Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (463)

Search Parameters:
Keywords = mineral media

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 4961 KiB  
Article
Study on Grinding Optimization of Cassiterite Polymetallic Sulfide Ore Based on Single-Factor Test Method
by Jinlin Yang, Pengyan Zhu, Xingjian Deng, Hengjun Li, Shaojian Ma and Dingzheng Wang
Minerals 2025, 15(8), 827; https://doi.org/10.3390/min15080827 - 3 Aug 2025
Viewed by 135
Abstract
Cassiterite polymetallic sulfide ore exhibits a complex mineral composition and significant variations in mineral properties, which frequently lead to issues such as the over-grinding of cassiterite and under-grinding of sulfide minerals during the grinding process. These issues consequently impair liberation performance in subsequent [...] Read more.
Cassiterite polymetallic sulfide ore exhibits a complex mineral composition and significant variations in mineral properties, which frequently lead to issues such as the over-grinding of cassiterite and under-grinding of sulfide minerals during the grinding process. These issues consequently impair liberation performance in subsequent beneficiation stages. Among these factors, the grinding media ratios stand as one of the critical factors influencing grinding efficiency. Based on these, the paper adopts the single-factor test method to systematically study the influence law of factors such as grinding time, mill rotational rate, and mill filling rate on the particle size composition of ore grinding products and the grinding technology efficiency under different media conditions; in addition, it is compared with the influence law of different conditions of media ratios on the grinding efficiency of ore. The results show that the optimal parameters of the grinding operation are obtained at the grinding time of 4 min, the mill rotational rate of 60%, and the filling rate of 35%. The grinding time and mill filling rate have a relatively more significant effect on the product particle size distribution, while the effect of the mill rotational rate is relatively less significant. When the parameters of grinding operations are optimal, the yield of qualified particle size and grinding technical efficiency are used as the evaluation indices, respectively. Overall, the order of the grinding effect of different media conditions was as follows: steel ball combination of Φ20 mm and Φ25 mm > steel balls of three single sizes > steel ball combination of Φ20 mm and Φ30 mm. The optimal grinding media ratios are Φ20 mm and Φ25 mm (the percentage of the Φ20 mm ball is 90%). The reasonable media ratios will effectively coordinate the optimal grinding effect between different media. The research results can provide the necessary basic data for the subsequent grinding optimization of cassiterite polymetallic sulfide ores. Full article
Show Figures

Figure 1

23 pages, 2657 KiB  
Article
Enrichment Cultures of Extreme Acidophiles with Biotechnological Potential
by Khussain Valiyev, Aliya Yskak, Elena Latyuk, Alena Artykova, Rakhimbayev Berik, Vadim Chashkov and Aleksandr Bulaev
Mining 2025, 5(3), 49; https://doi.org/10.3390/mining5030049 - 1 Aug 2025
Viewed by 101
Abstract
The purpose of this work was to obtain specialized enrichment cultures from an original extreme acidophilic consortium of extremely acidophilic microorganisms and to study their microbial community composition and biotechnological potential. At temperatures of 25, 35, 40 and 50 °C, distinct enrichments of [...] Read more.
The purpose of this work was to obtain specialized enrichment cultures from an original extreme acidophilic consortium of extremely acidophilic microorganisms and to study their microbial community composition and biotechnological potential. At temperatures of 25, 35, 40 and 50 °C, distinct enrichments of extremely acidophilic microorganisms used in the processes of bioleaching sulfide ores were obtained using nutrient media containing ferrous sulfate, elemental sulfur and a copper sulfide concentrate as nutrient inorganic substrates, with and without the addition of 0.02% yeast extract. The microbial community composition was studied using the sequencing of the V3–V4 hypervariable region of the 16S rRNA genes. The different growth conditions led to changes in the microbial composition and relative abundance of mesophilic and moderately thermophilic, strict autotrophic and mixotrophic microorganisms in members of the genera Acidithiobacillus, Sulfobacillus, Leptospirillum, Acidibacillus, Ferroplasma and Cuniculiplasma. The dynamics of the oxidation of ferrous iron, sulfur, and sulfide minerals (pyrite and chalcopyrite) by the enrichments was also studied in the temperature range of 25 to 50 °C. The study of enrichment cultures using the molecular biological method using the metabarcoding method of variable V3–24 V4 fragments of 16S rRNA genes showed that enrichment cultures obtained under different conditions differed in composition, which can be explained by differences in the physiological properties of the identified microorganisms. Regarding the dynamics of the oxidation of ferrous ions, sulfur, and sulfide minerals (pyrite and chalcopyrite), each enrichment culture was studied at a temperature range of 25 to 50 °C and indicated that all obtained enrichments were capable of oxidizing ferrous iron, sulfur and minerals at different rates. The obtained enrichment cultures may be used in further work to increase bioleaching by using the suitable inoculum for the temperature and process conditions. Full article
Show Figures

