Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (451)

Search Parameters:
Keywords = miniaturized circuit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 48160 KB  
Article
Design and Analysis of Dual-Polarized Frequency-Selective Metasurface for X-Band Notch Applications
by Muhammad Idrees, Sai-Wai Wong and Yejun He
Sensors 2026, 26(3), 867; https://doi.org/10.3390/s26030867 - 28 Jan 2026
Viewed by 161
Abstract
This paper presents a miniaturized, polarization-insensitive frequency-selective metasurface (FSMS) with stopband behavior for RF shielding applications. The FSMS is designed to suppress communication at 10 GHz frequency in the X-band. The design comprises a circular metallic patch with a staircase slot engraved in [...] Read more.
This paper presents a miniaturized, polarization-insensitive frequency-selective metasurface (FSMS) with stopband behavior for RF shielding applications. The FSMS is designed to suppress communication at 10 GHz frequency in the X-band. The design comprises a circular metallic patch with a staircase slot engraved in the center. The FSMS achieves an attenuation of 38.5 dB at the resonant frequency with a 10 dB suppression fractional bandwidth of more than 46%. The physical geometry of the unit cell makes it polarization-independent, and the angle of incidence has no effect on the stopband. The FSMS cell has overall dimensions of 0.3λo × 0.3λo × 0.05λo, where λo is free-space wavelength at the resonant frequency. Moreover, an equivalent circuit model (ECM) of the FSMS filter is developed to analyze its operation principle. An FSMS prototype is fabricated and tested for its performance, and the simulated and measured results show good agreement, making it suitable for selective electromagnetic interference (EMI) shielding applications. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 1650 KB  
Article
Inductor-Based Biosensors for Real-Time Monitoring in the Liquid Phase
by Miriam Hernandez, Patricia Noguera, Nuria Pastor-Navarro, Marcos Cantero-García, Rafael Masot-Peris, Miguel Alcañiz-Fillol and David Gimenez-Romero
Biosensors 2026, 16(2), 79; https://doi.org/10.3390/bios16020079 - 28 Jan 2026
Viewed by 134
Abstract
Current liquid-phase resonant biosensors, such as Quartz Crystal Microbalance, Surface Acoustic Wave, or Surface Plasmon Resonance, typically rely on specialized piezoelectric substrates or complex optical setups. These requirements often necessitate cleanroom fabrication, thereby limiting cost-effective scalability. This study presents a high-integration sensing platform [...] Read more.
Current liquid-phase resonant biosensors, such as Quartz Crystal Microbalance, Surface Acoustic Wave, or Surface Plasmon Resonance, typically rely on specialized piezoelectric substrates or complex optical setups. These requirements often necessitate cleanroom fabrication, thereby limiting cost-effective scalability. This study presents a high-integration sensing platform based on standard Printed Circuit Board (PCB) technology, incorporating an embedded inductor within a fluidic system for real-time monitoring. This design leverages industrial manufacturing standards to achieve a compact, low-cost, and scalable architecture. Detection is governed by shifts in the resonance frequency of an LC tank circuit; specifically, increases in bulk ionic strength induce a frequency decrease, whereas biomolecular adsorption at the sensor surface leads to a frequency increase. This phenomenon can be explained by the modulation of the inter-turn capacitance, which is modeled as a combination of capacitive elements accounting for contributions from the bulk electrolyte and the surface-bound dielectric layer. Such divergent responses provide an intrinsic self-discriminating capability, allowing for the analytical differentiation between surface interactions and bulk effects. To the best of our knowledge, this is the first demonstration of an inductor-based resonant sensor fully embedded in a PCB fluidic architecture for continuous liquid-phase analyte monitoring. Validated through a protein-antibody model (Bovine Serum Albumin-anti-Bovine Serum Albumin), the sensor demonstrated a limit of detection of 1.7 ppm (0.026 mM) and a linear dynamic range of 31–211 ppm (0.47–3.2 mM). These performance metrics, combined with a reproducibility of 4 ± 3%, indicate that the platform meets the requirements for robust analytical applications. Its inherent simplicity and potential for miniaturization position this technology as a viable candidate for point-of-care diagnostics in diverse environments. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Graphical abstract

