Abstract
This article presents a miniaturized dual-band frequency selective surface (FSS) based on capacitance-enhancing technique for RF shielding applications. The FSS incorporates two independent corner-modified square loop (CMSL) elements realized on a lossy dielectric, effectively suppressing the WiFi 2.45 GHz and WLAN 5.5 GHz bands simultaneously. The capacitance of FSS element is enhanced through corner truncation without using additional lumped elements. The symmetric geometry enables the FSS shield to manifest angularly stable and polarization-insensitive spectral responses under various oblique incident angles. Moreover, an equivalent circuit model (ECM) of the FSS structure is designed. A finite FSS prototype is fabricated and tested to verify the EM simulations. The measured results are in good agreement with the simulated responses. More importantly, the proposed design is scalable to other frequencies and is capable of selectively mitigating electromagnetic interference or confine the EM fields.