Figure 1

15 pages, 2127 KiB  
Article
Accessible Interface for Museum Geological Exhibitions: PETRA—A Gesture-Controlled Experience of Three-Dimensional Rocks and Minerals
by Andrei Ionuţ Apopei
Minerals 2025, 15(8), 775; https://doi.org/10.3390/min15080775 - 24 Jul 2025
Viewed by 468
Abstract
The increasing integration of 3D technologies and machine learning is fundamentally reshaping mineral sciences and cultural heritage, establishing the foundation for an emerging “Mineralogy 4.0” framework. However, public engagement with digital 3D collections is often limited by complex or costly interfaces, such as [...] Read more.
The increasing integration of 3D technologies and machine learning is fundamentally reshaping mineral sciences and cultural heritage, establishing the foundation for an emerging “Mineralogy 4.0” framework. However, public engagement with digital 3D collections is often limited by complex or costly interfaces, such as VR/AR systems and traditional touchscreen kiosks, creating a clear need for more intuitive, accessible, and more engaging and inclusive solutions. This paper presents PETRA, an open-source, gesture-controlled system for exploring 3D rocks and minerals. Developed in the TouchDesigner environment, PETRA utilizes a standard webcam and the MediaPipe framework to translate natural hand movements into real-time manipulation of digital specimens, requiring no specialized hardware. The system provides a customizable, node-based framework for creating touchless, interactive exhibits. Successfully evaluated during a “Long Night of Museums” public event with 550 visitors, direct qualitative observations confirmed high user engagement, rapid instruction-free learnability across diverse age groups, and robust system stability in a continuous-use setting. As a practical case study, PETRA demonstrates that low-cost, webcam-based gesture control is a viable solution for creating accessible and immersive learning experiences. This work offers a significant contribution to the fields of digital mineralogy, human–machine interaction, and cultural heritage by providing a hygienic, scalable, and socially engaging method for interacting with geological collections. This research confirms that as digital archives grow, the development of human-centered interfaces is paramount in unlocking their full scientific and educational potential. Full article
(This article belongs to the Special Issue 3D Technologies and Machine Learning in Mineral Sciences)
Show Figures