18 pages, 1501 KB  
Review
Extracorporeal Carbon Dioxide Removal in Acute Respiratory Distress Syndrome: Physiologic Rationale and Phenotype-Based Perspectives
by Raffaele Merola, Denise Battaglini and Silvia De Rosa
Medicina 2026, 62(2), 236; https://doi.org/10.3390/medicina62020236 - 23 Jan 2026
Viewed by 172
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of morbidity and mortality despite decades of progress in ventilatory support. Mechanical ventilation, while essential for oxygenation, may exacerbate lung injury through excessive mechanical power delivery, even when using lung-protective strategies. Extracorporeal carbon dioxide [...] Read more.
Acute respiratory distress syndrome (ARDS) is a major cause of morbidity and mortality despite decades of progress in ventilatory support. Mechanical ventilation, while essential for oxygenation, may exacerbate lung injury through excessive mechanical power delivery, even when using lung-protective strategies. Extracorporeal carbon dioxide removal (ECCO2R) was conceived to enable “ultra-protective” ventilation, allowing for further reductions in tidal volume and respiratory rate by selectively removing CO2 at low extracorporeal blood flows, typically between 0.3 and 1.0 L/min. This physiological decoupling of ventilation and gas exchange aims to mitigate ventilator-induced lung injury (VILI) while maintaining adequate acid–base homeostasis. Although early physiological studies demonstrated feasibility, large, randomized trials have failed to show a survival benefit and have raised concerns about bleeding and technical complications. Recent evidence suggests that these neutral outcomes may stem from the biological and physiological heterogeneity of ARDS rather than from inefficacy of the intervention itself. Patients with high driving pressures, poor compliance, or hyperinflammatory phenotypes may derive greater benefit from ECCO2R-mediated mechanical unloading. Ongoing technological improvements, including circuit miniaturization, enhanced biocompatibility, and integration with renal replacement therapy, have improved safety and feasibility, yet the procedure remains complex and resource-intensive. Future research should focus on phenotype-enriched trials and the integration of ECCO2R into precision ventilation frameworks. Ultimately, ECCO2R should be regarded not as a universal therapy for ARDS but as a targeted physiological tool for selected patients in experienced centers. Full article
Show Figures

Figure 1

10 pages, 5092 KB  
Article
A Compact Heat Sink Compatible with a Ka-Band Gyro-TWT with Non-Superconducting Magnets
by Shaohang Ji, Boxin Dai, Zewei Wu, Wei Jiang, Xin Chen, Binyang Han, Jianwei Zhou, Qianqian Chen, Guo Liu, Yelei Yao, Jianxun Wang and Yong Luo
Quantum Beam Sci. 2026, 10(1), 4; https://doi.org/10.3390/qubs10010004 - 22 Jan 2026
Viewed by 59
Abstract
This paper presents a thermal management solution for a Ka-band gyrotron traveling wave tube (gyro-TWT) with non-superconducting magnets. At present, the miniaturization and non-superconductivity of gyro-TWT have become a trend, but miniaturization leads to a significant increase in power density and a severe [...] Read more.
This paper presents a thermal management solution for a Ka-band gyrotron traveling wave tube (gyro-TWT) with non-superconducting magnets. At present, the miniaturization and non-superconductivity of gyro-TWT have become a trend, but miniaturization leads to a significant increase in power density and a severe limitation in heat sink volume, which critically limits power capacity. To address this challenge, a joint microwave–thermal management evaluation model is used to investigate the heat transfer process and identify the crucial factors constraining the power capacity. A cylindrical heat sink with narrow rectangular grooves is introduced. Based on this, the cooling efficiency has been enhanced through structural optimization. The beam–wave interaction, electrothermal conversion, and heat conduction processes of the interaction circuit are analyzed. The compact heat sink achieves a 1.2-fold increase in coolant utilization and reduces the overall volume by 27.4%. Meanwhile, this heat sink improves the cooling performance and power capability of the gyro-TWT effectively. At 29 GHz, the gyro-TWT achieves a pulse power of 150 kW. Simulation results show that the maximum temperature is 348 °C at a 45% duty cycle, reduced by 159 °C. The power capacity of the Ka-band gyro-TWT increases by 40.6%. Full article
(This article belongs to the Section Radiation Scattering Fundamentals and Theory)
Show Figures

