Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,496)

Search Parameters:
Keywords = mitigation technologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 1439 KB  
Review
Advances in Algae-Based Bioplastics: From Strain Engineering and Fermentation to Commercialization and Sustainability
by Nilay Kumar Sarker and Prasad Kaparaju
Fermentation 2025, 11(10), 574; https://doi.org/10.3390/fermentation11100574 (registering DOI) - 4 Oct 2025
Abstract
The development of algal bioplastics offers a promising pathway toward sustainable materials that can mitigate reliance on fossil fuel-derived plastics. This article reviews recent advances in algal cultivation, strain optimization, biopolymer extraction, and processing technologies, alongside techno-economic and life cycle assessments. Special emphasis [...] Read more.
The development of algal bioplastics offers a promising pathway toward sustainable materials that can mitigate reliance on fossil fuel-derived plastics. This article reviews recent advances in algal cultivation, strain optimization, biopolymer extraction, and processing technologies, alongside techno-economic and life cycle assessments. Special emphasis is placed on integrated biorefinery models, innovative processing techniques, and the role of government–industry–academia partnerships in accelerating commercialization. The analysis incorporates both demonstrated algal systems and theoretical applications derived from established microbial processes, reflecting the emerging nature of this field. The environmental advantages, market readiness, and scalability challenges of algal bioplastics are critically evaluated, with reference to peer-reviewed studies and industrial pilot projects. The analysis underscores that while technical feasibility has been demonstrated, economic viability and large-scale adoption depend on optimizing yield, reducing production costs, and fostering collaborative frameworks. Future research priorities include enhancing strain performance via AI-enabled screening, expanding product valorization streams, and aligning regulatory standards to support global market integration. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

32 pages, 6181 KB  
Review
Nitrogen Eutrophication in Chinese Aquatic Ecosystems: Drivers, Impacts, and Mitigation Strategies
by Armstrong Ighodalo Omoregie, Muhammad Oliver Ensor Silini, Lin Sze Wong and Adharsh Rajasekar
Nitrogen 2025, 6(4), 92; https://doi.org/10.3390/nitrogen6040092 (registering DOI) - 4 Oct 2025
Abstract
Nitrogen eutrophication represents a significant environmental challenge in Chinese aquatic ecosystems, exacerbated by rapid agricultural intensification, industrial expansion, and urban development. This review consolidates existing knowledge on the drivers and impacts of nitrogen pollution in Chinese aquatic ecosystems, with a focus on environments [...] Read more.
Nitrogen eutrophication represents a significant environmental challenge in Chinese aquatic ecosystems, exacerbated by rapid agricultural intensification, industrial expansion, and urban development. This review consolidates existing knowledge on the drivers and impacts of nitrogen pollution in Chinese aquatic ecosystems, with a focus on environments such as lakes, rivers, and coastal waters. The primary sources of nitrogen enrichment are excessive fertilizer application, livestock manure discharge, industrial emissions, and untreated industrial and municipal wastewater. These inputs have led to severe ecological consequences, including harmful algal blooms, hypoxia, loss of biodiversity, and deteriorating water quality, threatening ecosystem health and human well-being. The review also examines mitigation strategies implemented in China, encompassing regulatory policies such as the “Zero Growth” fertilizer initiative, as well as technological advancements in wastewater treatment and sustainable farming practices. Case studies highlighting successful interventions, such as lake restoration projects and integrated watershed management, demonstrate the potential for effective nitrogen control. However, persistent challenges remain, including uneven policy enforcement, insufficient public awareness, and gaps in scientific understanding of nitrogen cycling dynamics. This review aims to inform future efforts toward achieving sustainable nitrogen management in China by synthesizing current research and identifying key knowledge gaps. Addressing these issues is crucial for safeguarding China’s aquatic ecosystems and promoting global nutrient stewardship. Full article
19 pages, 1011 KB  
Article
Uprooting Technostress: Digital Leadership Empowering Employee Well-Being in the Era of Industry 4.0
by Panteha Farmanesh, Asim Vehbi and Niloofar Solati Dehkordi
Sustainability 2025, 17(19), 8868; https://doi.org/10.3390/su17198868 (registering DOI) - 4 Oct 2025
Abstract
This study investigates the influence of technostress (Tech) on the well-being (WB) of employees in manufacturing sectors employing Industry 4.0 in Turkey, examining the effect of work exhaustion (WE) as a mediator in the association between technostress and well-being. How digital leadership (Dg) [...] Read more.
This study investigates the influence of technostress (Tech) on the well-being (WB) of employees in manufacturing sectors employing Industry 4.0 in Turkey, examining the effect of work exhaustion (WE) as a mediator in the association between technostress and well-being. How digital leadership (Dg) moderates these relationships is analyzed and discussed accordingly. This article also presents strategies for digital leaders to mitigate employees’ technostress in the digital transformation era and discusses their positive role. Using the Job Demands–Resources (JD-R) framework and Conservation of Resources (COR) theory, data were gathered from 329 workers employed at three manufacturing firms located in Istanbul. Structural equation modeling (SEM) was employed to test this study’s hypothesis. The results indicate that increased technostress notably reduces employee well-being, primarily because it heightens work exhaustion. Moreover, robust digital leadership effectively lessens these negative impacts, underscoring its value in managing technological stress. This research explains the importance of the Sustainable Development Goal (SDG 3) for better health and well-being practices in workplaces. It suggests practical implications for organizations, including developing digital leadership skills, routinely assessing technostress, and applying targeted actions to sustain employee health during digital shifts. Full article
(This article belongs to the Special Issue New Trends in Organizational Psychology—2nd Edition)
Show Figures