Figure 1

15 pages, 10214 KiB  
Article
Comparative Evaluation of X-Ray Transmission and X-Ray Luminescence Sorting Technologies for Fine Diamond Recovery
by Zachary Lang, Shafiq Alam, Lucy Hunt, Antonio Di Feo, Chris Robben, Yuri Kinakin and Russell Tjossem
Minerals 2025, 15(8), 773; https://doi.org/10.3390/min15080773 - 23 Jul 2025
Viewed by 249
Abstract
A study of 300 diamonds in the 2–4 mm size range revealed that X-ray transmission demonstrated a predictable relationship for detecting diamonds, with all diamonds being identified. In contrast, X-ray luminescence showed no consistent relationship between diamond characteristics and detection, and not all [...] Read more.
A study of 300 diamonds in the 2–4 mm size range revealed that X-ray transmission demonstrated a predictable relationship for detecting diamonds, with all diamonds being identified. In contrast, X-ray luminescence showed no consistent relationship between diamond characteristics and detection, and not all diamonds were identified using this method. When comparing the X-ray transmission response of diamonds to common gangue minerals found in dense media separation concentrates, X-ray transmission was found to incidentally detect small amounts of gangue particles. However, no such gangue detection occurred with X-ray luminescence, which responded only to diamonds. In pilot-scale tests, a belt-fed X-ray transmission sorter with a pressurized air ejection mechanism and a chute-fed X-ray luminescence sorter with a mechanical paddle ejection system were evaluated. The X-ray transmission sorter produced an average of 0.28 kg of concentrate per gram of diamonds separated, while the X-ray luminescence sorter generated 0.37 kg of concentrate per gram of diamonds separated. The X-ray transmission sorter achieved 99% diamond recovery, whereas the X-ray luminescence sorter achieved 91% diamond recovery. The higher concentrate mass obtained from the X-ray luminescence sorter is attributed to the ineffectiveness of the mechanical paddles, despite the superior contrast between gangue and diamonds in detection. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 2206 KiB  
Article
Turning Waste into Wealth: Sustainable Amorphous Silica from Moroccan Oil Shale Ash
by Anas Krime, Sanaâ Saoiabi, Mouhaydine Tlemcani, Ahmed Saoiabi, Elisabete P. Carreiro and Manuela Ribeiro Carrott
Recycling 2025, 10(4), 143; https://doi.org/10.3390/recycling10040143 - 20 Jul 2025
Viewed by 293
Abstract
Moroccan oil shale ash (MOSA) represents an underutilized industrial by-product, particularly in the Rif region, where its high mineral content has often led to its neglect in value-added applications. This study highlights the successful conversion of MOSA into amorphous mesoporous silica (AS-Si) using [...] Read more.
Moroccan oil shale ash (MOSA) represents an underutilized industrial by-product, particularly in the Rif region, where its high mineral content has often led to its neglect in value-added applications. This study highlights the successful conversion of MOSA into amorphous mesoporous silica (AS-Si) using a sol–gel process assisted by polyethylene glycol (PEG-6000) as a soft template. The resulting AS-Si material was extensively characterized to confirm its potential for environmental remediation. FTIR analysis revealed characteristic vibrational bands corresponding to Si–OH and Si–O–Si bonds, while XRD confirmed its amorphous nature with a broad diffraction peak at 2θ ≈ 22.5°. SEM imaging revealed a highly porous, sponge-like morphology composed of aggregated nanoscale particles, consistent with the nitrogen adsorption–desorption isotherm. The material exhibited a specific surface area of 68 m2/g, a maximum in the pore size distribution at a pore diameter of 2.4 nm, and a cumulative pore volume of 0.11 cm3/g for pores up to 78 nm. DLS analysis indicated an average hydrodynamic diameter of 779 nm with moderate polydispersity (PDI = 0.48), while a zeta potential of –34.10 mV confirmed good colloidal stability. Furthermore, thermogravimetric analysis (TGA) and DSC suggested the thermal stability of our amorphous silica. The adsorption performance of AS-Si was evaluated using methylene blue (MB) and ciprofloxacin (Cipro) as model pollutants. Kinetic data were best fitted by the pseudo-second-order model, while isotherm studies favored the Langmuir model, suggesting monolayer adsorption. AS-Si could be used four times for the removal of MB and Cipro. These results collectively demonstrate that AS-Si is a promising, low-cost, and sustainable adsorbent derived from Moroccan oil shale ash for the effective removal of organic contaminants from aqueous media. Full article
Show Figures