Figure 1

16 pages, 737 KB  
Review
Research on Key Technologies for Microwave Wireless Power Transfer Receivers
by Man Ruan, Xudong Wang, Wanli Xu, Long Huang, Kai Wu, Mengyi Wang, Yujuan Yin and Jinmao Chen
Energies 2026, 19(2), 438; https://doi.org/10.3390/en19020438 - 16 Jan 2026
Viewed by 180
Abstract
Microwave wireless power transfer (MWPT) technology has the advantages of long distance and high transmission efficiency; therefore, MWPT has many applications in aerospace, space solar power stations (SSPSs), and so on. The receiving and fixing subsystem is the core component for gathering and [...] Read more.
Microwave wireless power transfer (MWPT) technology has the advantages of long distance and high transmission efficiency; therefore, MWPT has many applications in aerospace, space solar power stations (SSPSs), and so on. The receiving and fixing subsystem is the core component for gathering and converting power and it is the main part of the system. If this step is both efficient and possible, the whole system will also be efficient and its success possible. This paper mainly introduces a systematic review of the key technologies, research status, and development trends of the receiving-end part in MWPT. High-performance rectifying devices are analyzed in detail, with the use of GaN Schottky barrier diodes (GaN SBDs), in addition to rectification circuits that have good rectification and impedance matching. Additionally, it compares the advantages and disadvantages of three power synthesis architectures, including RF synthesis, DC synthesis, and hybrid subarray synthesis, and proposes a strategy for optimizing power distribution through intelligent subarray partitioning. Finally, this paper looks at future development trends in receiving-end technology, including miniaturized monolithic microwave integrated circuits (MMICs) and efficient broadband reconfigurable rectification. The research presented herein offers a systematic technical reference and theoretical foundation for enhancing the performance of the receiving ends in microwave wireless power transfer systems. Full article
(This article belongs to the Special Issue Design, Modelling and Analysis for Wireless Power Transfer Systems)
Show Figures

Figure 1

20 pages, 17607 KB  
Article
Parasitic Inductance Assessment of E-GaN DPT Circuit Through Finite Element Analysis
by Xing-Rou Chen, Huang-Jen Chiu, Yun-Yen Chen, Yi-Xuan Yang and Yu-Chen Liu
Energies 2026, 19(2), 383; https://doi.org/10.3390/en19020383 - 13 Jan 2026
Viewed by 219
Abstract
This article explores the high-frequency characteristics of gallium nitride (GaN) power-switching devices and evaluates their application performance using a double-pulse test (DPT) circuit model. With the increasing adoption of GaN power-switching devices in high-performance and miniaturized electronic products, their low junction capacitance makes [...] Read more.
This article explores the high-frequency characteristics of gallium nitride (GaN) power-switching devices and evaluates their application performance using a double-pulse test (DPT) circuit model. With the increasing adoption of GaN power-switching devices in high-performance and miniaturized electronic products, their low junction capacitance makes them highly suitable for high-frequency applications. However, parasitic inductance in the power loop can introduce resonance phenomena, impacting system stability and switching performance. To address this, this study integrates the parasitic parameters of printed circuit boards (PCBs) with the nonlinear junction capacitance characteristics of GaN devices. Finite element analysis (FEA) is employed to extract PCB parasitic inductance values and analyze their effects on GaN power-switching behavior. The findings indicate that precise extraction and analysis of parasitic inductance are critical for optimizing the performance of GaN switching devices. Additionally, this study investigates mitigation strategies to minimize parasitic inductance, ultimately enhancing GaN device design and reliability. The insights from this research provide valuable guidance for the development of GaN power devices in high-frequency applications. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

