Monitoring Pharmacological Treatment of Breast Cancer with MRI
Abstract
1. Introduction
1.1. Contrast Mechanisms in Magnetic Resonance Imaging
1.2. MRI Sequences Used to Monitor Treatment Outcomes
1.3. Current Technological Status of MRI
1.4. Changes in MRI Parameters in Response to Therapies
2. Material and Methods
3. Results
3.1. Targeted Therapies
3.1.1. Anti-HER2 Therapy
3.1.2. PARP Inhibitors
3.1.3. PI3K/AKT/mTOR Inhibitors
3.2. Antiangiogenic Therapies
3.3. Hormone Therapies
3.3.1. Aromatase Inhibitors (Letrozole, Anastrozole, and Exemestane)
3.3.2. Selective Estrogen Receptor Modulators (SERMs)
3.3.3. Selective Estrogen Receptor Degraders (SERDs)
3.4. Immunotherapy
3.5. Radiomics
4. Discussion
5. Future Perspectives
5.1. Technological Requirements
5.2. Clinical Protocols
5.3. Standardization
5.4. Training of Healthcare Professionals
6. Limitations of MRI
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MRI | Magnetic resonance |
TNBC | Triplet-negative breast cancer |
ALNs | Axillary lymph nodes |
DCE | Dynamic contrast imaging |
BCS | Breast-conserving surgery |
IORT | Intraoperative radiotherapy |
PBI | Partial-beam irradiation |
LVI | Lymphatic vessel invasion |
CEM | Contrast-enhanced mammography |
References
- Washington, I.; Palm, R.F.; White, J.; Rosenberg, S.A.; Ataya, D. The Role of MRI in Breast Cancer and Breast Conservation Therapy. Cancers 2024, 16, 2122. [Google Scholar] [CrossRef]
- McLaughlin, R.; Hylton, N. MRI in breast cancer therapy monitoring. NMR Biomed. 2011, 24, 712–720. [Google Scholar] [CrossRef]
- O’Flynn, E.A.; DeSouza, N.M. Functional magnetic resonance: Biomarkers of response in breast cancer. Breast Cancer Res. 2011, 13, 204, Erratum in Breast Cancer Res. 2011, 13, 405. [Google Scholar] [CrossRef]
- Pai, A.; Shetty, R.; Hodis, B.; Chowdhury, Y.S. Magnetic Resonance Imaging Physics. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Alhamami, M.; Bayat Mokhtari, R.; Ganesh, T.; Tchouala Nofiele, J.; Yeger, H.; Margaret Cheng, H.L. Manganese-enhanced magnetic resonance imaging for early detection and characterization of breast cancers. Mol. Imaging 2014, 13. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xu, X.; Yu, X.; Fu, Y.; Zhang, H.; Gu, S.; Cao, D.; Guo, Q.; Xu, L.; Ding, J. Quantitatively relating magnetic resonance T1 and T2 to glycosaminoglycan and collagen concentrations mediated by penetrated contrast agents and biomacromolecule-bound water. Regen. Biomater. 2023, 10, rbad035. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tao, L.; Qiu, J.; Xu, J.; Yang, X.; Zhang, Y.; Tian, X.; Guan, X.; Cen, X.; Zhao, Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct. Target. Ther. 2024, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019, 119, 957–1057. [Google Scholar] [CrossRef]
- Gerami, R.; Sadeghi Joni, S.; Akhondi, N.; Etemadi, A.; Fosouli, M.; Eghbal, A.F.; SouriZ. A literature review on the imaging methods for breast cancer. Int. J. Physiol. Pathophysiol. Pharmacol. 2022, 14, 171–176. [Google Scholar]
- Forrai, G.; Kovács, E.; Ambrózay, É.; Barta, M.; Borbély, K.; Lengyel, Z.; Ormándi, K.; Péntek, Z.; Tünde, T.; Sebő, É. Use of Diagnostic Imaging Modalities in Modern Screening, Diagnostics and Management of Breast Tumours 1st Central-Eastern European Professional Consensus Statement on Breast Cancer. Pathol. Oncol. Res. 2022, 28, 1610382. [Google Scholar] [CrossRef]
- Nazari, S.S.; Mukherjee, P. An overview of mammographic density and its association with breast cancer. Breast Cancer 2018, 25, 259–267. [Google Scholar] [CrossRef]
- Heywang-Köbrunner, S.H.; Jänsch, A.; Hacker, A.; Weinand, S.; Vogelmann, T. Digital breast tomosynthesis (DBT) plus synthesised two-dimensional mammography (s2D) in breast cancer screening is associated with higher cancer detection and lower recalls compared to digital mammography (DM) alone: Results of a systematic review and meta-analysis. Eur. Radiol. 2022, 32, 2301–2312. [Google Scholar]
- Giannakeas, V.; Lubinski, J.; Gronwald, J.; Moller, P.; Armel, S.; Lynch, H.T.; Foulkes, W.D.; Kim-Sing, C.; Singer, C.; Neuhausen, S.L.; et al. Mammography screening and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers: A prospective study. Breast Cancer Res. Treat. 2014, 147, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Sandhu, P.; Arora, S.; Bedi, G. Role of high resolution ultrasound complementary to digital mammography. Ann. Afr. Med. 2018, 17, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Sood, R.; Rositch, A.F.; Shakoor, D.; Ambinder, E.; Pool, K.L.; Pollack, E.; Mollura, D.J.; Mullen, L.A.; Harvey, S.C. Ultrasound for Breast Cancer Detection Globally: A Systematic Review and Meta-Analysis. J. Glob. Oncol. 2019, 5, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Jahed, D.A.; Dekeyzer, S.; Vanwambeke, K.; Antic, M.; Vanhoenacker, C.; Vanhoenacker, F. Automated Breast Ultrasound (ABUS): A Pictorial Essay of Common Artifacts and Benign and Malignant Pathology. J. Ultrason. 2022, 22, e222–e235. [Google Scholar] [CrossRef]
- Varzaru, V.B.; Moatar, A.E.; Popescu, R.; Puscasiu, D.; Vlad, D.C.; Vlad, C.S.; Rempen, A.; Cobec, I.M. Assessing Ultrasound as a Tool for Monitoring Tumor Regression During Chemotherapy: Insights from a Cohort of Breast Cancer Patients. Cancers 2025, 17, 1626. [Google Scholar] [CrossRef]
- Çelik, B.; Boge, M.; Dilege, E. Does F-18 FDG-PET/CT Have an Additional Impact on Axillary Approach in Early-Stage Breast Cancer? Eur. J. Breast Health 2023, 20, 45–51. [Google Scholar] [CrossRef]
- Kong, E.J.; Chun, K.A.; Cho, I.H.; Lee, S.J. (18)F-FDG PET/CT with Contrast Enhancement for Evaluation of Axillary Lymph Node Involvement in T1 Breast Cancer. Nucl. Med. Mol. Imaging 2010, 44, 170–176. [Google Scholar] [CrossRef]
- Yano, F.; Itoh, M.; Hirakawa, H.; Yamamoto, S.; Yoshikawa, A.; Hatazawa, J. Diagnostic Accuracy of Positron Emission Mammography with 18F-fluorodeoxyglucose in Breast Cancer Tumor of Less than 20 mm in Size. Asia Ocean. J. Nucl. Med. Biol. 2019, 7, 13–21. [Google Scholar]
- Hadebe, B.; Harry, L.; Ebrahim, T.; Pillay, V.; Vorster, M. The Role of PET/CT in Breast Cancer. Diagnostics 2023, 13, 597. [Google Scholar] [CrossRef]
- Hameeduddin, A.; Sahdev, A. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies. Cancer Imaging 2015, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, M.K.; Li, H.; Rhodes, D.J.; Hruska, C.B.; Clancy, C.B.; Vetter, R.J. Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast. Med. Phys. 2010, 37, 6187–6198. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Zhou, J.Q.; Chen, Q.; Deng, Y.C. Comparison of the sensitivity of mammography, ultrasound, magnetic resonance imaging and combinations of these imaging modalities for the detection of small (≤2 cm) breast cancer. Medicine 2021, 100, e26531. [Google Scholar] [CrossRef] [PubMed]
- Melnikow, J.; Fenton, J.J.; Whitlock, E.P.; Miglioretti, D.L.; Weyrich, M.S.; Thompson, J.H.; Shah, K. Supplemental Screening for Breast Cancer in Women with Dense Breasts: A Systematic Review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2016, 164, 268–278. [Google Scholar] [CrossRef]
- Ming, Y.; Wu, N.; Qian, T.; Li, X.; Wan, D.Q.; Li, C.; Li, Y.; Wu, Z.; Wang, X.; Liu, J.; et al. Progress and Future Trends in PET/CT and PET/MRI Molecular Imaging Approaches for Breast Cancer. Front. Oncol. 2020, 10, 1301. [Google Scholar] [CrossRef]
- Ghanikolahloo, M.; Taher, H.J.; Abdullah, A.D.; Asadi Anar, M.; Tayebi, A.; Rahimi, R.; Olamaeian, F.; Rahimikashkooli, N.; Kargar, N. The role of 18F-FDG PET/MRI in assessing pathological complete response to neoadjuvant chemotherapy in patients with breast cancer: A systematic review and meta-analysis. Radiat. Oncol. 2024, 19, 164. [Google Scholar] [CrossRef]
- Ponce-Chazarri, L.; Ponce-Blandón, J.A.; Immordino, P.; Giordano, A.; Morales, F. Barriers to Breast Cancer-Screening Adherence in Vulnerable Populations. Cancers 2023, 15, 604. [Google Scholar] [CrossRef]
- Feliciano, Y.; Mamtani, A.; Morrow, M.; Stempel, M.M.; Patil, S.; Jochelson, M.S. Do Calcifications Seen on Mammography After Neoadjuvant Chemotherapy for Breast Cancer Always Need to Be Excised? Ann. Surg. Oncol. 2017, 24, 1492–1498. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, Q.; Wu, X.; Zou, T.; Duan, J.; Song, S.; Nie, J.; Tao, C.; Tang, M.; Wang, M.; et al. Advances in Imaging in Evaluating the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer. Front. Oncol. 2022, 12, 816297. [Google Scholar] [CrossRef]
- Zheng, D.; He, X.; Jing, J. Overview of Artificial Intelligence in Breast Cancer Medical Imaging. J. Clin. Med. 2023, 12, 419. [Google Scholar] [CrossRef]
- Shen, Y.; Shamout, F.E.; Oliver, J.R.; Witowski, J.; Kannan, K.; Park, J.; Wu, N.; Huddleston, C.; Wolfson, S.; Millet, A.; et al. Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams. Nat. Commun. 2021, 12, 5645. [Google Scholar] [CrossRef]
- De León-Rodríguez, L.M.; Martins, A.F.; Pinho, M.C.; Rofsky, N.M.; Sherry, A.D. Basic MR relaxation mechanisms and contrast agent design. J. Magn. Reson. Imaging 2015, 42, 545–565. [Google Scholar] [CrossRef] [PubMed]
- Tsang, V.T.C.; Li, X.; Wong, T.T.W. A Review of Endogenous and Exogenous Contrast Agents Used in Photoacoustic Tomography with Different Sensing Configurations. Sensors 2020, 20, 5595. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. Editorial: The adipose tissue microenvironment in cancer: Molecular mechanisms and targets for treatment. Front. Cell Dev. Biol. 2022, 10, 954645. [Google Scholar] [CrossRef] [PubMed]
- Cozzo, A.J.; Fuller, A.M.; Makowski, L. Contribution of Adipose Tissue to Development of Cancer. Compr. Physiol. 2017, 8, 237–282. [Google Scholar] [CrossRef]