Figure 1

13 pages, 2751 KiB  
Article
Experimental Study on Grouting Visualization of Cover Layer Based on Transparent Soil
by Pengfei Guo and Weiquan Zhao
Appl. Sci. 2025, 15(14), 7854; https://doi.org/10.3390/app15147854 - 14 Jul 2025
Viewed by 210
Abstract
Grouting, as a widely applicable and versatile foundation treatment technology, plays a crucial role in addressing seepage control problems in cover layers due to its flexibility and convenience. The effectiveness of grouting largely depends on slurry diffusion; however, due to the opaque nature [...] Read more.
Grouting, as a widely applicable and versatile foundation treatment technology, plays a crucial role in addressing seepage control problems in cover layers due to its flexibility and convenience. The effectiveness of grouting largely depends on slurry diffusion; however, due to the opaque nature of geotechnical media, the diffusion mechanism of slurry in the cover layers remains insufficiently understood. To investigate this, a visual grouting model device was designed and fabricated, and grouting tests were conducted using transparent soil materials to simulate the cover layers. The slurry diffusion patterns and the velocity field within the transparent soil were analyzed. The results show that, based on refractive-index matching, fused quartz sand of specific gradation and white mineral oil were selected as simulation materials for the cover layers. A stable slurry suitable for transparent grouting was also chosen to satisfy visualization requirements. The transparent soil grouting model, integrated with a Digital Image Correlation (DIC) monitoring system, has the advantages of demonstrating simple operation, real-time monitoring, and high precision. These tests verify the feasibility of visualizing slurry diffusion in cover layers. Furthermore, step-pressure grouting tests preliminarily reveal the dynamic mechanism of slurry diffusion. The results suggest that, in the cover layer, the cover layer in this grouting test is mainly splitting grouting, accompanied by compaction grouting. These methods offer new insights and methods for model testing of cover layer grouting mechanisms. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 16452 KiB  
Article
The Uranium Enrichment Mechanism of Hydrocarbon-Bearing Fluids in Aeolian Sedimentary Background Uranium Reservoirs of the Ordos Basin
by Tao Zhang, Jingchao Lei, Cong Hu, Xiaofan Zhou, Chao Liu, Lei Li, Qilin Wang, Yan Hao and Long Guo
Minerals 2025, 15(7), 716; https://doi.org/10.3390/min15070716 - 8 Jul 2025
Viewed by 397
Abstract
Significant uranium exploration breakthroughs have been achieved in the eolian deposits of the uranium reservoirs in the southwestern part of the Ordos Basin. The redox environment remains a crucial factor in controlling the migration and precipitation of uranium. This study, through rock mineralogical [...] Read more.
Significant uranium exploration breakthroughs have been achieved in the eolian deposits of the uranium reservoirs in the southwestern part of the Ordos Basin. The redox environment remains a crucial factor in controlling the migration and precipitation of uranium. This study, through rock mineralogical observations and hydrocarbon gas composition analysis, combined with the regional source rock and basin tectonic evolution history, reveals the characteristics of the reducing medium and the mineralization mechanisms involved in uranium ore formation. The Lower Cretaceous Luohe Formation uranium reservoirs in the study area exhibit a notable lack of common reducing media, such as carbonaceous debris and pyrite. However, the total hydrocarbon gases in the Luohe Formation range from 2967 to 20,602 μmol/kg, with an average of 8411 μmol/kg—significantly higher than those found in uranium reservoirs elsewhere in China, exceeding them by 10 to 100 times. Due to the absence of other macroscopically visible organic matter, hydrocarbon gases are identified as the most crucial reducing agent for uranium mineralization. These gases consist predominantly of methane and originate from the Triassic Yanchang Formation source rock. Faults formed during the Indosinian, Yanshanian, and Himalayan tectonic periods effectively connect the Cretaceous uranium reservoirs with the oil and gas reservoirs of the Triassic and Jurassic, providing pathways for the migration of deep hydrocarbon fluids into the Cretaceous uranium reservoirs. The multiphase tectonic evolution of the Ordos Basin since the Cenozoic has facilitated the development of faults, ensuring a sufficient supply of reducing media for uranium reservoirs in an arid sedimentary context. Additionally, the “Replenishment-Runoff-Drainage System” created by tectonic activity promotes a continuous supply of uranium- and oxygen-bearing fluids to the uranium reservoirs, resulting in a multi-energy coupling mineralization effect. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