16 pages, 8246 KB  
Article
Measurement and Study of Electric Field Radiation from a High Voltage Pseudospark Switch
by Junou Wang, Lei Chen, Xiao Yu, Jingkun Yang, Fuxing Li and Wanqing Jing
Sensors 2026, 26(2), 482; https://doi.org/10.3390/s26020482 - 11 Jan 2026
Viewed by 279
Abstract
The pulsed power switch serves as a critical component in pulsed power systems. The electric radiation generated by switching operations threatens the miniaturization of pulsed power systems, causing significant electromagnetic interference (EMI) to nearby signal circuits. The pseudospark switch’s (PSS) exceptionally fast transient [...] Read more.
The pulsed power switch serves as a critical component in pulsed power systems. The electric radiation generated by switching operations threatens the miniaturization of pulsed power systems, causing significant electromagnetic interference (EMI) to nearby signal circuits. The pseudospark switch’s (PSS) exceptionally fast transient response, a key enabler for sophisticated pulsed power systems, is also a major source of severe EMI. This study investigated the electric field radiation from a high voltage PSS within a capacitor discharge unit (CDU), using a near-field scanning system based on an electro-optic probe. The time-frequency distribution of the radiation was characterized, identifying contributions from three sequential stages: the application of the trigger voltage, the main gap breakdown, and the subsequent oscillating high voltage. During the high-frequency oscillation stage, the distribution of the peak electric field radiation aligns with the predictions of the dipole model, with a maximum value of 43.99 kV/m measured near the PSS. The spectral composition extended to 60 MHz, featuring a primary component at 1.24 MHz and distinct harmonics at 20.14 MHz and 32.33 MHz. Additionally, the impacts of circuit parameters and trigger current on the radiated fields were discussed. These results provided essential guidance for the electromagnetic compatibility (EMC) design of highly-integrated pulsed power systems, facilitating more reliable PSS applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 2559 KB  
Article
A Five-Electrode Contactless Conductivity Detector Based on a Sandwiched Microfluidic Chip for Miniaturized Ion Chromatography
by Kai Chen, Ruirong Zhang, Mengbo Wang, Bo Wang, Shaoshuai Wang and Haitao Zhao
Sensors 2026, 26(1), 89; https://doi.org/10.3390/s26010089 - 23 Dec 2025
Viewed by 407
Abstract
This study aims to develop a chip-based five-electrode contactless conductivity detector for miniaturized ion chromatography (IC) systems. The detector comprises a detection chip (50 mm × 25 mm × 6 mm) and a detection circuit. The detection chip consists of a top layer, [...] Read more.
This study aims to develop a chip-based five-electrode contactless conductivity detector for miniaturized ion chromatography (IC) systems. The detector comprises a detection chip (50 mm × 25 mm × 6 mm) and a detection circuit. The detection chip consists of a top layer, an insulating film, and a bottom layer wherein a planar five-electrode printed circuit board (PCB) is embedded. Among the five electrodes, one shielding electrode is designed to suppress the leakage current in the flow channel; consequently, the potential at the solution outlet is raised, further enhancing detection sensitivity. Furthermore, integrating the electrodes into a PCB module can reduce the difficulty of electrode fabrication and extend the lifespan of the electrodes. The detector was applied to a commercial IC system and successfully achieved the separation and detection of three anions (Cl, NO3, SO42−). For standard solutions, the limit of detection (LOD) values of Cl, NO3 and SO42− are 0.47, 0.80, and 0.95 ppm, respectively. For mixed samples, the separation analysis was completed within 25 min, and the maximum detection error is no more than 2.2%. The five-electrode contactless detector developed shows great potential for application in miniaturized ion chromatography. Full article
(This article belongs to the Special Issue Recent Advances in Microfluidic Sensing Devices)
Show Figures

Figure 1

15 pages, 73873 KB  
Article
A Miniaturized Dual-Band Frequency Selective Surface with Enhanced Capacitance Loading for WLAN Applications
by Muhammad Idrees, Sai-Wai Wong, Abdul Majeed, Shu-Qing Zhang and Yejun He
Sensors 2025, 25(24), 7421; https://doi.org/10.3390/s25247421 - 5 Dec 2025
Cited by 1 | Viewed by 652
Abstract
This article presents a miniaturized dual-band frequency selective surface (FSS) based on capacitance-enhancing technique for RF shielding applications. The FSS incorporates two independent corner-modified square loop (CMSL) elements realized on a lossy dielectric, effectively suppressing the WiFi 2.45 GHz and WLAN 5.5 GHz [...] Read more.
This article presents a miniaturized dual-band frequency selective surface (FSS) based on capacitance-enhancing technique for RF shielding applications. The FSS incorporates two independent corner-modified square loop (CMSL) elements realized on a lossy dielectric, effectively suppressing the WiFi 2.45 GHz and WLAN 5.5 GHz bands simultaneously. The capacitance of FSS element is enhanced through corner truncation without using additional lumped elements. The symmetric geometry enables the FSS shield to manifest angularly stable and polarization-insensitive spectral responses under various oblique incident angles. Moreover, an equivalent circuit model (ECM) of the FSS structure is designed. A finite FSS prototype is fabricated and tested to verify the EM simulations. The measured results are in good agreement with the simulated responses. More importantly, the proposed design is scalable to other frequencies and is capable of selectively mitigating electromagnetic interference or confine the EM fields. Full article
(This article belongs to the Special Issue Antenna Technologies for Microwave and Millimeter-Wave Sensing)
Show Figures