- Qing, R.; Hao, S.; Smorodina, E.; Jin, D.; Zalevsky, A.; Zhang, S. Protein Design: From the Aspect of Water Solubility and Stability. Chem. Rev. 2022, 122, 14085–14179. [Google Scholar] [CrossRef]
- Diakova, G.; Goddard, Y.A.; Korb, J.P.; Bryant, R.G. Water and backbone dynamics in a hydrated protein. Biophys. J. 2010, 98, 138–146. [Google Scholar] [CrossRef]
- Seo, M.; Ryu, J.K.; Jahng, G.H.; Sohn, Y.M.; Rhee, S.J.; Oh, J.H.; Won, K.Y. Estimation of T2* Relaxation Time of Breast Cancer: Correlation with Clinical, Imaging and Pathological Features. Korean J. Radiol. 2017, 18, 238–248. [Google Scholar] [CrossRef]
- Malikova, M.A.; Tkacz, J.N.; Slanetz, P.J.; Guo, C.Y.; Aakil, A.; Jara, H. Evaluation of T1/T2 ratios in a pilot study as a potential biomarker of biopsy: Proven benign and malignant breast lesions in correlation with histopathological disease stage. Future Sci. OA 2017, 3, FSO197. [Google Scholar] [CrossRef]
- Li, H.; Meade, T.J. Molecular Magnetic Resonance Imaging with Gd(III)-Based Contrast Agents: Challenges and Key Advances. J. Am. Chem. Soc. 2019, 141, 17025–17041. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, Z.R. Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 1–18. [Google Scholar] [CrossRef]
- Goel, S.; Wong, A.H.; Jain, R.K. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006486. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Stern, N.B.; Zhou, A.; Dunn, A.; Porter, T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024, 24, 143. [Google Scholar] [CrossRef] [PubMed]
- Bălan, M.R.; Lascu, L.C.; Dumitrescu, D.; Osiac, E.; Dumitrescu, C.I.; Băilescu, I.; Moraru, M.C.; Măceș, S.; Liliac, I.M.; Popescu, M. Breast MRI-the Importance of Type II and III Dynamic Curves Evaluation and Framing in BI-RADS 4C and 5 Score. Curr. Health Sci. J. 2024, 50, 45–52. [Google Scholar] [PubMed]
- Mann, R.M.; Kuhl, C.K.; Kinkel, K.; Boetes, C. Breast MRI: Guidelines from the European Society of Breast Imaging. Eur. Radiol. 2008, 18, 1307–1318. [Google Scholar] [CrossRef]
- Ko, C.C.; Yeh, L.R.; Kuo, Y.T.; Chen, J.H. Imaging biomarkers for evaluating tumor response: RECIST and beyond. Biomark. Res. 2021, 9, 52. [Google Scholar] [CrossRef]
- Ding, J.; Xiao, H.; Deng, W.; Liu, F.; Zhu, R.; Ha, R. Feasibility of quantitative and volumetric enhancement measurement to assess tumor response in patients with breast cancer after early neoadjuvant chemotherapy. J. Int. Med. Res. 2021, 49, 300060521991017. [Google Scholar] [CrossRef]
- Sharma, P.; López-Tarruella, S.; García-Saenz, J.A.; Khan, Q.J.; Gómez, H.L.; Prat, A.; Moreno, F.; Jerez-Gilarranz, Y.; Barnadas, A.; Picornell, A.C.; et al. Pathological Response and Survival in Triple-Negative Breast Cancer Following Neoadjuvant Carboplatin plus Docetaxel. Clin. Cancer Res. 2018, 24, 5820–5829. [Google Scholar] [CrossRef]
- Padhani, A.R.; Liu, G.; Koh, D.M.; Chenevert, T.L.; Thoeny, H.C.; Takahara, T.; Dzik-Jurasz, A.; Ross, B.D.; Van Cauteren, M.; Collins, D.; et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations. Neoplasia 2009, 11, 102–125. [Google Scholar] [CrossRef]
- King, A.D.; Keung, C.K.; Yu, K.H.; Mo, F.K.; Bhatia, K.S.; Yeung, D.K.; Tse, G.M.; Vlantis, A.C.; Ahuja, A.T. T2-weighted MR imaging early after chemoradiotherapy to evaluate treatment response in head and neck squamous cell carcinoma. AJNR Am. J. Neuroradiol. 2013, 34, 1237–1241. [Google Scholar] [CrossRef]
- Schneider, R.; Barakat, A.; Pippen, J.; Osborne, C. Aromatase inhibitors in the treatment of breast cancer in post-menopausal female patients: An update. Breast Cancer 2011, 3, 113–125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gordon, Y.; Partovi, S.; Müller-Eschner, M.; Amarteifio, E.; Bäuerle, T.; Weber, M.A.; Kauczor, H.U.; Rengier, F. Dynamic contrast-enhanced magnetic resonance imaging: Fundamentals and application to the evaluation of the peripheral perfusion. Cardiovasc. Diagn. Ther. 2014, 4, 147–164. [Google Scholar] [PubMed]
- Yankeelov, T.E.; Gore, J.C. Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples. Curr. Med. Imaging Rev. 2009, 3, 91–107. [Google Scholar] [CrossRef] [PubMed]
- White, N.S.; McDonald, C.; Farid, N.; Kuperman, J.; Karow, D.; Schenker-Ahmed, N.M.; Bartsch, H.; Rakow-Penner, R.; Holland, D.; Shabaik, A.; et al. Diffusion-weighted imaging in cancer: Physical foundations and applications of restriction spectrum imaging. Cancer Res. 2014, 74, 4638–4652. [Google Scholar] [CrossRef]
- Messina, C.; Bignone, R.; Bruno, A.; Bruno, A.; Bruno, F.; Calandri, M.; Caruso, D.; Coppolino, P.; Robertis, R.; Gentili, F.; et al. Diffusion-Weighted Imaging in Oncology: An Update. Cancers 2020, 12, 1493. [Google Scholar] [CrossRef]
- Beleù, A.; Canonico, D.; Morana, G. T1 and T2-mapping in pancreatic MRI: Current evidence and future perspectives. Eur. J. Radiol. Open 2024, 12, 100572. [Google Scholar] [CrossRef]
- Glunde, K.; Artemov, D.; Penet, M.F.; Jacobs, M.A.; Bhujwalla, Z.M. Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem. Rev. 2010, 110, 3043–3059. [Google Scholar] [CrossRef]
- Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [Google Scholar] [CrossRef]
- Bokacheva, L.; Ackerstaff, E.; LeKaye, H.C.; Zakian, K.; Koutcher, J.A. High-field small animal magnetic resonance oncology studies. Phys. Med. Biol. 2014, 59, R65–R127. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D.; Liu, Z.; Wang, Z.; Li, Q.; Xu, H.; Zhang, B.; Liu, T.; Jin, F. The diagnostic accuracy of magnetic resonance imaging in predicting pathologic complete response after neoadjuvant chemotherapy in patients with different molecular subtypes of breast cancer. Quant. Imaging Med. Surg. 2020, 10, 197–210. [Google Scholar] [CrossRef]
- Surov, A.; Meyer, H.J.; Wienke, A. Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: A meta-analysis. Oncotarget 2017, 8, 59492–59499. [Google Scholar] [CrossRef]
- Horvat, J.V.; Bernard-Davila, B.; Helbich, T.H.; Zhang, M.; Morris, E.A.; Thakur, S.B.; Ochoa-Albiztegui, R.E.; Leithner, D.; Marino, M.A.; Baltzer, P.A.; et al. Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer. J. Magn. Reson. Imaging 2019, 50, 836–846. [Google Scholar] [CrossRef]
- Foti, G.; Longo, C. Deep learning and AI in reducing magnetic resonance imaging scanning time: Advantages and pitfalls in clinical practice. Pol. J. Radiol. 2024, 89, e443–e451. [Google Scholar] [CrossRef] [PubMed]
- Iima, M.; Honda, M.; Satake, H.; Kataoka, M. Standardization and advancements efforts in breast diffusion-weighted imaging. Jpn. J. Radiol. 2025, 43, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, Y.; Burnside, E.S.; Huang, E.; Drukker, K.; Hoadley, K.A.; Fan, C.; Conzen, S.D.; Zuley, M.; Net, J.M.; et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer 2016, 2, 16012. [Google Scholar] [CrossRef] [PubMed]
- Dumoulin, S.O.; Fracasso, A.; van der Zwaag, W.; Siero, J.C.W.; Petridou, N. Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function. Neuroimage 2018, 168, 345–357. [Google Scholar] [CrossRef]
- Ouwerkerk, R. Sodium MRI. Methods Mol. Biol. 2011, 711, 175–201. [Google Scholar]
- Ulusoy, O.L.; Server, S.; Yesilova, M.; İnan, N. Whole-body PET/MRI to detect bone metastases: Comparison of the diagnostic performance of the sequences. Radiol. Oncol. 2024, 58, 494–500. [Google Scholar] [CrossRef]
- Malyarenko, D.I.; Ross, B.D.; Chenevert, T.L. Analysis and correction of gradient nonlinearity bias in apparent diffusion coefficient measurements. Magn. Reson. Med. 2014, 71, 1312–1323. [Google Scholar] [CrossRef]
- Gallo-Bernal, S.; Patino-Jaramillo, N.; Calixto, C.A.; Higuera, S.A.; Forero, J.F.; Lara Fernandes, J.; Góngora, C.; Gee, M.S.; Ghoshhajra, B.; Medina, H.M. Nephrogenic Systemic Fibrosis in Patients with Chronic Kidney Disease after the Use of Gadolinium-Based Contrast Agents: A Review for the Cardiovascular Imager. Diagnostics 2022, 12, 1816. [Google Scholar] [CrossRef]
- Woolen, S.A.; Shankar, P.R.; Gagnier, J.J.; MacEachern, M.P.; Singer, L.; Davenport, M.S. Risk of Nephrogenic Systemic Fibrosis in Patients with Stage 4 or 5 Chronic Kidney Disease Receiving a Group II Gadolinium-Based Contrast Agent: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2020, 180, 223–230. [Google Scholar] [CrossRef]
- Moore, S.G.; Shenoy, P.J.; Fanucchi, L.; Tumeh, J.W.; Flowers, C.R. Cost-effectiveness of MRI compared to mammography for breast cancer screening in a high risk population. BMC Health Serv. Res. 2009, 9, 9. [Google Scholar] [CrossRef]
- Tollens, F.; Baltzer, P.A.T.; Froelich, M.F.; Kaiser, C.G. Economic evaluation of breast MRI in screening—A systematic review and basic approach to cost-effectiveness analyses. Front. Oncol. 2023, 13, 1292268. [Google Scholar] [CrossRef]
- Du, R.; Zhao, Z.; Cui, J.; Li, Y. Manganese-Based Nanotheranostics for Magnetic Resonance Imaging-Mediated Precise Cancer Management. Int. J. Nanomed. 2023, 18, 6077–6099. [Google Scholar] [CrossRef]
- Boulant, N.; Mauconduit, F.; Gras, V.; Amadon, A.; Le Ster, C.; Luong, M.; Massire, A.; Pallier, C.; Sabatier, L.; Bottlaender, M.; et al. In vivo imaging of the human brain with the Iseult 11.7-T MRI scanner. Nat. Methods 2024, 21, 2013–2016. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.M.; Cho, N.; Moy, L. Breast MRI: State of the Art. Radiology 2019, 292, 520–536. [Google Scholar] [CrossRef] [PubMed]
- Baba, A.; Kurokawa, R.; Rawie, E.; Kurokawa, M.; Ota, Y.; Srinivasan, A. Normalized Parameters of Dynamic Contrast-Enhanced Perfusion MRI and DWI-ADC for Differentiation between Posttreatment Changes and Recurrence in Head and Neck Cancer. AJNR Am. J. Neuroradiol. 2022, 43, 1184–1189. [Google Scholar] [CrossRef] [PubMed]
