. Appl. Res. 2015, 1, 676–681. [Google Scholar]
- Arhin, S.A.; Noel, E.C.; Thomas, J. Evaluation of Mix Designs and Test Procedures for Pervious Concrete (No. DDOT-RDT-14-02); District of Columbia District Department of Transportation: Washington, DC, USA, 2014. [Google Scholar]
- Sheet Flow Sampling Guidance Document. 2015. Available online: https://www.pca.state.mn.us/sites/default/files/wq-strm3-33a.pdf (accessed on 1 March 2025).
- WMO. Measurement of Meteorological Variable. In WMO Guide to Instruments and Methods of Observation; WMO: Geneva, Switzerland, 2025; Volume I. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association, American Water Works Association, & Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- ASTM D1889-00; Standard Test Method for Turbidity of Water. ASTM International: West Conshohocken, PA, USA, 2000.
- IS 516-1959 (Reaffirmed 2018); Methods of Tests for Strength of Concrete. Bureau of Indian Standards: New Delhi, India, 1959.
- ASTM C1688/C1688M-25; Standard Test Method for Density and Void Content of Freshly Mixed Pervious Concrete. ASTM International: West Conshohocken, PA, USA, 2025.
- Pilon, B.; Tyner, J.; Yoder, D.; Buchanan, J. The effect of pervious concrete on water quality parameters: A case study. Water 2019, 11, 263. [Google Scholar] [CrossRef]
- Liu, K.; Cheng, X.; Li, J.; Gao, X.; Cao, Y.; Guo, X.; Zhuang, J.; Zhang, C. Effects of microstructure and pore water on electrical conductivity of cement slurry during early hydration. Compos. Part B Eng. 2019, 177, 107435. [Google Scholar] [CrossRef]
- Zhang, R.; Kanemaru, K.; Nakazawa, T. Purification of river water quality using precast porous concrete products. J. Adv. Concr. Technol. 2015, 13, 163–168. [Google Scholar] [CrossRef]
- Graves, G.A.; Wan, Y.; Fike, D.L. Water quality characteristics of storm water from major land uses in south florida1. J. Am. Water Resour. Assoc. 2004, 40, 1405–1419. [Google Scholar] [CrossRef]
- Miguntanna, N.P.; Liu, A.; Egodawatta, P.; Goonetilleke, A. Characterizing nutrients wash-off for effective urban stormwater treatment design. J. Environ. Manag. 2013, 120, 61–67. [Google Scholar] [CrossRef]
- Faisal, G.H.; Jaeel, A.J.; Al-Gasham, T.S. BOD and COD reduction using porous concrete pavements. Case Stud. Constr. Mater. 2020, 13, e00396. [Google Scholar] [CrossRef]
- Horst, M.; Welker, A.L.; Traver, R.G. Multiyear performance of a pervious concrete infiltration basin BMP. J. Irrig. Drain. Eng. 2011, 137, 352–358. [Google Scholar] [CrossRef]
- Mallin, M.A.; Cahoon, L.B. The hidden impacts of phosphorus pollution to streams and rivers. BioScience 2020, 70, 315–329. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Breen, P.F.; Lloyd, S.D. Water Sensitive Road Design: Design Options for Improving Stormwater Quality of Road Runoff (No. 00/1); CRC for Catchment Hydrology: Melburne, Australia, 2000. [Google Scholar]
- Park, S.-B.; Tia, M. An experimental study on the water-purification properties of porous concrete. Cem. Concr. Res. 2004, 34, 177–184. [Google Scholar] [CrossRef]
- Muda, M.M.; Legese, A.M.; Urgessa, G.; Boja, T. Strength. Porosity and Permeability Properties of Porous Concrete Made from Recycled Concrete Aggregates. Constr. Mater. 2023, 3, 81–92. [Google Scholar] [CrossRef]
- Megasari, S.W.; Yanti, G.; Zainuri, Z. Research studies on composition of porous concrete on the sidewalk. IOP Conf. Ser. Earth Environ. Sci. 2021, 737, 012042. [Google Scholar] [CrossRef]
- Moretti, L.; Di Mascio, P.; Fusco, C. Porous concrete for pedestrian pavements. Water 2019, 11, 2105. [Google Scholar] [CrossRef]
- Cahya, E.N.; Haribowo, R.; Arifi, E. Inclined porous concrete surface impact on infiltration using recycled concrete aggregate. IOP Conf. Ser. Earth Environ. Sci. 2021, 930, 012100. [Google Scholar] [CrossRef]




















| Cement (kg/m3) | Coarse Aggregates (kg/m3) | Water Cement Ratio by Mass | Admixture (mL/m3) |
|---|---|---|---|
| 452.38 | 1113.75 | 0.3 | 90.47 |
| Parameter | Test Method |
|---|---|
| pH | 4500H (APHA 2005) |
| EC | 2520B (APHA2005) |
| TSS | 2540D |
| COD | Dichromate reactor digestion method |
| Colour | 2120B (APHA 2005) |
| Turbidity | ASTM D1889 [35] |
| PO43− | 4500-P (APHA 2005) |
| NO3− | 4500-NO3− (APHA 2005) |
| Type of Pavement | Mechanical Properties | Physical Properties | Hydraulic Properties | |
|---|---|---|---|---|
| Compressive Strength (MPa) 28 Days | Unit Weight (kg/m3) | Porosity (%) | Infiltration Rate (mm/s) | |
| Normal aggregate | 13.42 | 1848.9 | 0.86 | 2.65 |
| Recycled plastics 25% | 12.06 | 1742.2 | 1.08 | 2.68 |
| Recycled plastics 50% | 9.31 | 1788.9 | 1.23 | 2.72 |
| Recycled Glass 25% | 13.03 | 1730.4 | 0.68 | 2.53 |
| Recycled Glass 50% | 10.25 | 1896.3 | 0.76 | 2.62 |
| Recycled concrete aggregate 25% | 15.56 | 1961.5 | 1.38 | 2.8 |
| Recycled concrete aggregate 50% | 15.8 | 1979.2 | 1.32 | 2.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunathilake, T.A.; Siriwardhana, K.D.; Miguntanna, N.; Miguntanna, N.; Rathnayake, U.; Muttil, N. Reviving Urban Landscapes: Harnessing Pervious Concrete Pavements with Recycled Materials for Sustainable Stormwater Management. Water 2025, 17, 3096. https://doi.org/10.3390/w17213096
Gunathilake TA, Siriwardhana KD, Miguntanna N, Miguntanna N, Rathnayake U, Muttil N. Reviving Urban Landscapes: Harnessing Pervious Concrete Pavements with Recycled Materials for Sustainable Stormwater Management. Water. 2025; 17(21):3096. https://doi.org/10.3390/w17213096
Chicago/Turabian StyleGunathilake, Thilini A., Kushan D. Siriwardhana, Nandika Miguntanna, Nadeeka Miguntanna, Upaka Rathnayake, and Nitin Muttil. 2025. "Reviving Urban Landscapes: Harnessing Pervious Concrete Pavements with Recycled Materials for Sustainable Stormwater Management" Water 17, no. 21: 3096. https://doi.org/10.3390/w17213096
APA StyleGunathilake, T. A., Siriwardhana, K. D., Miguntanna, N., Miguntanna, N., Rathnayake, U., & Muttil, N. (2025). Reviving Urban Landscapes: Harnessing Pervious Concrete Pavements with Recycled Materials for Sustainable Stormwater Management. Water, 17(21), 3096. https://doi.org/10.3390/w17213096