Figure 1

19 pages, 2786 KB  
Article
Research on Image Data Augmentation and Accurate Classification of Waste Electronic Components Utilizing Deep Learning Techniques
by Bolin Chen, Shuping Zhang, Shuangyi Liu, Yanlin Wu, Jie Guan, Xiaojiao Zhang, Yaoguang Guo, Qin Xu, Weiguo Dong and Weixing Gu
Processes 2025, 13(12), 3802; https://doi.org/10.3390/pr13123802 - 25 Nov 2025
Viewed by 485
Abstract
The escalating accumulation of waste printed circuit boards (WPCBs) underscores the urgent need for efficient recovery of valuable resources. Notably, WPCBs harbor a considerable number of intact electronic components that remain functional or could be repurposed. Nevertheless, the automated recognition and sorting of [...] Read more.
The escalating accumulation of waste printed circuit boards (WPCBs) underscores the urgent need for efficient recovery of valuable resources. Notably, WPCBs harbor a considerable number of intact electronic components that remain functional or could be repurposed. Nevertheless, the automated recognition and sorting of these components remain highly challenging, owing to their miniature dimensions, diverse model types, and the absence of publicly available, high-quality datasets. To address these challenges, this paper introduces a novel image dataset of discarded electronic components and proposes a deep learning-based data augmentation model that combines classical augmentation methods with DCGAN and SRGAN to achieve dataset size augmentation. This paper further conducts Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) evaluation on the generated images to ensure their suitability for downstream classification tasks. Experimental results demonstrate significant improvements in classification accuracy, with AlexNet, VGG19, ResNet18, ResNet101, and ResNet152 achieving increases of 6.6%, 9.7%, 4%, 5.4%, and 6.2%, respectively, compared to classical augmentation. This method enables precise identification to facilitate the downstream recovery of intact electronic components, thereby contributing to the conservation of natural resources and the effective mitigation of environmental pollution. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

16 pages, 3365 KB  
Article
Study on Breakdown Characteristics of On-Train High-Voltage Combined Electrical Apparatus Under Lightning Transient Conditions
by Jixing Sun, Kun Zhang, Yide Liu, Sile Yang and Jiuding Tan
Appl. Sci. 2025, 15(22), 12238; https://doi.org/10.3390/app152212238 - 18 Nov 2025
Viewed by 409
Abstract
The high-voltage system of high-speed trains is now in the form of combined electrical apparatus, which has a high probability of insulation breakdown due to frequent overvoltage during operation. To solve this issue, an electric field simulation model of the high-voltage combined electrical [...] Read more.
The high-voltage system of high-speed trains is now in the form of combined electrical apparatus, which has a high probability of insulation breakdown due to frequent overvoltage during operation. To solve this issue, an electric field simulation model of the high-voltage combined electrical system was established, the electric field distribution of the high-voltage box electrode under overvoltage operating conditions was analyzed, and the air breakdown characteristics under field action were studied. The study shows that under overvoltage conditions, the electric field intensity near the small electrodes of the combined electrical unit is higher than the air breakdown field intensity, and the statistical time delay is approximately 5.94 μs when 150 kV voltage is applied. When the size of the connected electrode is doubled and 150 kV voltage is applied, the statistical delay is about 7.20 μs and the probability of discharge is reduced. Further installation of an insulating partition between the circuit breaker and the ground switch completely solved the problem of low electrical gap insulation capacity. Combined with impulse withstand tests, the effectiveness of the electrode size design was verified, and the research results provided theoretical support for the miniaturization and high-reliability design of vehicle-mounted high-voltage electrical appliances. Full article
Show Figures

