Decreased Bone Mineral Density Is Associated with Subclinical Atherosclerosis in Asymptomatic Non-Diabetic Postmenopausal Women
Abstract
1. Introduction
2. Methods
2.1. Patients
2.2. Clinical Data
2.3. Blood Analysis
2.4. Echocardiographic Examination
2.4.1. Cardiac Structure and Function
2.4.2. Carotid Ultrasound Measurements
2.4.3. Coronary CT Angiography
2.4.4. Measurement of Bone Mineral Density (BMD)
2.5. Statistical Analysis
3. Results
3.1. Clinical and Biochemical Data in Women with and Without Osteopenia/Osteoporosis (Table 1)
Variable | Normal | Osteopenia- Osteoporosis | p Value |
---|---|---|---|
(n = 34) | (n = 83) | ||
Age (years) | 58 ± 5 | 59 ± 7 | 0.347 |
Years of menopause [Median (Q1–Q3)] | 7 (2–10) | 8 (4–15) | 0.060 |
Smoking (%) | 21.7 | 7.5 | 0.060 |
Body-mass index (kg/m2) | 27.4 ± 5 | 29.3 ± 5 | 0.104 |
Erythrocyte sedimentation rate (mm/h) [Median (Q1–Q3)] | 22 (12–32) | 11 (20–27) | 0.484 |
C-Reactive protein (%) | 7 ± 8 | 7.1 ± 7 | 0.928 |
Total calcium (mmol/L) | 2.3 ± 0.2 | 2.3 ± 0.2 | 0.410 |
Ionized calcium (mmol/L) [Median (Q1–Q3)] | 1.45 (1.2–1.8) | 1.3 (1.2–1.8) | 0.775 |
Vitamin D3 (IU) | 22.5 ± 6 | 24 ± 14 | 0.648 |
Anti-CCP (u/mL) [Median (Q1–Q3)] | 8 (6.8–8) | 7 (6.7–8) | 0.366 |
Glucose (mmol/L) | 5.3 ± 1.0 | 5.3 ± 0.8 | 0.715 |
Total cholesterol (mmol/L) | 5.4 ± 0.7 | 5.5 ± 1.0 | 0.875 |
Triglycerides (mmol/L) | 1.8 ± 0.5 | 1.7 ± 0.6 | 0.327 |
HDL cholesterol (mmol/L) | 1.4 ± 0.4 | 1.4 ± 0.3 | 0.816 |
LDL cholesterol (mmol/L) | 3.0 ± 0.7 | 3.4 ± 0.8 | 0.527 |
Creatinine (μmol/L) [Median (Q1–Q3)] | 78 (70–85) | 76 (66–87) | 0.624 |
Urea (mmol/L) [Median (Q1–Q3)] | 5.45 (4.5–7.6) | 5.6 (4.5–7.0) | 0.978 |
Hemoglobin (g/dL) | 123 ± 17 | 125 ± 13 | 0.707 |
Heart rate at admission (beats/min) | 65 ± 12 | 68 ± 10 | 0.197 |
Use of contraceptives (%) | 13 | 11.7 | 0.549 |
Using milk products (%) | 91.3 | 92.5 | 0.567 |
Patients with CAC (%) | 73.9 | 79.8 | 0.359 |
CAC score (HU) [Median (Q1–Q3)] | 1.55 (00–31) | 1.0 (0.1–31) | 0.811 |
3.2. Cardiac Structure and Function in Women with and Without Osteopenia/Osteoporosis (Table 2)
Variable | Normal (n = 34) | Osteopenia- Osteoporosis (n = 83) | p Value |
---|---|---|---|
Echocardiographic Data | |||
Inter ventricular septum (cm) | 10.3 ± 1.3 | 10.4 ± 2.5 | 0.765 |
LV posterior wall (cm) | 9.6 ± 1.6 | 9.9 ± 1.2 | 0.309 |
LV end-diastolic diameter (cm) | 46 ± 4 | 48 ± 6 | 0.234 |
LV end-systolic diameter (cm) [Median (Q1–Q3)] | 30 (27–34) | 31 (29–33) | 0.113 |
LV systolic function | |||