21 pages, 3863 KiB  
Article
Zeta Potential as a Key Indicator of Network Structure and Rheological Behavior in Smectite Clay Dispersions
by Hiroshi Kimura, Haruka Tanabe and Susumu Shinoki
Fluids 2025, 10(7), 178; https://doi.org/10.3390/fluids10070178 - 6 Jul 2025
Viewed by 246
Abstract
Smectite clay minerals are known to readily form thixotropic physical gels in aqueous media, even at low volume fractions. Although the rheological properties of these gels are closely related to the microstructure of the network, the influence of the clay’s physicochemical characteristics remains [...] Read more.
Smectite clay minerals are known to readily form thixotropic physical gels in aqueous media, even at low volume fractions. Although the rheological properties of these gels are closely related to the microstructure of the network, the influence of the clay’s physicochemical characteristics remains insufficiently understood. In this study, we systematically investigated the relationships between particle size, cation exchange capacity, and zeta potential, and the rheological behavior of aqueous dispersions of four synthetic smectites. After thorough deionization, dispersions were prepared at controlled NaCl concentrations. We found that the zeta potential strongly correlates with the fineness of the network structure and governs macroscopic rheological responses such as viscosity, yield stress, and gelation behavior. Even under identical conditions, gel transparency and structural coarseness varied significantly among clay types. Furthermore, the storage modulus was influenced not only by network density but also by the intrinsic stiffness of the clay branches. These findings demonstrate that zeta potential serves as a unified indicator of structure and function in smectite dispersions and offer useful insights for gel design in colloidal and soft matter systems. Full article
Show Figures

Figure 1

16 pages, 1769 KiB  
Article
Isolation and Characterization of a Crude Oil-Tolerant Obligate Halophilic Bacterium from the Great Salt Lake of the United States of America
by Jonathan Oakes, Johurimam Noah Kuddus, Easton Downs, Clark Oakey, Kristina Davis, Laith Mohammad, Kiara Whitely, Carl E. Hjelmen and Ruhul Kuddus
Microorganisms 2025, 13(7), 1568; https://doi.org/10.3390/microorganisms13071568 - 3 Jul 2025
Viewed by 409
Abstract
Most large-scale crude oil spills occur in marine environments. We screened easily propagable/maintainable halophiles to develop agents for the bioremediation of marine spills. A bacterial strain isolated from a polluted region of the Great Salt Lake was characterized and tested for its ability [...] Read more.
Most large-scale crude oil spills occur in marine environments. We screened easily propagable/maintainable halophiles to develop agents for the bioremediation of marine spills. A bacterial strain isolated from a polluted region of the Great Salt Lake was characterized and tested for its ability to degrade crude oil. The strain (Salinivibrio costicola) is motile, catalase- and lipase-positive, a facultative anaerobe, and an obligate halophile. Its growth optimum and tolerance ranges are: NaCl (5%, 1.25–10%), pH (8, 6–10), and temperature (22 °C, 4–45 °C). Its genome (3,166,267 bp) consists of two circular chromosomes and a plasmid, containing 3197 genes, including some genes potentially relevant to hydrocarbon metabolism. The strain forms a biofilm but is considered nonpathogenic and is sensitive to some common antibiotics. Lytic bacteriophages infecting the strain are rare in the water samples we tested. The strain survived on desiccated agar media at room temperature for a year, grew optimally in complex media containing 0.1–1% crude oil, but failed to reduce total recoverable petroleum hydrocarbons from crude oil. Thus, a recalcitrant halophile may endure crude oil without mineralizing. Due to some of their advantageous attributes, such strains can be considered for genetic manipulation to develop improved agents for bioremediation. Full article
(This article belongs to the Special Issue Marine Microbes, Biocontamination and Bioremediation)
Show Figures