Figure 1

16 pages, 2768 KB  
Article
A Highly Efficient, Low-Cost Microwave Resonator for Exciting a Diamond Sample from a Miniaturized Quantum Magnetometer
by André Bülau, Daniela Walter, Magnus Kofoed, Florian Janek, Volker Kible and Karl-Peter Fritz
Metrology 2025, 5(4), 69; https://doi.org/10.3390/metrology5040069 - 17 Nov 2025
Viewed by 1037
Abstract
Optically detected magnetic resonance (ODMR) of nitrogen-vacancy centers in diamonds, in addition to optical excitation with green light, requires microwave excitation and thus a microwave structure. While many different microwave structures including microwave resonators have been presented in the past, none of them [...] Read more.
Optically detected magnetic resonance (ODMR) of nitrogen-vacancy centers in diamonds, in addition to optical excitation with green light, requires microwave excitation and thus a microwave structure. While many different microwave structures including microwave resonators have been presented in the past, none of them fulfilled the need to fit inside the miniaturized quantum magnetometer with limited space used in this work. This is why a novel microwave resonator design using commercially available printed circuit board technology is proposed. It is demonstrated that this design is of small form factor, highly power efficient and low-cost, with very good reproducibility, and in addition, it can be fabricated as a flexible printed circuit board to be bent and thus fit into the miniaturized sensor used in this work. The design choices made for the resonator and the way in which it was trimmed and optimized geometrically are presented and ODMR spectra made with a miniaturized quantum sensor in combination with such a resonator, which was fed by a microwave generator set to different microwave powers, are shown. These measurements revealed that a microwave power of −4 dBm is sufficient to excite the ms = ±1 states of the nitrogen-vacancy centers, while exceeding −1 dBm already introduces sidebands in the ODMR spectrum. This underlines the efficiency of the resonator in exciting the nitrogen-vacancies of the diamond in the sensor platform used and can lead to development of low-power quantum sensors in the future. Full article
Show Figures

Figure 1

6439 KB  
Proceeding Paper
Development of Breakout Boards for Wearable ECG Applications Based on the AD823X Microchip and the Arduino Platform
by Juan C. Delgado-Torres, Sonia D. Becerril-Zepeda, K. Iris Vargas-Patiño, Daniel Cuevas-González, Juan P. García-Vázquez, Eladio Altamira-Colado, O. E. Barreras and Roberto L. Avitia
Eng. Proc. 2025, 118(1), 86; https://doi.org/10.3390/ECSA-12-26566 - 7 Nov 2025
Viewed by 258
Abstract
The development of wearable devices continues to be a growing trend. The mobile health wearables market is extremely fast-moving, with wearable ECG designs demanding increasingly complex features from manufacturers, such as size reduction, high accuracy, low weight, power efficiency, and good signal quality. [...] Read more.
The development of wearable devices continues to be a growing trend. The mobile health wearables market is extremely fast-moving, with wearable ECG designs demanding increasingly complex features from manufacturers, such as size reduction, high accuracy, low weight, power efficiency, and good signal quality. The AD823X integrated circuits for ECG miniaturization, as an analog front-end (AFE), provide an amplified and filtered analog signal for subsequent digitization. The aim of this work is the development of expansion boards for portable ECG applications based on the AD823X microchip and the Arduino platform. This study includes three different circuit designs for specific ECG applications: cardiac monitor, ECG fitness, and Holter monitor. It also presents designs using both AD823X integrated circuits. After performing tests with analog stage, the Atmega328 microcontroller was used for the analog-to-digital conversion of the ECG signals, and a miniaturized custom breakout board was developed for each ECG application, incorporating a CSR BC417143 chip for Bluetooth connectivity. The digitized signals can be transmitted by serial cable, via Bluetooth to a PC, or to an Android smartphone system for visualization. Other performed tests included measuring the noise induced during the analog-to-digital conversion stage of the Atmega328 microcontroller. This work evaluated, compared, and determined the best of the applications proposed by the manufacturer of the AD8232X for a wearable ECG monitor, addressing the current needs of the devices and emerging trends in mobile health. Full article
Show Figures