Figure 1

41 pages, 8829 KB  
Article
Synergistic Effects of Bioclimatic Strategies on Microclimate Improvement: A Numerical–Experimental Study at University Campus Scale
by Daniel Austin, Thasnee Solano and Miguel Chen Austin
Sustainability 2025, 17(19), 8867; https://doi.org/10.3390/su17198867 (registering DOI) - 4 Oct 2025
Abstract
Outdoor thermal comfort in tropical cities is increasingly threatened by rapid urbanization, high humidity, and insufficient climate-sensitive planning. Despite numerous studies on urban heat mitigation, there is a lack of empirical and numerical research that evaluates the synergistic application of bioclimatic strategies under [...] Read more.
Outdoor thermal comfort in tropical cities is increasingly threatened by rapid urbanization, high humidity, and insufficient climate-sensitive planning. Despite numerous studies on urban heat mitigation, there is a lack of empirical and numerical research that evaluates the synergistic application of bioclimatic strategies under humid tropical conditions. This paper addresses this gap by analyzing the combined effect of arborization, dry mist systems, water bodies, and sprinklers on outdoor thermal comfort at the Víctor Levi Sasso Campus of the Technological University of Panama. We hypothesized that synergistic application of these strategies provides greater thermal comfort improvements than isolated interventions. The central research question guiding this study was: To what extent can combined bioclimatic strategies enhance outdoor thermal comfort compared to individual strategies in humid tropical environments? To answer this, a hybrid methodology was employed, integrating ENVI-met dynamic simulations with in situ measurements and thermal comfort surveys based on the physiological equivalent temperature (PET) index and subjective comfort scales. The results demonstrate that combined strategies achieve superior reductions in mean radiant and surface temperatures while improving subjective comfort perceptions, highlighting their potential for context-sensitive urban design in tropical regions. Full article
Show Figures

Figure 1

18 pages, 732 KB  
Article
Can Digital Economy Imports Reduce the Environmental Costs of Foreign Direct Investment? Evidence from Developing Economies
by Qingfeng Wang and Sukjae Park
Sustainability 2025, 17(19), 8861; https://doi.org/10.3390/su17198861 - 3 Oct 2025
Abstract
This study investigates whether digital economy imports can mitigate the environmental costs of foreign direct investment (FDI) in developing economies. While FDI typically increases carbon emissions, particularly in countries with weak infrastructure and limited technological capabilities, digital imports can provide a compensatory mechanism [...] Read more.
This study investigates whether digital economy imports can mitigate the environmental costs of foreign direct investment (FDI) in developing economies. While FDI typically increases carbon emissions, particularly in countries with weak infrastructure and limited technological capabilities, digital imports can provide a compensatory mechanism by enhancing energy efficiency, facilitating the diffusion of green technologies, and strengthening environmental regulations. Our contribution lies in shifting the focus from domestic “digitalization levels” to cross-border digital absorption as a moderating factor in environmental relations. Furthermore, this paper proposes a compensation mechanism for developing countries’ digital economy imports, explaining how they can mitigate environmental costs associated with FDI by alleviating structural constraints such as inadequate infrastructure and limited technological capabilities. The findings indicate that while FDI inflows exacerbate carbon emissions, digital economy imports play a new moderating role by addressing structural deficiencies in developing economies. This study advances the debate on FDI and the environment, revealing the short-term environmental value of digital economy imports. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