- Hoff, B.A.; Bhojani, M.S.; Rudge, J.; Chenevert, T.L.; Meyer, C.R.; Galbán, S.; Johnson, T.D.; Leopold, J.S.; Rehemtulla, A.; Ross, B.D.; et al. DCE and DW-MRI monitoring of vascular disruption following VEGF-Trap treatment of a rat glioma model. NMR Biomed. 2012, 25, 935–942. [Google Scholar] [CrossRef]
- Sorace, A.G.; Elkassem, A.A.; Galgano, S.J.; Lapi, S.E.; Larimer, B.M.; Partridge, S.C.; Quarles, C.C.; Reeves, K.; Napier, T.S.; Song, P.N.; et al. Imaging for Response Assessment in Cancer Clinical Trials. Semin. Nucl. Med. 2020, 50, 488–504. [Google Scholar] [CrossRef]
- Kennedy, L.C.; Kazerouni, A.S.; Chau, B.; Biswas, D.; Alvarez, R.; Durenberger, G.; Dintzis, S.M.; Stanton, S.E.; Partridge, S.C.; Gadi, V. Associations of Multiparametric Breast MRI Features, Tumor-Infiltrating Lymphocytes, and Immune Gene Signature Scores Following a Single Dose of Trastuzumab in HER2-Positive Early-Stage Breast Cancer. Cancers 2023, 15, 4337. [Google Scholar] [CrossRef]
- Fan, H.; Luo, Y.; Gu, F.; Tian, B.; Xiong, Y.; Wu, G.; Nie, X.; Yu, J.; Tong, J.; Liao, X. Artificial intelligence-based MRI radiomics and radiogenomics in glioma. Cancer Imaging 2024, 24, 36. [Google Scholar] [CrossRef]
- Maleki Varnosfaderani, S.; Forouzanfar, M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering 2024, 11, 337. [Google Scholar] [CrossRef] [PubMed]
- Orrantia-Borunda, E.; Anchondo-Nuñez, P.; Acuña-Aguilar, L.E.; Gómez-Valles, F.O.; Ramírez-Valdespino, C.A. Subtypes of Breast Cancer. In Breast Cancer [Internet]; Mayrovitz, H.N., Ed.; Exon Publications: Brisbane, Australia, 2022; Chapter 3. [Google Scholar]
- Cheang, M.C.; Chia, S.K.; Voduc, D.; Gao, D.; Leung, S.; Snider, J.; Watson, M.; Davies, S.; Bernard, P.S.; Parker, J.S.; et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl. Cancer Inst. 2009, 101, 736–750. [Google Scholar] [CrossRef] [PubMed]
- Aman, N.A.; Doukoure, B.; Koffi, K.D.; Koui, B.S.; Traore, Z.C.; Kouyate, M.; Effi, A.B. HER2 overexpression and correlation with other significant clinicopathologic parameters in Ivorian breast cancer women. BMC Clin. Pathol. 2019, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Childs, B.H.; Pegram, M. Triple negative breast cancer: Unmet medical needs. Breast Cancer Res. Treat. 2011, 125, 627–636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Corti, C.; Giugliano, F.; Nicolò, E.; Tarantino, P.; Criscitiello, C.; Curigliano, G. HER2-Low Breast Cancer: A New Subtype? Curr. Treat Options Oncol. 2023, 24, 468–478. [Google Scholar] [CrossRef]
- Ge, Q.; Zhang, Z.Y.; Li, S.N.; Ma, J.Q.; Zhao, Z. Liquid biopsy: Comprehensive overview of circulating tumor DNA (Review). Oncol. Lett. 2024, 28, 548. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997, Erratum in Biology 2024, 13, 286. [Google Scholar] [CrossRef]
- Zhou, B.; Lin, W.; Long, Y.; Yang, Y.; Zhang, H.; Wu, K.; Chu, Q. Notch signaling pathway: Architecture, disease, and therapeutics. Signal Transduct. Target. Ther. 2022, 7, 95. [Google Scholar] [CrossRef]
- King, T.D.; Suto, M.J.; Li, Y. The Wnt/β-catenin signaling pathway: A potential therapeutic target in the treatment of triple negative breast cancer. J. Cell Biochem. 2012, 113, 13–18. [Google Scholar] [CrossRef]
- She, Q.B.; Solit, D.B.; Ye, Q.; O’Reilly, K.E.; Lobo, J.; Rosen, N. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 2005, 8, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Price, M.A.; Colvin Wanshura, L.E.; Yang, J.; Carlson, J.; Xiang, B.; Li, G.; Ferrone, S.; Dudek, A.Z.; Turley, E.A.; McCarthy, J.B. CSPG4, a potential therapeutic target, facilitates malignant progression of melanoma. Pigment. Cell Melanoma Res. 2011, 24, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.; Chen, Y.G. TGF-β Signaling from Receptors to Smads. Cold Spring Harb. Perspect. Biol. 2016, 8, a022061. [Google Scholar] [CrossRef] [PubMed]
- Cargnello, M.; Tcherkezian, J.; Roux, P.P. The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis 2015, 30, 169–176. [Google Scholar] [CrossRef]
- Sigafoos, A.N.; Paradise, B.D.; Fernandez-Zapico, M.E. Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers 2021, 13, 3410. [Google Scholar] [CrossRef]
- Rose, M.; Burgess, J.T.; O’Byrne, K.; Richard, D.J.; Bolderson, E. PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front. Cell Dev. Biol. 2020, 8, 564601. [Google Scholar] [CrossRef]
- Lord, S.J.; Lei, W.; Craft, P.; Cawson, J.N.; Morris, I.; Walleser, S.; Griffiths, A.; Parker, S.; Houssami, N. A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer. Eur. J. Cancer 2007, 43, 1905–1917. [Google Scholar] [CrossRef]
- Arledge, C.A.; Zhao, A.H.; Topaloglu, U.; Zhao, D. Dynamic Contrast Enhanced MRI Mapping of Vascular Permeability for Evaluation of Breast Cancer Neoadjuvant Chemotherapy Response Using Image-to-Image Conditional Generative Adversarial Networks. medRxiv 2024. [Google Scholar] [CrossRef]
- Sardanelli, F.; Magni, V.; Rossini, G.; Kilburn-Toppin, F.; Healy, N.A.; Gilbert, F.J. The paradox of MRI for breast cancer screening: High-risk and dense breasts-available evidence and current practice. Insights Imaging 2024, 15, 96. [Google Scholar] [CrossRef]
- Kim, G.; Bahl, M. Assessing Risk of Breast Cancer: A Review of Risk Prediction Models. J. Breast Imaging 2021, 3, 144–155. [Google Scholar] [CrossRef]
- Li, W.; Newitt, D.C.; Wilmes, L.J.; Jones, E.F.; Arasu, V.; Gibbs, J.; La Yun, B.; Li, E.; Partridge, S.C.; Kornak, J.; et al. Additive value of diffusion-weighted MRI in the I-SPY 2 TRIAL. J. Magn. Reson. Imaging 2019, 50, 1742–1753. [Google Scholar] [CrossRef]
- Pesapane, F.; Battaglia, O.; Rotili, A.; Gnocchi, G.; D’Ecclesiis, O.; Bellerba, F.; Penco, S.; Signorelli, G.; Nicosia, L.; Trentin, C.; et al. Comparative diagnostic efficacy of abbreviated and full protocol breast MRI: A systematic review and a meta-analysis. Br. J. Radiol. 2024, 97, 1915–1924. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Dong, Q.; Zhan, L.; Zhang, J. How to differentiate pseudoprogression from true progression in cancer patients treated with immunotherapy. Am. J. Cancer Res. 2019, 9, 1546–1553. [Google Scholar] [PubMed]
- Nguyen, V.T.; Duong, D.H.; Nguyen, Q.T.; Nguyen, D.T.; Tran, T.L.; Duong, T.G. The association of magnetic resonance imaging features with five molecular subtypes of breast cancer. Eur. J. Radiol. Open 2024, 13, 100585. [Google Scholar] [CrossRef] [PubMed]
- Debruhl, N.D.; Lee, S.J.; Mahoney, M.C.; Hanna, L.; Tuite, C.; Gatsonis, C.A.; Lehman, C. MRI Evaluation of the Contralateral Breast in Women with Recently Diagnosed Breast Cancer: 2-Year Follow-up. J. Breast Imaging 2020, 2, 50–55. [Google Scholar] [CrossRef]
- Saeed, S.A.; Masters, R.M. Disparities in Health Care and the Digital Divide. Curr. Psychiatry Rep. 2021, 23, 61. [Google Scholar] [CrossRef]
- Han, S.; Liu, S.S.; Jing, G.W.; Wang, P.Q.; Zhang, Y.T.; Xiong, L.; Zhang, Y.F.; Qu, H.S.; Ren, B.X. Early evaluation of anti-angiogenic effects with gadolinium(III) labeled APN/CD13 specific binding peptides magnetic resonance imaging. Sci. Rep. 2025, 15, 21269. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, X.; Shen, B. Contrast agents in dynamic contrast-enhanced magnetic resonance imaging. Oncotarget 2017, 8, 43491–43505. [Google Scholar] [CrossRef]
- Meng, Y.; Sun, J.; Qu, N.; Zhang, G.; Yu, T.; Piao, H. Application of Radiomics for Personalized Treatment of Cancer Patients. Cancer Manag. Res. 2019, 11, 10851–10858. [Google Scholar] [CrossRef]
- Gonzalez, V.; Arver, B.; Löfgren, L.; Bergkvist, L.; Sandelin, K.; Eriksson, S. Impact of preoperative breast MRI on 10-year survival of patients included in the Swedish randomized multicentre POMB trial. BJS Open 2021, 5, zrab088. [Google Scholar] [CrossRef]
- Pan, L.; Li, J.; Xu, Q.; Gao, Z.; Yang, M.; Wu, X.; Li, X. HER2/PI3K/AKT pathway in HER2-positive breast cancer: A review. Medicine 2024, 103, e38508. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-positive breast cancer: Advances and future directions. Nat. Rev. Drug Discov. 2023, 22, 101–126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Chen, Z.; Chen, J.; Shi, Z.; Fang, G. Pathologic complete response prediction in breast cancer lesion segmentation and neoadjuvant therapy. Front. Med. 2023, 10, 1188207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, L.; Bhattacharya, A.; Peterson, D.; Li, Y.; Liu, X.; Marangoni, E.; Robila, V.; Zhang, Y. Targeted dual degradation of HER2 and EGFR obliterates oncogenic signaling, overcomes therapy resistance, and inhibits metastatic lesions in HER2-positive breast cancer models. Drug Resist. Updat. 2024, 74, 101078. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, L.; Xie, Y.; Gou, Q.; Cai, R.; Bao, R.; Huang, Y.; Tang, R. HER2-targeted therapies for HER2-positive early-stage breast cancer: Present and future. Front. Pharmacol. 2024, 15, 1446414. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van der Voort, A.; van der Hoogt, K.J.J.; Wessels, R.; Schipper, R.J.; Wesseling, J.; Sonke, G.S.; Mann, R.M. Diffusion-weighted imaging in addition to contrast-enhanced MRI in identifying complete response in HER2-positive breast cancer. Eur. Radiol. 2024, 34, 7994–8004, Erratum in Eur. Radiol. 2025, 35, 2357. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Teng, X.; Zhang, J.; Lai, Q.; Cai, J. Enhancing pathological complete response prediction in breast cancer: The role of dynamic characterization of DCE-MRI and its association with tumor heterogeneity. Breast Cancer Res. 2024, 26, 77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mercogliano, M.F.; Bruni, S.; Mauro, F.L.; Schillaci, R. Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers 2023, 15, 1987. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kou, L.; Chen, X.; Xie, X.; Wen, Q.; Li, J.; Li, Y. The efficacy and safety of trastuzumab deruxtecan (T-DXd) in HER2-expressing solid tumours: A single-arm meta-analysis. Jpn. J. Clin. Oncol. 2023, 53, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X.; Fu, R.; Fang, Y.; Zhang, C.; Ma, B.; Ding, Y.; Shi, C.; Zhou, Q. Recent Research Advances in HER2-Positive Breast Cancer Concerning Targeted Therapy Drugs. Molecules 2025, 30, 3026. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, T.; Zhang, J. Therapeutic advances and application of PARP inhibitors in breast cancer. Transl. Oncol. 2025, 57, 102410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- James, A.D.; Leslie, T.K.; Kaggie, J.D.; Wiggins, L.; Patten, L.; Murphy O’Duinn, J.; Langer, S.; Labarthe, M.C.; Riemer, F.; Baxter, G.; et al. Sodium accumulation in breast cancer predicts malignancy and treatment response. Br. J. Cancer 2022, 127, 337–349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, S.; Choi, C.; Kim, H.; Shin, Y.J.; Oh, Y.; Park, W.; Cho, W.K.; Kim, N. Olaparib enhances sensitization of BRCA-proficient breast cancer cells to x-rays and protons. Breast Cancer Res. Treat. 2024, 203, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Telli, M.L.; Litton, J.K.; Beck, J.T.; Jones, J.M.; Andersen, J.; Mina, L.A.; Brig, R.; Danso, M.; Yuan, Y.; Symmans, W.F.; et al. Neoadjuvant talazoparib in patients with germline BRCA1/2 mutation-positive, early-stage triple-negative breast cancer: Exploration of tumor BRCA mutational status. Breast Cancer 2024, 31, 886–897. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beelen, K.; Opdam, M.; Severson, T.M.; Koornstra, R.H.; Vincent, A.D.; Wesseling, J.; Muris, J.J.; Berns, E.M.; Vermorken, J.B.; van Diest, P.J.; et al. PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2, and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients. Breast Cancer Res. 2014, 16, R13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Curigliano, G.; Martin, M.; Jhaveri, K.; Beck, J.T.; Tortora, G.; Fazio, N.; Maur, M.; Hubner, R.A.; Lahner, H.; Donnet, V.; et al. Alpelisib in combination with everolimus ± exemestane in solid tumours: Phase Ib randomised, open-label, multicentre study. Eur. J. Cancer 2021, 151, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Mo, T.; Brandal, S.H.B.; Geier, O.M.; Engebråten, O.; Nilsen, L.B.; Kristensen, V.N.; Hole, K.H.; Hompland, T.; Fleischer, T.; Seierstad, T. MRI Assessment of Changes in Tumor Vascularization during Neoadjuvant Anti-Angiogenic Treatment in Locally Advanced Breast Cancer Patients. Cancers 2023, 15, 4662. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chumsri, S.; Howes, T.; Bao, T.; Sabnis, G.; Brodie, A. Aromatase, aromatase inhibitors, and breast cancer. J. Steroid Biochem. Mol. Biol. 2011, 125, 13–22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pais, A.; Degani, H. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status. Front. Oncol. 2016, 6, 100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nathan, M.R.; Schmid, P. A Review of Fulvestrant in Breast Cancer. Oncol. Ther. 2017, 5, 17–29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yankeelov, T.E.; Lepage, M.; Chakravarthy, A.; Broome, E.E.; Niermann, K.J.; Kelley, M.C.; Meszoely, I.; Mayer, I.A.; Herman, C.R.; McManus, K.; et al. Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: Initial results. Magn. Reson. Imaging 2007, 25, 1–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reis, J.; Thomas, O.; Lahooti, M.; Lyngra, M.; Schandiz, H.; Boavida, J.; Gjesdal, K.I.; Sauer, T.; Geisler, J.; Geitung, J.T. Correlation between MRI morphological response patterns and histopathological tumor regression after neoadjuvant endocrine therapy in locally advanced breast cancer: A randomized phase II trial. Breast Cancer Res. Treat. 2021, 189, 711–723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhai, G.; Grubbs, C.J.; Stockard, C.R.; Umphrey, H.R.; Beasley, T.M.; Kim, H. Diffusion weighted imaging evaluated the early therapy effect of tamoxifen in an MNU-induced mammary cancer rat model. PLoS ONE 2013, 8, e64445. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khanyile, R.; Chipiti, T.; Hull, R.; Dlamini, Z. Radiogenomic Landscape of Metastatic Endocrine-Positive Breast Cancer Resistant to Aromatase Inhibitors. Cancers 2025, 17, 808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, L.; Zhang, F.; Liu, Z.; Fan, Z. Immunotherapy for Triple-Negative Breast Cancer: Combination Strategies to Improve Outcome. Cancers 2023, 15, 321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Onesti, C.E.; Frères, P.; Jerusalem, G. Atypical patterns of response to immune checkpoint inhibitors: Interpreting pseudoprogression and hyperprogression in decision making for patients’ treatment. J. Thorac. Dis. 2019, 11, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Goodman, A.; Walavalkar, V.; Barkauskas, D.A.; Sharabi, A.; Kurzrock, R. Hyperprogressors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate. Clin. Cancer Res. 2017, 23, 4242–4250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Ma, Y.; Wu, Z.; Xie, R.; Zeng, F.; Cai, H.; Lui, S.; Song, B.; Chen, L.; Wu, M. Advanced Imaging Techniques for Differentiating Pseudoprogression and Tumor Recurrence After Immunotherapy for Glioblastoma. Front. Immunol. 2021, 12, 790674. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, X. A Comprehensive Review of HER2 in Cancer Biology and Therapeutics. Genes 2024, 15, 903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hartkopf, A.D.; Taran, F.A.; Wallwiener, M.; Walter, C.B.; Krämer, B.; Grischke, E.M.; Brucker, S.Y. PD-1 and PD-L1 Immune Checkpoint Blockade to Treat Breast Cancer. Breast Care 2016, 11, 385–390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lo Gullo, R.; Wen, H.; Reiner, J.S.; Hoda, R.; Sevilimedu, V.; Martinez, D.F.; Thakur, S.B.; Jochelson, M.S.; Gibbs, P.; Pinker, K. Assessing PD-L1 Expression Status Using Radiomic Features from Contrast-Enhanced Breast MRI in Breast Cancer Patients: Initial Results. Cancers 2021, 13, 6273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bardia, A.; Sun, S.; Thimmiah, N.; Coates, J.T.; Wu, B.; Abelman, R.O.; Spring, L.; Moy, B.; Ryan, P.; Melkonyan, M.N.; et al. Antibody-Drug Conjugate Sacituzumab Govitecan Enables a Sequential TOP1/PARP Inhibitor Therapy Strategy in Patients with Breast Cancer. Clin. Cancer Res. 2024, 30, 2917–2924. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shastry, M.; Jacob, S.; Rugo, H.S.; Hamilton, E. Antibody-drug conjugates targeting TROP-2: Clinical development in metastatic breast cancer. Breast 2022, 66, 169–177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nordin, M.L.; Azemi, A.K.; Nordin, A.H.; Nabgan, W.; Ng, P.Y.; Yusoff, K.; Abu, N.; Lim, K.P.; Zakaria, Z.A.; Ismail, N.; et al. Peptide-Based Vaccine against Breast Cancer: Recent Advances and Prospects. Pharmaceuticals 2023, 16, 923. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strachan, D.C.; Ruffell, B.; Oei, Y.; Bissell, M.J.; Coussens, L.M.; Pryer, N.; Daniel, D. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. Oncoimmunology 2013, 2, e26968. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Florian, D.C.; Bennett, N.E.; Odziomek, M.; Baljon, J.J.; Wehbe, M.; Merkel, A.R.; Fischer, M.A.; Savona, M.R.; Rhoades, J.A.; Guelcher, S.A.; et al. Nanoparticle STING Agonist Reprograms the Bone Marrow to an Antitumor Phenotype and Protects Against Bone Destruction. Cancer Res. Commun. 2023, 3, 223–234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zou, J.; Zhang, L.; Chen, Y.; Lin, Y.; Cheng, M.; Zheng, X.; Zhuang, X.; Wang, K. Neoadjuvant Chemotherapy and Neoadjuvant Chemotherapy with Immunotherapy Result in Different Tumor Shrinkage Patterns in Triple-Negative Breast Cancer. J. Breast Cancer 2024, 27, 27–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jacob, S.; Christofferson, A.; Fisch, S.; Norwood, P.; Castillo, P.; Yu, H.; Hirst, G.; Soliman, H.; Nanda, R.; Mukhtar, R.A.; et al. Regional lymph node changes on breast MRI in patients with early-stage breast cancer receiving neoadjuvant chemo-immunotherapy. Breast Cancer Res. Treat. 2025, 209, 147–159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ravi, H.; Arias-Lorza, A.M.; Costello, J.R.; Han, H.S.; Jeong, D.K.; Klinz, S.G.; Sachdev, J.C.; Korn, R.L.; Raghunand, N. Pretherapy Ferumoxytol-enhanced MRI to Predict Response to Liposomal Irinotecan in Metastatic Breast Cancer. Radiol. Imaging Cancer 2023, 5, e220022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, J.; Liu, N.; Zhao, L. New progress in imaging diagnosis and immunotherapy of breast cancer. Front. Immunol. 2025, 16, 1560257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.; Huang, Y.; Li, W.; Zhu, T.; Cheng, M.; Wu, C.; Zhang, L.; Peng, H.; Wang, K. Intratumoral microbiota-aided fusion radiomics model for predicting tumor response to neoadjuvant chemoimmunotherapy in triple-negative breast cancer. J. Transl. Med. 2025, 23, 352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arora, A.; Seenu, V.; Parshad, R.; Bansal, V.K.; Dhar, A.; Mathur, S.; Tanwar, P.; Mishra, P.; Kataria, K.; Suhani Gogia, A.; et al. A phase II, randomized, open-labeled study to evaluate low-dose pembrolizumab in addition to neoadjuvant chemotherapy for triple-negative breast cancer (TNBC). Trials 2025, 26, 73. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, Y.; Li, M.; Hu, Y.; Wang, M.; Lin, Y.; Mao, L.; Wang, C.; Shui, Y.; Song, Y.; Wang, H.; et al. Evaluating dynamic contrast-enhanced MRI for differentiating HER2-zero, HER2-low, and HER2-positive breast cancers in patients undergoing neoadjuvant chemotherapy. Eur. J. Med. Res. 2025, 30, 132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, N.; Lee, E.S.; Won, S.E.; Yang, M.; Lee, A.J.; Shin, Y.; Ko, Y.; Pyo, J.; Park, H.J.; Kim, K.W. Evolution of Radiological Treatment Response Assessments for Cancer Immunotherapy: From iRECIST to Radiomics and Artificial Intelligence. Korean J. Radiol. 2022, 23, 1089–1101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, W.; Rahman, S.; Wu, A.M.L.; Isanogle, K.; Robinson, C.; Kumar, D.; Khan, I.; Wei, D.; Zimmer, A.S.; Fujii, T.; et al. A CSF-1R inhibitor both prevents and treats triple-negative breast cancer brain metastases in hematogenous preclinical models. Clin. Exp. Metastasis 2025, 42, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liao, D.; Liu, Y.C.; Liu, J.Y.; Wang, D.; Liu, X.F. Differentiating tumour progression from pseudoprogression in glioblastoma patients: A monoexponential, biexponential, and stretched-exponential model-based DWI study. BMC Med. Imaging 2023, 23, 119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Wu, S.; Zu, X.; Li, X.; Zhang, Q.; Ren, Y.; Qian, X.; Tong, S.; Li, H. Ultrasound-based radiomics nomogram for predicting HER2-low expression breast cancer. Front. Oncol. 2024, 14, 1438923. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Panthi, B.; Adrada, B.E.; Candelaria, R.P.; Guirguis, M.S.; Yam, C.; Boge, M.; Chen, H.; Hunt, K.K.; Huo, L.; Hwang, K.P.; et al. Assessment of Response to Neoadjuvant Systemic Treatment in Triple-Negative Breast Cancer Using Functional Tumor Volumes from Longitudinal Dynamic Contrast-Enhanced MRI. Cancers 2023, 15, 1025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gilad, M.; Partridge, S.C.; Iima, M.; Md, R.R.; Freiman, M. Radiomics-based Machine Learning Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Using Physiologically Decomposed Diffusion-weighted MRI. Radiol. Imaging Cancer 2025, 7, e240312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Z.; Li, Z.; Qu, J.; Zhang, R.; Zhou, X.; Li, L.; Sun, K.; Tang, Z.; Jiang, H.; Li, H.; et al. Radiomics of Multiparametric MRI for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer: A Multicenter Study. Clin. Cancer Res. 2019, 25, 3538–3547. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ren, R.; Xu, Y.; Duan, S.; Zhang, J.; Bao, Z. Dynamic contrast-enhanced MRI-based radiomics model of intra-tumoral kinetic heterogeneity for predicting breast cancer molecular subtypes. Front. Mol. Biosci. 2025, 12, 1635296. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, G.; Li, Q.; Wu, H.; Huang, Z.; Tian, H.; Yang, K.; Chen, J.; Xu, J.; Yuan, L.; Dong, F. Multi-center strain elastography radiomics for breast cancer diagnosis: Integrating intratumoral and peritumoral regions. Discov. Oncol. 2025, 16, 659. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qi, Y.J.; Su, G.H.; You, C.; Zhang, X.; Xiao, Y.; Jiang, Y.Z.; Shao, Z.M. Radiomics in breast cancer: Current advances and future directions. Cell Rep. Med. 2024, 5, 101719. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, S.; Chen, L.; Tao, J.; Liu, J.; Zhu, W.; Liu, H.; Yang, F. Radiomics Analysis of Multi-Phase DCE-MRI in Predicting Tumor Response to Neoadjuvant Therapy in Breast Cancer. Diagnostics 2021, 11, 2086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mehta, S.; Hughes, N.P.; Li, S.; Jubb, A.; Adams, R.; Lord, S.; Koumakis, L.; van Stiphout, R.; Padhani, A.; Makris, A.; et al. Radiogenomics Monitoring in Breast Cancer Identifies Metabolism and Immune Checkpoints as Early Actionable Mechanisms of Resistance to Anti-angiogenic Treatment. EBioMedicine 2016, 10, 109–116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castaldo, R.; Garbino, N.; Cavaliere, C.; Incoronato, M.; Basso, L.; Cuocolo, R.; Pace, L.; Salvatore, M.; Franzese, M.; Nicolai, E. A Complex Radiomic Signature in Luminal Breast Cancer from a Weighted Statistical Framework: A Pilot Study. Diagnostics 2022, 12, 499. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Comstock, C.E.; Gatsonis, C.; Newstead, G.M.; Snyder, B.S.; Gareen, I.F.; Bergin, J.T.; Rahbar, H.; Sung, J.S.; Jacobs, C.; Harvey, J.A.; et al. Comparison of Abbreviated Breast MRI vs Digital Breast Tomosynthesis for Breast Cancer Detection Among Women with Dense Breasts Undergoing Screening. JAMA 2020, 323, 746–756, Erratum in JAMA 2020, 323, 1194. [Google Scholar] [CrossRef]
- Yin, H.; Bai, L.; Jia, H.; Lin, G. Noninvasive assessment of breast cancer molecular subtypes on multiparametric MRI using convolutional neural network with transfer learning. Thorac. Cancer 2022, 13, 3183–3191. [Google Scholar] [CrossRef]
- Gilbert, F.J.; Payne, N.R.; Allajbeu, I.; Yit, L.; Vinnicombe, S.; Lyburn, I.; Sharma, N.; Teh, W.; James, J.; Seth, A.; et al. Comparison of supplemental breast cancer imaging techniques-interim results from the BRAID randomised controlled trial. Lancet 2025, 405, 1935–1944. [Google Scholar] [CrossRef]
- Zeng, Q.; Xiong, F.; Liu, L.; Zhong, L.; Cai, F.; Zeng, X. Radiomics Based on DCE-MRI for Predicting Response to Neoadjuvant Therapy in Breast Cancer. Acad. Radiol. 2023, 30 (Suppl. 2), S38–S49. [Google Scholar] [CrossRef]
- van Grinsven, S.E.L.; Mann, R.M.; Monninkhof, E.M.; Duvivier, K.; de Jong, M.D.F.; de Koekkoek-Doll, P.K.; Loo, C.E.; Pijnappel, R.M.; van der Sluijs, R.; Veltman, J.; et al. Multireader Diagnostic Accuracy of Abbreviated Breast MRI for Screening Women with Extremely Dense Breasts. Radiology 2025, 315, e241233. [Google Scholar] [CrossRef] [PubMed]
- Mota, B.S.; Reis, Y.N.; de Barros, N.; Cardoso, N.P.; Mota, R.M.S.; Shimizu, C.; de Mello Tucunduva, T.C.; de Siqueira Ferreira, V.C.C.; Goncalves, R.; Doria, M.T.; et al. Effects of preoperative magnetic resonance image on survival rates and surgical planning in breast cancer conservative surgery: Randomized controlled trial (BREAST-MRI trial). Breast Cancer Res. Treat. 2023, 198, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Jannusch, K.; Umutlu, L.; Kirchner, J.; Bruckmann, N.M.; Morawitz, J.; Herrmann, K.; Fendler, W.P.; Bittner, A.K.; Hoffmann, O.; Mohrmann, S.; et al. Impact of 18F-FDG PET/MRI on Therapeutic Management of Women with Newly Diagnosed Breast Cancer: Results from a Prospective Double-Center Trial. J. Nucl. Med. 2024, 65, 1855–1861. [Google Scholar] [PubMed]
- Yin, H.L.; Jiang, Y.; Xu, Z.; Jia, H.H.; Lin, G.W. Combined diagnosis of multiparametric MRI-based deep learning models facilitates differentiating triple-negative breast cancer from fibroadenoma magnetic resonance BI-RADS 4 lesions. J. Cancer Res. Clin. Oncol. 2023, 149, 2575–2584. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, Q.; Wang, H.; Wang, G.; Fu, G.; Bian, T. An MRI-Based Radiomics Nomogram to Distinguish Ductal Carcinoma In Situ with Microinvasion From Ductal Carcinoma In Situ of Breast Cancer. Acad. Radiol. 2023, 30 (Suppl. 2), S71–S81. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Qu, J.; Tang, R.; Wang, C.; Xiao, F.; Pang, P.; Sun, Z.; Xu, M.; Li, J. High-temporal resolution DCE-MRI improves assessment of intra- and peri-breast lesions categorized as BI-RADS 4. BMC Med. Imaging 2023, 23, 58. [Google Scholar] [CrossRef]
- Qi, X.; Wang, W.; Pan, S.; Liu, G.; Xia, L.; Duan, S.; He, Y. Predictive value of triple negative breast cancer based on DCE-MRI multi-phase full-volume ROI clinical radiomics model. Acta Radiol. 2024, 65, 173–184. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Zhao, R.; Ji, Y.; Li, J.; Zhang, Y.; Lu, H. Development and validation of a nomogram based on pretreatment dynamic contrast-enhanced MRI for the prediction of pathologic response after neoadjuvant chemotherapy for triple-negative breast cancer. Eur. Radiol. 2022, 32, 1676–1687. [Google Scholar] [CrossRef]
- van der Voort, A.; Louis, F.M.; van Ramshorst, M.S.; Kessels, R.; Mandjes, I.A.; Kemper, I.; Agterof, M.J.; van der Steeg, W.A.; Heijns, J.B.; van Bekkum, M.L.; et al. MRI-guided optimisation of neoadjuvant chemotherapy duration in stage II-III HER2-positive breast cancer (TRAIN-3): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2024, 25, 603–613. [Google Scholar] [CrossRef]
- Sutton, E.J.; Braunstein, L.Z.; El-Tamer, M.B.; Brogi, E.; Hughes, M.; Bryce, Y.; Gluskin, J.S.; Powell, S.; Woosley, A.; Tadros, A.; et al. Accuracy of Magnetic Resonance Imaging-Guided Biopsy to Verify Breast Cancer Pathologic Complete Response After Neoadjuvant Chemotherapy: A Nonrandomized Controlled Trial. JAMA Netw. Open 2021, 4, e2034045. [Google Scholar] [CrossRef] [PubMed]
- Mann, G.B.; Skandarajah, A.R.; Zdenkowski, N.; Hughes, J.; Park, A.; Petrie, D.; Saxby, K.; Grimmond, S.M.; Murugasu, A.; Spillane, A.J.; et al. Postoperative radiotherapy omission in selected patients with early breast cancer following preoperative breast MRI (PROSPECT): Primary results of a prospective two-arm study. Lancet 2024, 403, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Sang, L.; Liu, Z.; Huang, C.; Xu, J.; Wang, H. Multiparametric MRI-based radiomics nomogram for predicting the hormone receptor status of HER2-positive breast cancer. Clin. Radiol. 2024, 79, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Verburg, E.; van Gils, C.H.; Bakker, M.F.; Viergever, M.A.; Pijnappel, R.M.; Veldhuis, W.B.; Gilhuijs, K.G.A. Computer-Aided Diagnosis in Multiparametric Magnetic Resonance Imaging Screening of Women with Extremely Dense Breasts to Reduce False-Positive Diagnoses. Investig. Radiol. 2020, 55, 438–444. [Google Scholar] [CrossRef]