Figure 1

13 pages, 3181 KiB  
Article
Mitigating Microbial Artifacts in Laboratory Research on Underground Hydrogen Storage
by Adnan Aftab, Silvia J. Salgar-Chaparro, Quan Xie, Ali Saeedi and Mohammad Sarmadivaleh
Fuels 2025, 6(3), 52; https://doi.org/10.3390/fuels6030052 - 1 Jul 2025
Viewed by 371
Abstract
The global energy sector is aiming to substantially reduce CO2 emissions to meet the UN climate goals. Among the proposed strategies, underground storage solutions such as radioactive disposal, CO2, NH3, and underground H2 storage (UHS) have emerged [...] Read more.
The global energy sector is aiming to substantially reduce CO2 emissions to meet the UN climate goals. Among the proposed strategies, underground storage solutions such as radioactive disposal, CO2, NH3, and underground H2 storage (UHS) have emerged as promising options for mitigating anthropogenic emissions. These approaches require rigorous research and development (R&D), often involving laboratory-scale experiments to establish their feasibility before being scaled up to pilot plant operations. Microorganisms, which are ubiquitous in laboratory environments, can significantly influence geochemical reactions under variable experimental conditions of porous media and a salt cavern. We have selected a consortium composed of Bacillus sp., Enterobacter sp., and Cronobacter sp. bacteria, which are typically present in the laboratory environment. These microorganisms can contaminate the rock sample and develop experimental artifacts in UHS experiments. Hence, it is pivotal to sterilize the rock prior to conduct experimental research related to effects of microorganisms in the porous media and the salt cavern for the investigation of UHS. This study investigated the efficacy of various disinfection and sterilization methods, including ultraviolet irradiation, autoclaving, oven heating, ethanol treatments, and gamma irradiation, in removing the microorganisms from silica sand. Additionally, the consideration of their effects on mineral properties are reviewed. A total of 567 vials, each filled with 9 mL of acid-producing bacteria (APB) media were used to test killing efficacy of the cleaning methods. We conducted serial dilutions up to 10−8 and repeated them three times to determine whether any deviation occurred. Our findings revealed that gamma irradiation and autoclaving were the most effective techniques for eradicating microbial contaminants, achieving sterilization without significantly altering the mineral characteristics. These findings underscore the necessity of robust cleaning protocols in hydrogeochemical research to ensure reliable, reproducible data, particularly in future studies where microbial contamination could induce artifacts in laboratory research. Full article
Show Figures

Figure 1

32 pages, 3592 KiB  
Article
Effects of Zinc on Metallicolous and Non-Metallicolous Populations of Noccaea caerulescens
by Anna D. Kozhevnikova, Alexander V. Kartashov and Ilya V. Seregin
Plants 2025, 14(13), 1975; https://doi.org/10.3390/plants14131975 - 27 Jun 2025
Viewed by 435
Abstract
The aim of this study was to evaluate whether intraspecific differences in zinc (Zn) tolerance and accumulation in the hyperaccumulator Noccaea caerulescens are linked to Zn-induced changes in transpiration and mineral composition. At 500 µM Zn in the nutrient solution, a decrease in [...] Read more.
The aim of this study was to evaluate whether intraspecific differences in zinc (Zn) tolerance and accumulation in the hyperaccumulator Noccaea caerulescens are linked to Zn-induced changes in transpiration and mineral composition. At 500 µM Zn in the nutrient solution, a decrease in the root and shoot biomass, the water content in roots, and the contents of photosynthetic pigments in shoots was observed only in the non-metallicolous population Wilwerwiltz, whereas in the calamine population Prayon, root growth was stimulated. Zinc-induced impairment of mineral nutrition was greater in Wilwerwiltz than in Prayon, which determined the manifestation of Zn toxicity in Wilwerwiltz. The absence of signs of Zn toxicity and the stimulation of root growth in Prayon may be due to lower Zn accumulation in Prayon than in Wilwerwiltz, as well as more effective mechanisms of Zn detoxification. The higher Zn content in the shoots and, in particular, in the water-storage cells of the leaf epidermis in Wilwerwiltz compared to Prayon may be partly due to the higher transpiration rate in Wilwerwiltz, at least at 500 µM Zn. These findings suggest that the metallicolous population maintains better control over Zn accumulation, which may be a part of the adaptive response to Zn-enriched media. Full article
(This article belongs to the Special Issue Heavy Metal Tolerance in Plants and Algae—2nd Edition)
Show Figures