26 pages, 14040 KB  
Article
Research on High-Precision Long-Range Positioning Technology in the Deep Sea
by Wanting Ming, Dajun Sun, Jucheng Zhang, Yunfeng Han and Kaiyan Tian
J. Mar. Sci. Eng. 2025, 13(10), 1898; https://doi.org/10.3390/jmse13101898 - 3 Oct 2025
Abstract
Conventional acoustic positioning systems are typically confined to regions where direct-path measurements are available. However, in long-range underwater environments, acoustic rays undergo multiple reflections at the sea surface and seafloor, complicating the modeling of sound speed and introducing uncertainty due to seafloor bathymetric [...] Read more.
Conventional acoustic positioning systems are typically confined to regions where direct-path measurements are available. However, in long-range underwater environments, acoustic rays undergo multiple reflections at the sea surface and seafloor, complicating the modeling of sound speed and introducing uncertainty due to seafloor bathymetric errors. To address these challenges, a high-precision positioning technology suitable for long-range deep-sea scenarios is proposed. This technology constructs an effective sound speed model based on ray-tracing principles to accommodate multipath propagation. To mitigate model errors caused by inaccurate seafloor bathymetry, a sound speed compensation mechanism is introduced to enhance the precision of reflected-path measurements. The experimental results demonstrate that, with an array baseline of 8 km, the proposed method reduces the maximum ranging error over a 50 km horizontal distance from 137.9 m to 15.5 m. The root-mean-square positioning error is decreased from 157.9 m to 31.0 m, representing an improvement in positioning precision of 80.4%. These results confirm the feasibility of high-precision long-range acoustic positioning. Full article
(This article belongs to the Special Issue Advances in Underwater Positioning and Navigation Technology)
Show Figures

Figure 1

31 pages, 2686 KB  
Article
Developing Intelligent Integrated Solutions to Improve Pedestrian Safety for Sustainable Urban Mobility
by Irina Makarova, Larisa Gubacheva, Larisa Gabsalikhova, Vadim Mavrin and Aleksey Boyko
Sustainability 2025, 17(19), 8847; https://doi.org/10.3390/su17198847 - 2 Oct 2025
Abstract
All over the world, the problem of ensuring the safety of pedestrians, who are the most vulnerable road users, is becoming more acute due to urbanization and the growth of micromobility. In 2013, according to WHO data, more than 270 thousand pedestrians were [...] Read more.
All over the world, the problem of ensuring the safety of pedestrians, who are the most vulnerable road users, is becoming more acute due to urbanization and the growth of micromobility. In 2013, according to WHO data, more than 270 thousand pedestrians were dying each year worldwide (accounting for 22% of all traffic accidents). Currently, experts report that around 1.3 million people die every year globally from road crashes. The roads in developing countries are particularly hazardous, according to experts, because the increase in the number of vehicles far exceeds the development of road infrastructure and safety systems. Since the risk of hitting a pedestrian depends on many factors that can have different natures, and the severity of the consequences can be determined by a set of other factors, the risk of an accident can only be reduced by influencing all these factors in a comprehensive manner. The novelty of our approach is to create an intelligent system that will gradually accumulate all the best practices into a single complex aimed at reducing the risk of an accident with pedestrians and the severity of the consequences if an accident does occur. The distinction lies in offering an integrated system where each module addresses a particular task, so by mitigating risks at every stage, one achieves a synergistic outcome. From the analysis of existing and applied developments, it is known that many specialists mainly solve a narrowly focused problem aimed at ensuring the one subsystems sustainability in the “vehicle-infrastructure-driver-pedestrian” system. Some of these ideas are given as practical examples. The relevance of the designated problem increases with the emergence of autonomous vehicles and smart cities, the sustainability of which depends on the sustainable interaction between all road users. As experience shows, only the implementation of comprehensive solutions allows us to solve strategic problems, including improving road safety. Here, by complex solutions we mean solutions that combine technical issues, as well as environmental, social, and managerial aspects. To account for different kinds of effects, indicator systems are developed and composite indices are computed to choose the most rational solution. The novelty of our approach consists in combining within a unified DSS algorithms for assessing the efficiency of the proposed solution with respect to technological soundness, environmental sustainability, economic viability, social acceptability, as well as administrative rationality and computation of interrelated effects resulting from implementing any given project. In our opinion, the proposed system will lead to a synergistic effect due to the integrated application of various developments, which will ensure increased sustainability and safety of the transport system of smart cities. Our paper proposes a conceptual approach to addressing pedestrian safety, and the examples provided illustrate how the same model or algorithm can lead to positive changes from different perspectives. Full article
(This article belongs to the Special Issue Smart Mobility for Sustainable Development)
Show Figures