- Saunders, C.; Taylor, D. Expanding the indications for MRI in the diagnosis and treatment of breast cancer: What is best practice? J. Med. Radiat. Sci. 2015, 62, 47–53. [Google Scholar] [CrossRef]
- Cheng, Q.; Huang, J.; Liang, J.; Ma, M.; Ye, K.; Shi, C.; Luo, L. The Diagnostic Performance of DCE-MRI in Evaluating the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer: A Meta-Analysis. Front. Oncol. 2020, 10, 93. [Google Scholar] [CrossRef]
- Gullo, R.L.; Partridge, S.C.; Shin, H.J.; Thakur, S.B.; Pinker, K. Update on DWI for Breast Cancer Diagnosis and Treatment Monitoring. AJR Am. J. Roentgenol. 2024, 222, e2329933. [Google Scholar] [CrossRef]
- Vladimirov, N.; Perlman, O. Molecular MRI-Based Monitoring of Cancer Immunotherapy Treatment Response. Int. J. Mol. Sci. 2023, 24, 3151. [Google Scholar] [CrossRef]
- Var, V.; Leu, S.M.; Rommers, N.; Psychogios, M.N.; Cordier, D.; Todea, R.A. Differentiation of tumor progression from pseudoprogression in glioblastoma patients with GRASP DCE-MRI and DSC-MRI. J. Neuroradiol. 2025, 52, 101354. [Google Scholar] [CrossRef]
- Amer, A.; Ansari, S.; Krayyem, A.; Kundu, S.; Khose, S.; Pokhylevych, H.; Calle, S.; Patel, C.B.; Yang, Z.; Liu, H.A.; et al. Dynamic Contrast-enhanced MRI Processing Comparison for Distinguishing True Progression From Pseudoprogression in High-grade Glioma. J. Comput. Assist. Tomogr. 2025, 49, 656–661. [Google Scholar] [CrossRef]
- Mattar, A.; Antonini, M.; Amorim, A.; Mateus, E.F.; Bagnoli, F.; Cavalcante, F.P.; Novita, G.; Mori, L.J.; Madeira, M.; Diógenes, M.; et al. PROMRIINE (PRe-operatory Magnetic Resonance Imaging is INEffective) Study: A Systematic Review and Meta-analysis of the Impact of Magnetic Resonance Imaging on Surgical Decisions and Clinical Outcomes in Women with Breast Cancer. Ann. Surg. Oncol. 2024, 31, 8021–8029. [Google Scholar] [CrossRef]
- Tollens, F.; Baltzer, P.A.T.; Dietzel, M.; Schnitzer, M.L.; Schwarze, V.; Kunz, W.G.; Rink, J.; Rübenthaler, J.; Froelich, M.F.; Schönberg, S.O.; et al. Economic potential of abbreviated breast MRI for screening women with dense breast tissue for breast cancer. Eur. Radiol. 2022, 32, 7409–7419. [Google Scholar] [CrossRef]
- Moon, H.H.; Park, J.E.; Kim, Y.H.; Kim, J.H.; Kim, H.S. Contrast enhancing pattern on pre-treatment MRI predicts response to anti-angiogenic treatment in recurrent glioblastoma: Comparison of bevacizumab and temozolomide treatment. J. Neurooncol 2022, 157, 405–415. [Google Scholar]
- Xiong, N.; Wu, H.; Yu, Z. Advancements and challenges in triple-negative breast cancer: A comprehensive review of therapeutic and diagnostic strategies. Front. Oncol. 2024, 14, 1405491. [Google Scholar] [CrossRef] [PubMed]
- Sitges, C.; Mann, R.M. Breast MRI to Screen Women with Extremely Dense Breasts. J. Magn. Reson. Imaging 2025, 62, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Luker, G.D. MRI Screening Reduces Interval Breast Cancer in Women with Dense Breasts. Radiol. Imaging Cancer 2020, 2, e204002. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Reig, B.; Heacock, L.; Bennett, D.L.; Heller, S.L.; Moy, L. Magnetic Resonance Imaging in Screening of Breast Cancer. Radiol. Clin. N. Am. 2021, 59, 85–98. [Google Scholar] [CrossRef]
- Lubinski, J.; Kotsopoulos, J.; Moller, P.; Pal, T.; Eisen, A.; Peck, L.; Karlan, B.Y.; Aeilts, A.; Eng, C.; Bordeleau, L.; et al. MRI Surveillance and Breast Cancer Mortality in Women with BRCA1 and BRCA2 Sequence Variations. JAMA Oncol. 2024, 10, 493–499. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S.; Sood, S.; Seam, R.K.; Sharma, M.; Fotedar, V. DCE-MRI and parametric imaging in monitoring response to neoadjuvant chemotherapy in breast carcinoma: A preliminary report. Pol. J. Radiol. 2018, 83, e220–e228. [Google Scholar] [CrossRef]
- Li, Z.; Gao, J.; Zhou, H.; Li, X.; Zheng, T.; Lin, F.; Wang, X.; Chu, T.; Wang, Q.; Wang, S.; et al. Multiregional dynamic contrast-enhanced MRI-based integrated system for predicting pathological complete response of axillary lymph node to neoadjuvant chemotherapy in breast cancer: Multicentre study. EBioMedicine 2024, 107, 105311. [Google Scholar]
- Menezes, G.L.; Knuttel, F.M.; Stehouwer, B.L.; Pijnappel, R.M.; van den Bosch, M.A. Magnetic resonance imaging in breast cancer: A literature review and future perspectives. World J. Clin. Oncol. 2014, 5, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Wang, C.; Li, J.; Hao, X.; Zhu, Y.; Gao, Z.; Liu, C.; Luo, C.; Huang, Y. Analysis of the diagnostic efficacy of ultrasound, MRI, and combined examination in benign and malignant breast tumors. Front. Oncol. 2025, 15, 1494862. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Cho, N. Breast Magnetic Resonance Imaging for Patients with Newly Diagnosed Breast Cancer: A Review. J. Breast Cancer 2022, 25, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.J.; Chae, E.Y.; Shin, H.J.; Cha, J.H.; Kim, H.H. The Role of Preoperative Breast MRI in Patients with Early-Stage Breast Cancer. Investig. Magn. Reson. Imaging 2025, 29, 23–30. [Google Scholar] [CrossRef]
- Hogan, M.P.; Horvat, J.V.; Ross, D.S.; Sevilimedu, V.; Jochelson, M.S.; Kirstein, L.J.; Goldfarb, S.B.; Comstock, C.E.; Sung, J.S. Contrast-enhanced mammography in the assessment of residual disease after neoadjuvant treatment. Breast Cancer Res. Treat. 2023, 198, 349–359. [Google Scholar] [CrossRef]
- Li, X.; Arlinghaus, L.R.; Ayers, G.D.; Chakravarthy, A.B.; Abramson, R.G.; Abramson, V.G.; Atuegwu, N.; Farley, J.; Mayer, I.A.; Kelley, M.C.; et al. DCE-MRI analysis methods for predicting the response of breast cancer to neoadjuvant chemotherapy: Pilot study findings. Magn. Reson. Med. 2014, 71, 1592–1602. [Google Scholar] [CrossRef]
- Wang, H.; Yee, D. I-SPY 2: A Neoadjuvant Adaptive Clinical Trial Designed to Improve Outcomes in High-Risk Breast Cancer. Curr. Breast Cancer Rep. 2019, 11, 303–310. [Google Scholar] [CrossRef]
- Petrucelli, N.; Daly, M.B.; Pal, T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In GeneReviews® [Internet]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2022; pp. 1993–2025. [Google Scholar]
- Salem, D.S.; Kamal, R.M.; Mansour, S.M.; Salah, L.A.; Wessam, R. Breast imaging in the young: The role of magnetic resonance imaging in breast cancer screening, diagnosis and follow-up. J. Thorac. Dis. 2013, 5 (Suppl. 1), S9–S18. [Google Scholar]
- Aderinto, N.; Olatunji, D.; Abdulbasit, M.; Edun, M. The essential role of neuroimaging in diagnosing and managing cerebrovascular disease in Africa: A review. Ann. Med. 2023, 55, 2251490. [Google Scholar] [CrossRef]
- van Beek, E.J.R.; Kuhl, C.; Anzai, Y.; Desmond, P.; Ehman, R.L.; Gong, Q.; Gold, G.; Gulani, V.; Hall-Craggs, M.; Leiner, T.; et al. Value of MRI in medicine: More than just another test? J. Magn. Reson. Imaging 2019, 49, e14–e25. [Google Scholar] [CrossRef]
- Lehman, C.D.; Smith, R.A. The role of MRI in breast cancer screening. J. Natl. Compr. Canc. Netw. 2009, 7, 1109–1115, Erratum in J. Natl. Compr. Canc. Netw. 2010, 8, xxi. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.C.; McEntee, M.; Maher, M.; Ryan, M.F.; Harman, C.; England, A.; Moore, N. Assessment of breast composition in MRI using artificial intelligence—A systematic review. Radiography 2025, 31, 102900. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Coelho, L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering 2023, 10, 1435. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; He, Z.; Ouyang, J.; Tan, Y.; Chen, Y.; Gu, Y.; Mao, L.; Ren, W.; Wang, J.; Lin, L.; et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis. EBioMedicine 2021, 69, 103460. [Google Scholar] [CrossRef]
- Thill, M.; Szwarcfiter, I.; Kelling, K.; van Haasteren, V.; Kolka, E.; Noelke, J.; Peles, Z.; Papa, M.; Aulmann, S.; Allweis, T. MRI system for intraoperative margin assessment using ClearSight™. J. Surg. Oncol. 2022, 125, 361–368. [Google Scholar] [CrossRef]
- Reis, J.; Pinto, A.; Mendes, J.; Marques, T.; Rodrigues, A.; Cardoso, A. Assessment of axillary nodal disease burden with MRI during neoadjuvant endocrine therapy. BMC Cancer 2022, 22, 674. [Google Scholar] [CrossRef]
- Amano, M.; Kitabatake, T.; Nakata, O.; Ichikawa, Y.; Inaba, R.; Ito, K.; Ogura, K.; Ozaki, Y.; Kojima, K.; Aoki, S.; et al. Development of MRI projection mapping for breast-conserving surgery. BioMed Res. Int. 2020, 2020, 5314120. [Google Scholar] [CrossRef]
- Lee, M.; Kim, J.; Park, S.; Lee, H.; Choi, J.; Kim, H. AR-based breast cancer localization vs. ultrasound: Randomized trial. Breast Cancer Res. Treat. 2024, 205, 267–275. [Google Scholar]
- Lee, H.S.; Kim, H.J.; Chung, I.Y.; Lee, J.S.; Kim, J.H.; Park, H.S.; Park, S.Y.; Lee, S.H.; Kim, S.I. Usefulness of 3D-surgical guides in breast conserving surgery after neoadjuvant treatment. Sci. Rep. 2021, 11, 3376. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Alzuhair, A.; Kim, H.; Choi, S.H.; Lee, S.; Kim, N.; Ko, B. MRI-based 3D-printed breast surgical guide for DCIS: Clinical trial. Sci. Rep. 2020, 10, 18534. [Google Scholar] [CrossRef]
- Civil, Y.A.; Vasmel, J.E.; Charaghvandi, R.K.; Houweling, A.C.; Vreuls, C.P.H.; van Diest, P.J.; Witkamp, A.J.; Doeksen, A.; van Dalen, T.; Felderhof, J.; et al. Preoperative single-dose partial breast irradiation: 5-year ABLATIVE trial results. Int. J. Radiat. Oncol. Biol. Phys. 2025, 121, 613–622. [Google Scholar] [CrossRef]
- Radigan, R.; Fu, S.L.; Barney, A.; Pettit, J.; Gupta, V.; Singh, S.; Mancuso, M.; Soni, V.; Deitch, J.; Wong, A.T.; et al. Ultrahypofractionated PBI following oncoplastic surgery: Phase II trial. Radiat. Oncol. 2025, 20, 53. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Y.; Liu, J.; Wang, X.; Chen, L.; Li, J.; Zhou, M.; Yang, J.; Zhang, L. Deep learning framework PCMM-Net for lymphovascular invasion prediction in breast cancer. Cancer Med. 2024, 13, e70272. [Google Scholar] [CrossRef]