Figure 1

15 pages, 2585 KiB  
Article
The Influence of Grinding Media on the Grinding Effect of Granite Pegmatite-Type Quartz
by Qi Tan, Lei Liu, Lixiang Guo and Guangxue Liu
Minerals 2025, 15(7), 682; https://doi.org/10.3390/min15070682 - 26 Jun 2025
Viewed by 297
Abstract
The selection of grinding media significantly impacts the resulting mineral’s liberation degree and grinding quality; this is particularly impactful for granite pegmatite-type quartz. Accordingly, in this study, we investigate the effects of different grinding media on the breakage characteristics of muscovite granite pegmatite-type [...] Read more.
The selection of grinding media significantly impacts the resulting mineral’s liberation degree and grinding quality; this is particularly impactful for granite pegmatite-type quartz. Accordingly, in this study, we investigate the effects of different grinding media on the breakage characteristics of muscovite granite pegmatite-type quartz, focusing also on quartz mineral flotation. An analysis of scanning electron microscope images reveals distinct fracture characteristics among different minerals. Notably, the fractal dimension of mineral fracture roughness in ball-milled products is larger compared to that of rod-milled products, which exhibit a smaller fractal dimension. This fractal dimension serves as a quantitative measure of the microscopic morphology of mineral fractures in the grinding products, establishing a relationship between the roughness of the fractures and the type of grinding medium used. Further analysis of particle size distribution and mineral dissociation indicates that the rod mill produces a higher yield of coarse fractions compared to both ceramic and steel balls, while the fine fraction yield is significantly lower than that of the rod mill and steel balls. Importantly, the rod mill enhances the dissociation degree of quartz, suggesting that it can improve the liberation of mineral monomers and increase the yield of qualified fractions during the grinding process while effectively reducing the phenomenon of overgrinding. Our flotation experiments demonstrate that the recovery rate of quartz using the rod mill is 2.59% and 5.07% higher than that achieved with the ball mill and ceramic mill, respectively. These findings provide theoretical support for the optimization of grinding media and enhancement of mineral flotation recovery. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Graphical abstract

20 pages, 9203 KiB  
Article
Division of Lacustrine Environment and Significance for Shale Oil Exploration: A Case Study of the Third Member of Shahejie Formation in Dongying Sag
by He Zhao, Hongliang Wang and Nana Mu
Energies 2025, 18(12), 3086; https://doi.org/10.3390/en18123086 - 11 Jun 2025
Viewed by 368
Abstract
The third member of the Shahejie Formation (Es3) in Dongying Sag is noteworthy for its abundance of laminated shale, considerable thickness, and high organic matter content, with carbonate interbeds playing a crucial role in reservoir properties. The salinity and pH of [...] Read more.
The third member of the Shahejie Formation (Es3) in Dongying Sag is noteworthy for its abundance of laminated shale, considerable thickness, and high organic matter content, with carbonate interbeds playing a crucial role in reservoir properties. The salinity and pH of water influence the change of sedimentary environment and the mineral composition of sediment, thereby affecting the distribution characteristics of carbonate interbeds. Based on geochemical data from 8721 samples in the Dongying Sag, this study systematically analyzed the salinity and pH characteristics. This study is the first to develop an environmental zoning framework based on aqueous medium characteristics of aqueous media, and the favorable shale oil enrichment areas in Es3 were identified by integrating carbonate mineral content analysis. The results showed that the lower part of Es3 is dominated by a zone with high salinity–middle pH, and middle salinity–high pH with rich carbonate. Combining the development of carbonate interbeds, it is speculated that the sweet spots in Es3 are high salinity–middle pH and middle salinity–high pH. The favorable areas are concentrated in the lower part of Es3, including the western and northeastern parts of the Lijin Sub-Sag and the northern gentle slope of Guangrao. It provides a novel perspective on shale oil exploration through lacustrine environmental zonation. Full article
Show Figures