Figure 1

11 pages, 5899 KB  
Article
Multimetallic Layered Double Hydroxides as OER Catalysts for High-Performance Water Electrolysis
by Yiqin Zhan, Linsong Wang, Tao Yang, Shuang Liu, Liming Yang, Enhui Wang, Xiangtao Yu, Hongyang Wang, Kuo-Chih Chou and Xinmei Hou
J. Compos. Sci. 2025, 9(10), 540; https://doi.org/10.3390/jcs9100540 - 2 Oct 2025
Abstract
Water electrolysis represents a viable and scalable green hydrogen production technology, which mitigates carbon emissions and contributes to environmental sustainability. Transition metal-based layered double hydroxides (LDHs) exhibit excellent oxygen evolution reaction (OER) efficiency, attributed to their adjustable interlayer spacing combined with abundant active [...] Read more.
Water electrolysis represents a viable and scalable green hydrogen production technology, which mitigates carbon emissions and contributes to environmental sustainability. Transition metal-based layered double hydroxides (LDHs) exhibit excellent oxygen evolution reaction (OER) efficiency, attributed to their adjustable interlayer spacing combined with abundant active sites. Here, we report a uniform multimetallic catalyst, demonstrating robust and efficient OER performance for high-performance water splitting. SEM and TEM confirmed its ultrathin hierarchical nanosheet structure. The characteristic peaks of LDH in XRD and Raman spectra further verified the successful synthesis of the LDH material. Fe-CoZn LDH delivers exceptional OER performance in 1 M KOH, requiring overpotentials of just 209, 238, and 267 mV to reach 10, 100, and 400 mA cm−2, respectively. The catalyst also demonstrates exceptional hydrogen evolution reaction (HER) performance, achieving 10 mA cm−2 at 119 mV. It also has excellent stability, with stable operation for up to 100 h under 100 mA cm−2 in 1 M KOH electrolyte solution. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

19 pages, 2745 KB  
Article
Mechanistic Insights into Silicon-Enhanced Cadmium Detoxification in Rice: A Spatiotemporal Perspective
by Hongmei Lin, Miaohua Jiang, Shaofei Jin and Songbiao Chen
Agronomy 2025, 15(10), 2331; https://doi.org/10.3390/agronomy15102331 - 2 Oct 2025
Abstract
The spatiotemporal regulatory mechanism underlying silicon (Si)-mediated cadmium (Cd) detoxification in rice (Oryza sativa L.) was investigated using non-invasive micro-test technology (NMT), combined with physiological and biochemical analyses. The results revealed the following: (1) Si significantly inhibited Cd2+ influx into rice [...] Read more.
The spatiotemporal regulatory mechanism underlying silicon (Si)-mediated cadmium (Cd) detoxification in rice (Oryza sativa L.) was investigated using non-invasive micro-test technology (NMT), combined with physiological and biochemical analyses. The results revealed the following: (1) Si significantly inhibited Cd2+ influx into rice roots, with the most pronounced reductions in ion flux observed under moderate Cd stress (Cd50, 50 μmol·L−1), reaching 35.57% at 7 days and 42.30% at 14 days. Cd accumulation in roots decreased by 34.03%, more substantially than the 28.27% reduction observed in leaves. (2) Si application enhanced photosynthetic performance, as evidenced by a 14.21% increase in net photosynthetic rate (Pn), a 32.14% increase in stomatal conductance (Gs), and a marked restoration of Rubisco activity. (3) Si mitigated oxidative damage, with malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels reduced by 11.29–21.88%, through the upregulation of antioxidant enzyme activities (SOD, APX, CAT increased by 15.34–38.33%) and glutathione metabolism (GST activity and GSH content increased by 60.78% and 51.35%, respectively). (4) The mitigation effects of Si were found to be spatiotemporally specific, with stronger responses under Cd50 than Cd100 (100 μmol·L−1), at 7 days (d) compared to 14 d, and in roots relative to leaves. Our study reveals a coordinated mechanism by which Si modulates Cd uptake, enhances photosynthetic capacity, and strengthens antioxidant defenses to alleviate Cd toxicity in rice. These findings provide a scientific basis for the application of Si in mitigating heavy metal stress in agricultural systems. Full article
(This article belongs to the Special Issue Rice Cultivation and Physiology)
Show Figures