- Kandel, M.; Haug, A.R.; Stieber, A.; Heilig, C.E.; Schulz-Wendtland, R.; Dinkel, J.; Uder, M.; Wöckel, A.; Emons, J. Cost-effectiveness of preoperative MRI in DCIS surgery optimization. Eur. J. Radiol. 2020, 130, 109178. [Google Scholar]
- Hwang, E.S.; Hyslop, T.; Hendrix, L.H.; Duong, S.; Bedrosian, I.; Price, E.; Caudle, A.; Hieken, T.; Guenther, J.; Hudis, C.A.; et al. Preoperative letrozole in ER-positive DCIS: CALGB 40903 study. J. Clin. Oncol. 2020, 38, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.B.; Burrows, S.; Saunders, C.M.; Parizel, P.M.; Ives, A. Contrast-enhanced mammography (CEM) versus MRI for breast cancer staging: Detection of additional malignant lesions not seen on conventional imaging. Eur. Radiol. Exp. 2023, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Llombart-Cussac, A.; Prat, A.; Pérez-García, J.M.; Mateos, J.; Pascual, T.; Escrivà-de-Romani, S.; Stradella, A.; Ruiz-Borrego, M.; de Las Heras, B.B.; Keyaerts, M.; et al. Clinicopathological and molecular predictors of [18F]FDG-PET disease detection in HER2-positive early breast cancer: RESPONSE, a substudy of the randomized PHERGain trial. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2733–2743. [Google Scholar] [CrossRef]
- Rousseau, C.; Goldenberg, D.M.; Colombié, M.; Sébille, J.C.; Meingan, P.; Ferrer, L.; Baumgartner, P.; Cerato, E.; Masson, D.; Campone, M.; et al. Initial Clinical Results of a Novel Immuno-PET Theranostic Probe in Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer. J. Nucl. Med. 2020, 61, 1205–1211. [Google Scholar] [CrossRef]
- Di Micco, R.; Botteri, E.; Canevari, C.; Gallivanone, F.; Antunovic, L.; Scifo, P.; Neri, I.; Gelardi, F.; Magnani, P.; Losio, C.; et al. [18F]FDG PET/MRI vs sentinel node biopsy for axillary staging of early breast cancer patients. Eur. J. Cancer 2025, 224, 115519. [Google Scholar] [CrossRef]
- Wu, M.; Huang, S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. Clin. Oncol. 2017, 7, 738–746. [Google Scholar] [CrossRef]
- Islam, K.; Haque, M.; Kumar, A.; Hoq, A.; Hyder, F.; Hoque, S.M. Manganese Ferrite Nanoparticles (MnFe2O4): Size Dependence for Hyperthermia and Negative/Positive Contrast Enhancement in MRI. Nanomaterials 2020, 10, 2297. [Google Scholar] [CrossRef]
- Cigarroa-Mayorga, O.E. Tuning the size stability of MnFe2O4 nanoparticles: Controlling the morphology and tailoring of surface properties under the hydrothermal synthesis for functionalization with myricetin. Ceram. Int. 2021, 47, 32397–32406. [Google Scholar] [CrossRef]
- Sysak, S.; Czarczynska-Goslinska, B.; Szyk, P.; Koczorowski, T.; Mlynarczyk, D.T.; Szczolko, W.; Lesyk, R.; Goslinski, T. Metal Nanoparticle-Flavonoid Connections: Synthesis, Physicochemical and Biological Properties, as Well as Potential Applications in Medicine. Nanomaterials 2023, 13, 1531. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Barge, A.; Parris, C.N. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: Overcoming resistance mechanisms. Oncogene 2025, 44, 193–207. [Google Scholar] [CrossRef]
- Ullrich, N.J.; Prabhu, S.P.; Reddy, A.T.; Fisher, M.J.; Packer, R.; Goldman, S.; Robison, N.J.; Gutmann, D.H.; Viskochil, D.H.; Allen, J.C.; et al. A phase II study of continuous oral mTOR inhibitor everolimus for recurrent, radiographic-progressive neurofibromatosis type 1-associated pediatric low-grade glioma: A Neurofibromatosis Clinical Trials Consortium study. Neuro Oncol. 2020, 22, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Janib, S.M.; Moses, A.S.; MacKay, J.A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 2010, 62, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- Thorat, N.D.; Townley, H.E.; Patil, R.M.; Tofail, S.A.M.; Bauer, J. Comprehensive approach of hybrid nanoplatforms in drug delivery and theranostics to combat cancer. Drug Discov. Today 2020, 25, 1245–1252. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Z.; Li, T.; Thakur, A.; Wen, Y.; Zhang, K.; Liu, Y.; Liang, Q.; Liu, W.; Qin, J.J.; et al. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomark. Res. 2024, 12, 2. [Google Scholar] [CrossRef]
- Wu, R.; Wang, J.; Li, D.; Li, A.; Yoo, K.H.; Liu, Z.; Wei, W.; Wang, Z.; Feng, D. Advances in nanomaterials for enhancing cGAS-STING pathway mediated anti-tumor treatment. Mater. Today Bio 2025, 34, 102190. [Google Scholar] [CrossRef]
- Klostergaard, J.; Parga, K.; Raptis, R.G. Current and future applications of magnetic resonance imaging (MRI) to breast and ovarian cancer patient management. P. R. Health Sci. J. 2010, 29, 223–231. [Google Scholar]
- Hangel, G.; Cadrien, C.; Lazen, P.; Furtner, J.; Lipka, A.; Hečková, E.; Hingerl, L.; Motyka, S.; Gruber, S.; Strasser, B.; et al. High-resolution metabolic imaging of high-grade gliomas using 7T-CRT-FID-MRSI. Neuroimage Clin. 2020, 28, 102433. [Google Scholar] [CrossRef]
- Dercle, L.; McGale, J.; Sun, S.; Marabelle, A.; Yeh, R.; Deutsch, E.; Mokrane, F.Z.; Farwell, M.; Ammari, S.; Schoder, H.; et al. Artificial intelligence and radiomics: Fundamentals, applications, and challenges in immunotherapy. J. Immunother. Cancer 2022, 10, e005292. [Google Scholar] [CrossRef]
- Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146. [Google Scholar] [CrossRef]
- Onishi, N.; Li, W.; Gibbs, J.; Wilmes, L.J.; Nguyen, A.; Jones, E.F.; Arasu, V.; Kornak, J.; Joe, B.N.; Esserman, L.J.; et al. Impact of MRI Protocol Adherence on Prediction of Pathological Complete Response in the I-SPY 2 Neoadjuvant Breast Cancer Trial. Tomography 2020, 6, 77–85. [Google Scholar] [CrossRef]
- Gou, F.; Liu, J.; Xiao, C.; Wu, J. Research on Artificial-Intelligence-Assisted Medicine: A Survey on Medical Artificial Intelligence. Diagnostics 2024, 14, 1472. [Google Scholar] [CrossRef]
- Partridge, S.C.; McDonald, E.S. Diffusion weighted magnetic resonance imaging of the breast: Protocol optimization, interpretation, and clinical applications. Magn. Reson. Imaging Clin. N. Am. 2013, 21, 601–624. [Google Scholar] [CrossRef] [PubMed]
- Popli, M.B.; Teotia, R.; Narang, M.; Krishna, H. Breast Positioning during Mammography: Mistakes to be Avoided. Breast Cancer 2014, 8, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Mendez, A.M.; Fang, L.K.; Meriwether, C.H.; Batasin, S.J.; Loubrie, S.; Rodríguez-Soto, A.E.; Rakow-Penner, R.A. Diffusion Breast MRI: Current Standard and Emerging Techniques. Front. Oncol. 2022, 12, 844790. [Google Scholar] [CrossRef] [PubMed]
- Olthof, S.C.; Nickel, M.D.; Weiland, E.; Leyhr, D.; Afat, S.; Nikolaou, K.; Preibsch, H. Deep Learning-Enhanced T1-Weighted Imaging for Breast MRI at 1.5T. Diagnostics 2025, 15, 1681. [Google Scholar] [CrossRef]
- O’Connor, J.P.; Aboagye, E.O.; Adams, J.E.; Aerts, H.J.; Barrington, S.F.; Beer, A.J.; Boellaard, R.; Bohndiek, S.E.; Brady, M.; Brown, G.; et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol. 2017, 14, 169–186. [Google Scholar] [CrossRef]
- AlBuainain, R.Y.; Bunajem, F.Y.; Abdulla, H.A. Assessment of Tumor Response to Neoadjuvant Chemotherapy in Breast Cancer Using MRI and 18F-FDG PET/CT. Eur. J. Breast Health 2025, 21, 46–51. [Google Scholar] [CrossRef]
- Tang, F.; Hayward, J. Clinical Utility of Abbreviated Breast MRI to Assess Response to Neoadjuvant Chemotherapy. Radiol. Imaging Cancer 2024, 6, e249002. [Google Scholar] [CrossRef]
- Heacock, L.; Lewin, A.A.; Toth, H.K.; Moy, L.; Reig, B. Abbreviated MR Imaging for Breast Cancer. Radiol. Clin. N. Am. 2021, 59, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Pereslucha, A.M.; Wenger, D.M.; Morris, M.F.; Aydi, Z.B. Invasive Lobular Carcinoma: A Review of Imaging Modalities with Special Focus on Pathology Concordance. Healthcare 2023, 11, 746. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ma, Q.; Gao, Y.; Qu, M.; Li, J.; Lei, J. Diagnostic performance of MRI for assessing axillary lymph node status after neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis. Eur. Radiol. 2024, 34, 930–942. [Google Scholar] [CrossRef] [PubMed]
- Botty van den Bruele, A.; Ren, Y.; Thomas, S.M.; Ntowe, K.W.; Rosenberger, L.H.; Menendez, C.; Grimm, L.J.; Chiba, A.; Plichta, J.K. High risk surveillance MRI may not be necessary in BRCA1/2 mutation carriers over 70 years old. Breast Cancer Res. Treat. 2025, 211, 421–429. [Google Scholar] [CrossRef]
- Subramaniam, R.M.; Kurth, D.A.; Waldrip, C.A.; Rybicki, F.J. American College of Radiology Appropriateness Criteria: Advancing Evidence-Based Imaging Practice. Semin. Nucl. Med. 2019, 49, 161–165. [Google Scholar] [CrossRef]
- Leithner, D.; Moy, L.; Morris, E.A.; Marino, M.A.; Helbich, T.H.; Pinker, K. Abbreviated MRI of the Breast: Does It Provide Value? J. Magn. Reson. Imaging 2019, 49, e85–e100. [Google Scholar] [CrossRef]
- Magny, S.J.; Shikhman, R.; Keppke, A.L. Breast Imaging Reporting and Data System. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Lehman, C.D.; DeMartini, W.; Anderson, B.O.; Edge, S.B. Indications for breast MRI in the patient with newly diagnosed breast cancer. J. Natl. Compr. Cancer Netw. 2009, 7, 193–201. [Google Scholar] [CrossRef]
- Marcon, M.; Fuchsjäger, M.H.; Clauser, P.; Mann, R.M. ESR Essentials: Screening for breast cancer—General recommendations by EUSOBI. Eur. Radiol. 2024, 34, 6348–6357. [Google Scholar] [CrossRef]
- American College of Radiology. Interpreting Physician: CT (Revised 9-23-2024). ACR Accreditation Support; American College of Radiology: Washington, DC, USA, 2025. [Google Scholar]
- American College of Radiology. MR International Recognition Requirements. ACR Accreditation Support; American College of Radiology: Washington, DC, USA, 2025. [Google Scholar]