Figure 1

1807 KB  
Proceeding Paper
Development of Microfluidic Organ-on-a-Chip Systems Dedicated to the Analysis of Cell Morphology
by Junwei Wang and Tieying Xu
Eng. Proc. 2025, 118(1), 15; https://doi.org/10.3390/ECSA-12-26485 - 7 Nov 2025
Viewed by 223
Abstract
Traditional medical techniques are constrained by macro-scale detection methods, making it difficult to capture dynamic changes at the cellular level. The miniaturization and high-throughput capabilities of integrated circuit technology enable precise manipulation and real-time monitoring of biological processes. In this study, COMSOL Multiphysics [...] Read more.
Traditional medical techniques are constrained by macro-scale detection methods, making it difficult to capture dynamic changes at the cellular level. The miniaturization and high-throughput capabilities of integrated circuit technology enable precise manipulation and real-time monitoring of biological processes. In this study, COMSOL Multiphysics 6.3 software was used to model electrode units, simulating the interaction between cells and their biological environment. From the perspective of electrode arrays, the influence of varying electrode-cell contact areas on electrical signals was investigated, and the structure and layout of the microelectrode array (MEA) were optimized. The research explored the relationship between cellular activity and electrical properties, as well as the effect of cellular activity on membrane permeability. Simulation results demonstrated that larger electrode coverage areas improve potential distribution. The intact phospholipid bilayer and functional membrane proteins of living cells create a significant current-blocking effect, with impedance values reaching 105–106 Ω·cm2. In contrast, apoptotic or necrotic cells exhibit structural damage and ion channel inactivation, leading to significantly enhanced membrane permeability, with impedance decreasing by 1–2 orders of magnitude. Further simulations involved modeling microfluidic channels to study cellular behavior within them. Frequency response analysis and Bode plots revealed that impedance differences between low and high frequencies could distinguish living cells (higher impedance) from apoptotic cells (lower impedance). Therefore, Bode plot analysis can assess membrane permeability and infer cellular health or apoptotic state. Additionally, this study examined micro-nanofabrication techniques, particularly the lift-off process for microelectrode fabrication, and optimized photoresist selection in photolithography. Full article
Show Figures

Figure 1

12 pages, 3653 KB  
Proceeding Paper
CMOS-Compatible Narrow Bandpass MIM Metamaterial Absorbers for Spectrally Selective LWIR Thermal Sensors
by Moshe Avraham, Mikhail Klinov and Yael Nemirovsky
Eng. Proc. 2025, 118(1), 1; https://doi.org/10.3390/ECSA-12-26501 - 7 Nov 2025
Viewed by 210
Abstract
The growing demand for compact, low-power infrared (IR) sensors necessitates advanced solutions for on-chip spectral selectivity, particularly for integration with Thermal Metal-Oxide-Semiconductor (TMOS) devices. This paper investigates the design and analysis of CMOS-compatible metal–insulator–metal (MIM) metamaterial absorbers tailored for selective absorption in the [...] Read more.
The growing demand for compact, low-power infrared (IR) sensors necessitates advanced solutions for on-chip spectral selectivity, particularly for integration with Thermal Metal-Oxide-Semiconductor (TMOS) devices. This paper investigates the design and analysis of CMOS-compatible metal–insulator–metal (MIM) metamaterial absorbers tailored for selective absorption in the long-wave infrared (LWIR) region. We present a design methodology utilizing an equivalent-circuit model, which provides intuitive physical insight into the absorption mechanism and significantly reduces computational costs compared to full-wave electromagnetic simulations. An important rule in this design methodology is demonstrating how the resonance wavelength of these absorbers can be precisely tuned across the LWIR spectrum by engineering the geometric parameters of the top metallic patterns and, critically, by optimizing the dielectric substrate’s refractive index and thickness, which assist in designing small period MIM absorber units which are important in infrared thermal sensor pixels. Our results demonstrate that the resonance wavelength of these absorbers can be precisely tuned across the LWIR spectrum by engineering the geometric parameters of the top metallic patterns and by optimizing the dielectric substrate’s refractive index and thickness. Specifically, the selection of silicon as the dielectric material, owing to its high refractive index and low losses, facilitates compact designs with high-quality factors. The transmission line model provides intuitive insight into how near-perfect absorption is achieved when the absorber’s input impedance matches the free-space impedance. This work presents a new approach for the methodology of designing MIM absorbers in the mid-infrared and long-wave infrared (LWIR) regions, utilizing the intuitive insights provided by equivalent circuit modeling. This study validates a highly efficient design approach for high-performance, spectrally selective MIM absorbers for LWIR radiation, paving the way for their monolithic integration with TMOS sensors to enable miniaturized, cost-effective, and functionally enhanced IR sensing systems. Full article
Show Figures

Figure 1

Back to TopTop