Figure 1

17 pages, 1782 KB  
Review
Quinoa and Colonic Health: A Review of Bioactive Components and Mechanistic Insights
by Yan Pan, Jimin Zheng, Zhixuan Wang, Shaohua Lin, Hongliang Jia, Hairun Pei and Ronghui Ju
Curr. Issues Mol. Biol. 2025, 47(10), 815; https://doi.org/10.3390/cimb47100815 - 2 Oct 2025
Abstract
Quinoa (Chenopodium quinoa Willd.) is an ancient Andean crop renowned for its exceptional nutritional profile and diverse bioactive compounds, including polysaccharides, polyphenols, saponins, and essential fatty acids. As global incidence of colonic diseases such as inflammatory bowel disease (IBD), colorectal cancer (CRC), [...] Read more.
Quinoa (Chenopodium quinoa Willd.) is an ancient Andean crop renowned for its exceptional nutritional profile and diverse bioactive compounds, including polysaccharides, polyphenols, saponins, and essential fatty acids. As global incidence of colonic diseases such as inflammatory bowel disease (IBD), colorectal cancer (CRC), and celiac disease continues to rise, the therapeutic potential of quinoa has garnered increasing scientific attention. This review systematically examines the role of quinoa, with focus on quinoa polysaccharides (QPs), in maintaining and improving colonic health. It summarizes the molecular structure, functional properties, and gut microbiota-modulating effects of QPs, alongside emerging findings on their anti-inflammatory, antioxidant, immunomodulatory, and anticancer activities. Furthermore, the review explores quinoa’s auxiliary effects in mitigating CRC progression and chemotherapy resistance, alleviating intestinal inflammation, and supporting gastrointestinal integrity in celiac patients. By integrating evidence from multi-omics technologies, cell and animal models, and limited clinical studies with mechanistic insights, this review provides a focused synthesis of quinoa bioactive compounds in relation to colonic health. It highlights how precision nutrition and multi-omics approaches could guide future applications of quinoa as a novel functional food-based intervention for colonic diseases. Full article
Show Figures

Figure 1

34 pages, 3419 KB  
Review
Emerging Strategies for the Photoassisted Removal of PFAS from Water: From Fundamentals to Applications
by Lázaro Adrián González Fernández, Nahum Andrés Medellín Castillo, Manuel Sánchez Polo, Javier E. Vilasó-Cadre, Iván A. Reyes-Domínguez and Lorena Díaz de León-Martínez
Catalysts 2025, 15(10), 946; https://doi.org/10.3390/catal15100946 - 2 Oct 2025
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse group of synthetic fluorinated compounds widely used in industrial and consumer products due to their exceptional thermal stability and hydrophobicity. However, these same properties contribute to their environmental persistence, bioaccumulation, and potential adverse health effects, [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are a diverse group of synthetic fluorinated compounds widely used in industrial and consumer products due to their exceptional thermal stability and hydrophobicity. However, these same properties contribute to their environmental persistence, bioaccumulation, and potential adverse health effects, including hepatotoxicity, immunotoxicity, endocrine disruption, and increased cancer risk. Traditional water treatment technologies, such as coagulation, sedimentation, biological degradation, and even advanced membrane processes, have demonstrated limited efficacy in removing PFAS, as they primarily separate or concentrate these compounds rather than degrade them. In response to these limitations, photoassisted processes have emerged as promising alternatives capable of degrading PFAS into less harmful products. These strategies include direct photolysis using UV or VUV irradiation, heterogeneous photocatalysis with materials such as TiO2 and novel semiconductors, light-activated persulfate oxidation generating sulfate radicals, and photo-Fenton reactions producing highly reactive hydroxyl radicals. Such approaches leverage the generation of reactive species under irradiation to cleave the strong carbon–fluorine bonds characteristic of PFAS. This review provides a comprehensive overview of emerging photoassisted technologies for PFAS removal from water, detailing their fundamental principles, degradation pathways, recent advancements in material development, and integration with hybrid treatment processes. Moreover, it discusses current challenges related to energy efficiency, catalyst deactivation, incomplete mineralization, and scalability, outlining future perspectives for their practical application in sustainable water treatment systems to mitigate PFAS pollution effectively. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Figure 1