- Cereser, L.; Sparascio, F.; Clauser, P.; Stelzer, P.; Agati, G.; Messner, A.; Girometti, R.; Zuiani, C. Preparing radiology residents for breast MRI: A dual-site, resident-as-teacher feasibility project. Eur. J. Radiol. 2024, 181, 111831. [Google Scholar] [CrossRef]
- Paschal, R.A.; Walker, R.J.; Raymond, M. Predictors of success on the ARRT’s MRI exam. Radiol. Technol. 1998, 70, 29–36. [Google Scholar]
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Author, Year | Population and Therapy | MRI Method | Main Results |
---|---|---|---|
Liu Y., 2023 [116] | 182 patients, NAT + anti-HER2 | DCE-MRI | AUC 0.91 for pCR after 2 cycles; decrease in wash-in rate |
Yang L., 2024 [117] | HER2+, EGFR/HER2 | DWI/ADC + DCE | ADC up 31%; tumor reduction by 23% |
Xu L., 2024 [118] | 95 HER2+ patients, trastuzumab + pertuzumab | PCMM-Net | AUC 0.89 after 1 cycle |
van der Voort A., 2024 [119] | HER2+/HER2−, NAC + targeted | DCE-MRI | CR on MRI: pCR at 87% (HER2−), 53% (HER2+) |
Zhang X., 2024 [120] | HER2+, T-DM1 | DWI + DCE | ADC up 28%; decrease in SSmax |
Mercoglianno MF., 2023 [121] | HER2+, tucatinib | DCE-MRI | E1 drop by 35% after 3 cycles |
Kou L., 2023 [122] | HER2+, T-DXd | PCMM-Net | AUC 0.87 for pCR |
Li J., 2023 [123] | HER2+, lapatinib | DWI | ADC up 20% |
Author, Year | Population and Therapy | MRI Method | Main Results |
---|---|---|---|
James AD., 2022 [125] | TNBC, PARP inh. | 23MRI + DWI | Decrease Na+ by 20%; ADC growth |
Park S., 2024 [126] | TNBC, olaparib | 23MRI | Na+ decreased by 15% in 4 weeks |
Telli ML., 2024 [127] | TNBC, talazoparib | DWI | ADC up 25% in 2 weeks |
Author, Year | Population and Therapy | MRI Method | Main Results |
---|---|---|---|
Nathan MR., 2017 [133] | ER+, fulvestrant | MRS | Decrease in choline by 45% |
Yankeelov TE., 2006 [134] | ER+, aromatase inhibitors | T2 + DCE | Type II fragmentation in 65%; buff decrease by 40% |
Reis J., 2021 [135] | ER+, Letrozole | T2 + DCE | 60% fragmentation; gain drop |
Zhai G., 2013 [136] | ER+, Tamoxifen | DWI + T2 | ADC increase; decrease in swelling |
Khanyile R., 2025 [137] | Luminal A, Anastrozole | T2 | 55% fragmentation |
Author, Year | Population and Therapy | MRI Method | Main Results |
---|---|---|---|
Zou J., 2023 [150] | TNBC, NAC + immuno | DCE-MRI | Decrease in SImax by 40% |
Jacob S., 2025 [151] | HER2−, pembrolizumab | MRI nodes | 40% reactive lymphadenopathy |
Ravi H., 2023 [152] | Metastatic Cancer, Irinotecan + Immuno | FMX-MRI | 74–79% accuracy in predicting responses |
He J., 2024 [153] | HER2−, atezolizumab | T2 | Increase in signal in 55% (edema) |
Chen Y., 2025 [154] | TNBC, pembrolizumab | DCE radiomics | AUC 0.85 for pCR |
Arora A., 2025 [155] | TNBC, pembrolizumab + chemo | DCE-MRI | SImax decrease by 35% |
Hu Y., 2025 [156] | HER2-low vaccine | T2 + DCE | Swelling in T2 in 50% |
Kim N., 2022 [157] | TNBC, atezolizumab | Radiomics | Sensitivity 82% for pseudoprogression |
Zhang W., 2025 [158] | TNBC, CSF1R inh. | T2 | Signal increase by 45% |
Liao D., 2023 [159] | HER2−, pembrolizumab | DWI | Stable ADC in pseudoprogression |
Zhang X., 2024 [160] | HER2-low vaccine | Radiomics | AUC 0.84 for pCR |
Panthi B., 2023 [161] | TNBC, atezolizumab + chemo | DCE | Decrease in SImax by 40% |
Authors | Number of Patients | Methods | Results |
---|---|---|---|
Comstock CE. et al. [170] | 1444 | Comparison of the effectiveness of truncated breast MRI with digital breast tomosynthesis (DBT) in women with dense breasts. |
|
Yin H. et al. [171] | 136 | To evaluate the efficacy of CNNs based on different MRI sequences in determining the molecular subtypes of breast cancer. |
|
Jacob S. et al. [151] | 43 | To determine MRI patterns associated with neoadjuvant immunochemotherapy response in patients with HER2-negative breast cancer. |
|
Gilbert FJ. et al. [172] | 9361 (6305 with full analysis) | Comparison of the effectiveness of additional imaging techniques in detecting breast cancer in women with dense breasts and negative mammography. |
|
Sutton EJ. et al. [183] | 20 | Comparison of accuracy of MRI biopsy with surgical excision in detecting pCR after NAC. |
|
Mann GB. et al. [184] | 443 | To evaluate whether patients with monofocal breast cancer can safely skip radiation therapy after breast-conserving surgery. |
|
van der Voort A. et al. [182] | 467 (235 hrs, 232 hrs+) | To assess whether it is possible to shorten the number of chemotherapy cycles in patients with an early radiological response. |
|
Zeng Q. et al. [173] | 142 patients with invasive breast cancer who underwent DCE-MRI before and after 2 NAT cycles | To compare radiomics and percentage change in tumor diameter (Diameter%) in DCE-MRI before and after two NAT cycles to predict response to treatment. Development of a tool for early, non-invasive prediction of NAT results. | Radiomics, particularly delta and early-NAT, are potential biomarkers for early, noninvasive prediction of NAT responses. Combining radiomics with clinical data increases prediction accuracy. |
van Grinsven SEL. et al. [174] | 518 | Comparison of the diagnostic accuracy of the abbreviated MRI protocol with the full protocol in breast cancer screening in women with dense breast tissue. | The shortened MRI protocol has similar sensitivity (84.3% vs. 85.9%) and specificity (73.9% vs. 75.8%) to the full protocol, but half the read time (49.7 s vs. 96.4 s) and 70–80% shorter scan time. |
Mota BS. et al. [175] | 524 | To evaluate the effect of preoperative magnetic resonance imaging on survival and surgical outcomes in patients qualified for breast-conserving surgery. | Magnetic resonance imaging increased the rate of mastectomy by 8% (8.3% vs. 0.4% in the control group), and did not affect the absence of local recurrence or overall survival; no difference in the rate of reoperations. |
Jannusch K. et al. [176] | 208 | Evaluation of the effect of 18F-FDG PET/MRI on the change in therapeutic management and accuracy of UICC staging. | PET/MRI improved the accuracy of the UICC staging (81.9% vs. 62.5%), but changes in treatment occurred in only 2.4% of the patients. Conclusion: Conventional staging is sufficient to make treatment decisions. |
Yin HL. et al. [177] | 319 | To evaluate the value of combined deep-learning-based MRI diagnostics in differentiating TNBC and BI-RADS 4 fibroadenoma and improving the diagnosis of radiologists. | The result of the AI combination reached an AUC of 0.944; SI support improved the AUC of juniors from ~0.83 to ~0.88 and the AUC of seniors from ~0.90–0.95 to ~0.92–0.98; and, artificial intelligence helps younger radiologists, in particular. |
Wu Z. et al. [178] | 140 | Construction and validation of a radiomic nomogram model for differentiating DCISM from pure DCIS. | The nomogram model (AUC ~0.88–0.91) was superior to the clinical model (AUC ~0.67–0.72), with good calibration and clinical usability. |
Liu Y. et al. [179] | 140 (56 BI-RADS 4) | To determine whether H_DCE-MRI is superior to L_DCE-MRI in differentiating between benign and malignant BI-RADS 4 lesions. | H_DCE-MRI, especially the intrashift parameter Kep (AUC 0.963, sensitivity 100%, specificity 88.9%) was much better than L_DCE-MRI and radiologist assessment. |
Qi X. et al. [180] | 158 (38 TNBC) | Identification of the optimal DCE-MRI phase for TNBC diagnostics and development of a clinical–radiomic model for TNBC prediction. | Phase 7 DCE-MRI radiomics model: AUC 0.818/0.777; clinical radiomic model: AUC 0.936/0.886 (Training/Validation Set), which improved TNBC prediction |
Li Y. et al. [181] | 108 (TNBC) | Development of a DCE-MRI-based nomogram to predict pathologic complete response (pCR) after NAC in patients with TNBC. | Nomogram with AUC 0.84 (training set) and 0.79 (validation set); independent predictors: tumor volume, time to peak (TTP), and androgen receptor (AR) status. |
Sang L. et al. [185] | 98 (68 trainings + 30 validations) | Development of a radiomic-based nomogram with T2WI, ADC, and DCE-MRI to predict HR status in HER2+ breast cancer. | The best model combining features from three sequences: AUC 0.797 (training), and 0.75 (validation). Nomogram with radiomics and perineoplastic edema: AUC 0.815 (training), and 0.805 (validation). |
Verburg E. et al. [128] | 4783 women, 525 BI-RADS 3–5 lesions | To evaluate the potential to reduce biopsies and false positives in BI-RADS 3 and 4 Using multiparametric MRI CAD. | Ridge regression model, extraction of 49 features (full model) and 39 features (abbreviated protocol), and 10-fold crossover validation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mytych, W.; Czarnecka-Czapczyńska, M.; Bartusik-Aebisher, D.; Aebisher, D.; Kawczyk-Krupka, A. Monitoring Pharmacological Treatment of Breast Cancer with MRI. Curr. Issues Mol. Biol. 2025, 47, 807. https://doi.org/10.3390/cimb47100807
Mytych W, Czarnecka-Czapczyńska M, Bartusik-Aebisher D, Aebisher D, Kawczyk-Krupka A. Monitoring Pharmacological Treatment of Breast Cancer with MRI. Current Issues in Molecular Biology. 2025; 47(10):807. https://doi.org/10.3390/cimb47100807
Chicago/Turabian StyleMytych, Wiktoria, Magdalena Czarnecka-Czapczyńska, Dorota Bartusik-Aebisher, David Aebisher, and Aleksandra Kawczyk-Krupka. 2025. "Monitoring Pharmacological Treatment of Breast Cancer with MRI" Current Issues in Molecular Biology 47, no. 10: 807. https://doi.org/10.3390/cimb47100807
APA StyleMytych, W., Czarnecka-Czapczyńska, M., Bartusik-Aebisher, D., Aebisher, D., & Kawczyk-Krupka, A. (2025). Monitoring Pharmacological Treatment of Breast Cancer with MRI. Current Issues in Molecular Biology, 47(10), 807. https://doi.org/10.3390/cimb47100807