Figure 1

17 pages, 7055 KiB  
Article
Effects of Grinding Parameters on Galena Particle Size Distribution and Flotation Performance
by Mengchi Guo, Yuankun Yang, Shengli Yu, Yanming Wu, Guohua Gu, Yanhong Wang, Qingke Li and Jianyu Chen
Minerals 2025, 15(6), 618; https://doi.org/10.3390/min15060618 - 9 Jun 2025
Viewed by 489
Abstract
The processing of low-grade, lead-containing practical ores requires fine grinding to liberate galena and enhance flotation recovery. The ball mill is still one of the most common approaches used in industry for fine grinding. This study investigated the effect of the grinding parameters [...] Read more.
The processing of low-grade, lead-containing practical ores requires fine grinding to liberate galena and enhance flotation recovery. The ball mill is still one of the most common approaches used in industry for fine grinding. This study investigated the effect of the grinding parameters in a ball mill on the fine grinding product of galena and on flotation performance. The grinding product had a particle size below 30 μm, which was classified into +25 μm, −25 + 10 μm, and −10 μm fractions. Grinding experiments showed that modifications to the grinding concentration, media proportion, and filling ratio exerted significant effects on the yields of the +25 μm and −10 μm fractions. Flotation experiments showed that the yield of −10 μm particles negatively affected the flotation performance of galena. Discrete element method simulation results revealed that an increase in the motion velocity of the media group enhanced attrition effects during fine grinding, promoting the generation of −10 μm particles. The higher yield of −10 μm particles facilitated a smaller contact angle and smaller agglomerate size, resulting in lower recovery. To optimize the particle size distribution and improve fine-grained galena flotation recovery, it is essential to reduce the attrition of the grinding media on the mineral. Full article
(This article belongs to the Special Issue Advances in the Theory and Technology of Physical Separation)
Show Figures

Figure 1

9 pages, 227 KiB  
Article
Decreased Bone Mineral Density Is Associated with Subclinical Atherosclerosis in Asymptomatic Non-Diabetic Postmenopausal Women
by Jehona Ismaili, Afrim Poniku, Venera Berisha-Muharremi, Arlind Batalli, Rina Tafarshiku, Michael Y. Henein and Gani Bajraktari
J. Clin. Med. 2025, 14(12), 4033; https://doi.org/10.3390/jcm14124033 - 6 Jun 2025
Viewed by 677
Abstract
Background/Objectives: Estrogen deficiency is strongly related to osteoporosis, but its role in the development of atherosclerotic cardiovascular disease (CVD), particularly in postmenopausal women, is unclear. The aim of this study was to assess the relationship between osteopenia and subclinical atherosclerosis in asymptomatic non-diabetic [...] Read more.
Background/Objectives: Estrogen deficiency is strongly related to osteoporosis, but its role in the development of atherosclerotic cardiovascular disease (CVD), particularly in postmenopausal women, is unclear. The aim of this study was to assess the relationship between osteopenia and subclinical atherosclerosis in asymptomatic non-diabetic postmenopausal women. Methods: This prospective study included 117 consecutive postmenopausal women (mean age 59 ± 7 years) referred from the outpatient Rheumatology Clinic of the University Clinical Centre of Kosovo, recruited between September 2021 and December 2022. Clinical, biochemical, bone mineral density (BMD), carotid ultrasound and coronary CT angiography data were analyzed. Subclinical atherosclerosis was diagnosed as the presence of carotid plaques and/or increased intima-media thickness (CIMT) > 1.0 mm. Results: Of the 117 studied women, 83 (71%) had osteopenia or osteoporosis (T-score < −1 SD), who had higher prevalence of carotid artery plaques (27.7 vs. 8.8%, p = 0.019), compared to those with normal BMD. They were, also, older (p < 0.001), had a longer duration of menopause (p = 0.004) and higher CAC scores (p < 0.019), compared to those without plaques. In multivariate analysis [odds ratio 95% confidence interval], age [1.244 (1.052–1.470), p = 0.001], osteoporosis [0.197 (0.048–0.806), p = 0.024] and CAC score > 10 HU [0.174 (0.058–0.806), p = 0.006] were independently associated with the presence of carotid plaques. Conclusions: Reduced BMD is highly prevalent in asymptomatic non-diabetic postmenopausal women and is associated with a high prevalence of subclinical carotid atherosclerosis. Age, osteoporosis and CAC score > 10 HU were independently associated with atherosclerotic carotid plaque formation. These findings highlight the potential pathophysiological link between osteoporosis and subclinical atherosclerosis. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Back to TopTop