32 pages, 6223 KB  
Article
A Decade of Deepfake Research in the Generative AI Era, 2014–2024: A Bibliometric Analysis
by Btissam Acim, Mohamed Boukhlif, Hamid Ouhnni, Nassim Kharmoum and Soumia Ziti
Publications 2025, 13(4), 50; https://doi.org/10.3390/publications13040050 - 2 Oct 2025
Abstract
The recent growth of generative artificial intelligence (AI) has brought new possibilities and revolutionary applications in many fields. It has also, however, created important ethical and security issues, especially with the abusive use of deepfakes, which are artificial media that can propagate very [...] Read more.
The recent growth of generative artificial intelligence (AI) has brought new possibilities and revolutionary applications in many fields. It has also, however, created important ethical and security issues, especially with the abusive use of deepfakes, which are artificial media that can propagate very realistic but false information. This paper provides an extensive bibliometric, statistical, and trend analysis of deepfake research in the age of generative AI. Utilizing the Web of Science (WoS) database for the years 2014–2024, the research identifies key authors, influential publications, collaboration networks, and leading institutions. Biblioshiny (Bibliometrix R package, University of Naples Federico II, Naples, Italy) and VOSviewer (version 1.6.20, Centre for Science and Technology Studies, Leiden University, Leiden, The Netherlands) are utilized in the research for mapping the science production, theme development, and geographical distribution. The cutoff point of ten keyword frequencies by occurrence was applied to the data for relevance. This study aims to provide a comprehensive snapshot of the research status, identify gaps in the knowledge, and direct upcoming studies in the creation, detection, and mitigation of deepfakes. The study is intended to help researchers, developers, and policymakers understand the trajectory and impact of deepfake technology, supporting innovation and governance strategies. The findings highlight a strong average annual growth rate of 61.94% in publications between 2014 and 2024, with China, the United States, and India as leading contributors, IEEE Access among the most influential sources, and three dominant clusters emerging around disinformation, generative models, and detection methods. Full article
(This article belongs to the Special Issue AI in Academic Metrics and Impact Analysis)
Show Figures

Figure 1

24 pages, 2318 KB  
Article
From Chaos to Coherent Structure (Pattern): The Mathematical Architecture of Invisible Time—The Critical Minute Theorem in Ground Handling Operations in an Aircraft Turnaround on the Ground of an Airport
by Cornel Constantin Tuduriu, Dan Laurentiu Milici and Mihaela Paval
Logistics 2025, 9(4), 139; https://doi.org/10.3390/logistics9040139 - 1 Oct 2025
Abstract
Background: In the dynamic world of commercial aviation, the efficient management of ground handling (GH) operations in aircraft turnarounds is an increasingly complex challenge, often perceived as operational chaos. Methods: This paper introduces the “Critical Minute Theorem” (CMT), a novel framework [...] Read more.
Background: In the dynamic world of commercial aviation, the efficient management of ground handling (GH) operations in aircraft turnarounds is an increasingly complex challenge, often perceived as operational chaos. Methods: This paper introduces the “Critical Minute Theorem” (CMT), a novel framework that integrates mathematical architecture principles into the optimization of GH processes. CMT identifies singular temporal thresholds, tk* at which small local disturbances generate nonlinear, system-wide disruptions. Results: By formulating the turnaround as a set of algebraic dependencies and nonlinear differential relations, the case studies demonstrate that delays are not random but structurally determined. The practical contribution of this study lies in showing that early recognition and intervention at these critical minutes significantly reduces propagated delays. Three case analyses are presented: (i) a fueling delay initially causing 9 min of disruption, reduced to 3.7 min after applying CMT-based reordering; (ii) baggage mismatch scenarios where CMT-guided list restructuring eliminates systemic deadlock; and (iii) PRM assistance delays mitigated by up to 12–15 min through anticipatory task reorganization. Conclusions: These results highlight that CMT enables predictive, non-technological control in turnaround operations, repositioning the human analyst as an architect of time capable of restoring structure where the system tends to collapse. Full article
Show Figures

Figure 1

30 pages, 1774 KB  
Review
A Systematic Literature Review on AI-Based Cybersecurity in Nuclear Power Plants
by Marianna Lezzi, Luigi Martino, Ernesto Damiani and Chan Yeob Yeun
J. Cybersecur. Priv. 2025, 5(4), 79; https://doi.org/10.3390/jcp5040079 - 1 Oct 2025
Abstract
Cybersecurity management plays a key role in preserving the operational security of nuclear power plants (NPPs), ensuring service continuity and system resilience. The growing number of sophisticated cyber-attacks against NPPs requires cybersecurity experts to detect, analyze, and defend systems and data from cyber [...] Read more.
Cybersecurity management plays a key role in preserving the operational security of nuclear power plants (NPPs), ensuring service continuity and system resilience. The growing number of sophisticated cyber-attacks against NPPs requires cybersecurity experts to detect, analyze, and defend systems and data from cyber threats in near real time. However, managing a large numbers of attacks in a timely manner is impossible without the support of Artificial Intelligence (AI). This study recognizes the need for a structured and in-depth analysis of the literature in the context of NPPs, referring to the role of AI technology in supporting cyber risk assessment processes. For this reason, a systematic literature review (SLR) is adopted to address the following areas of analysis: (i) critical assets to be preserved from cyber-attacks through AI, (ii) security vulnerabilities and cyber threats managed using AI, (iii) cyber risks and business impacts that can be assessed by AI, and (iv) AI-based security countermeasures to mitigate cyber risks. The SLR procedure follows a macro-step approach that includes review planning, search execution and document selection, and document analysis and results reporting, with the aim of providing an overview of the key dimensions of AI-based cybersecurity in NPPs. The structured analysis of the literature allows for the creation of an original tabular outline of emerging evidence (in the fields of critical assets, security vulnerabilities and cyber threats, cyber risks and business impacts, and AI-based security countermeasures) that can help guide AI-based cybersecurity management in NPPs and future research directions. From an academic perspective, this study lays the foundation for understanding and consciously addressing cybersecurity challenges through the support of AI; from a practical perspective, it aims to assist managers, practitioners, and policymakers in making more informed decisions to improve the resilience of digital infrastructure. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

40 pages, 3002 KB  
Review
Monitoring Pharmacological Treatment of Breast Cancer with MRI
by Wiktoria Mytych, Magdalena Czarnecka-Czapczyńska, Dorota Bartusik-Aebisher, David Aebisher and Aleksandra Kawczyk-Krupka
Curr. Issues Mol. Biol. 2025, 47(10), 807; https://doi.org/10.3390/cimb47100807 - 1 Oct 2025
Abstract
Breast cancer is one of the major health threats to women worldwide; thus, a need has arisen to reduce the number of instances and deaths through new methods of diagnostic monitoring and treatment. The present review is the synthesis of the recent clinical [...] Read more.
Breast cancer is one of the major health threats to women worldwide; thus, a need has arisen to reduce the number of instances and deaths through new methods of diagnostic monitoring and treatment. The present review is the synthesis of the recent clinical studies and technological advances in the application of magnetic resonance imaging (MRI) to monitor the pharmacological treatment of breast cancer. The specific focus is on high-risk groups (carriers of BRCA mutations and recipients of neoadjuvant chemotherapy) and the use of novel MRI methods (dynamic contrast-enhanced (DCE) MRI, diffusion-weighted imaging (DWI), and radiomics tools). All the reviewed studies show that MRI is more sensitive (up to 95%) and specific than conventional imaging in detecting malignancy particularly in dense breast tissue. Moreover, MRI can be used to assess the response and residual disease in a tumor early and accurately for personalized treatment, de-escalate unneeded interventions, and maximize positive outcomes. AI-based radiomics combined with deep-learning models also expand the ability to predict the therapeutic response and molecular subtypes, and can mitigate the risk of overfitting models when using complex methods of modeling. Other developments are hybrid PET/MRI, image guidance during surgery, margin assessment intraoperatively, three-dimensional surgical templates, and the utilization of MRI in surgery planning and reducing reoperation. Although economic factors will always play a role, the diagnostic and prognostic accuracy and capability to aid in targeted treatment makes MRI a key tool for modern breast cancer. The growing complement of MRI and novel curative approaches indicate that breast cancer patients may experience better survival and recuperation, fewer recurrences, and a better quality of life. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

Back to TopTop