LV ejection fraction (%) [Median (Q1–Q3)] | 63 (55–70) | 63 (58–67) | 0.532 |
LV shortening fraction (%) [Median (Q1–Q3)] | 34.5 (30.5–40) | 35 (30.8–39) | 0.781 |
Carotid Ultrasound Data | |||
Maximal CIMT (cm) [Median (Q1–Q3)] | 0.09 (0.08–0.11) | 0.09 (0.08–0.11) | 0.615 |
Maximal CIMT ≥ 1 mm (%) | 37.3 | 38.2 | 0.482 |
Presence of carotid plaque (%) | 8.8 | 27.7 | 0.019 |
3.3. Clinical and Biochemical Data in Women with and Without Atherosclerotic Plaques (Table 3)
Variable | Without Plaques | With Plaques | p Value |
---|---|---|---|
(n = 91) | (n = 26) | ||
Age (years) [Median (Q1–Q3)] | 57 (54–61) | 62.5 (60–65) | <0.001 |
Years of menopause (years) [Median (Q1–Q3)] | 6 (3–14) | 13.5 (8–19) | 0.770 |
Smoking (%) | 8.8 | 15.4 | 0.330 |
Body-mass index (kg/m2) | 29 ± 5 | 28.7 ± 4 | 0.757 |
Erythrocyte sedimentation rate (mm/h) | 21 ± 14 | 23 ± 12 | 0.472 |
C-Reactive protein (%) [Median (Q1–Q3)] | 6 (2–8) | 4.1 (2–11.5) | 0.724 |
Total calcium (mmol/L) [Median (Q1–Q3)] | 2.4 (2.1–2.5) | 2.3 (2.2–2.4) | 0.842 |
Ionized calcium (mmol/L) [Median (Q1–Q3)] | 1.4 (1.2–1.8) | 1.3 (1.2–1.7) | 0.653 |
Vitamin D3 (IU) | 24.8 ± 14 | 21 ± 8 | 0.081 |
Anti-CCP (u/mL) [Median (Q1–Q3)] | 7 (6–8) | 8 (7–8) | 0.044 |
Glucose (mmol/L) | 5.4 ± 0.8 | 5.2 ± 1.0 | 0.571 |
Total cholesterol (mmol/L) | 5.4 ± 1.0 | 5.7 ± 0.7 | 0.110 |
Triglycerides (mmol/L) | 1.7 ± 0.6 | 1.8 ± 0.5 | 0.487 |
HDL cholesterol (mmol/L) | 1.4 ± 0.4 | 1.4 ± 0.2 | 0.816 |
LDL cholesterol (mmol/L) | 3.0 ± 0.8 | 3.4 ± 0.6 | 0.528 |
Creatinine (μmol/L) | 77 ± 19 | 81 ± 18 | 0.891 |
Urea (mmol/L) [Median (Q1–Q3)] | 5.5 (4.5–7) | 5.6 (4.5–7) | 0.864 |
Hemoglobin (g/dL) | 125 ± 14 | 123 ± 12 | 0.473 |
Use of contraceptives (%) | 13.2 | 7.7 | 0.448 |
Using milk products (%) | 90 | 100 | 0.205 |
CAC score (HU) [Median (Q1–Q3)] | 0.4 (00–8.1) | 30 (1.3–150) | <0.001 |
3.4. Correlates of Carotid Plaque Formation in Postmenopausal Non-Diabetics (Table 4)
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variable | OR | CI 95% | p | OR | CI 95% | p |
Age | 1.145 | (1.060–1.236) | 0.001 | 1.244 | (1.052–1.470) | 0.011 |
Menopause (years) | 1.085 | (1.025–1.148) | 0.005 | |||
Osteoporosis | 3.961 | (1.103–14.23) | 0.035 | 4.435 | (1.121–17.55) | 0.024 |
CAC score | 1.005 | (1.001–1.009) | 0.013 | |||
CAC score > 10 | 4.987 | (1.968–12.64) | 0.001 | 4.604 | (1.684–12.86) | 0.006 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart Disease and Stroke Statistics’2017 Update: A Report from the American Heart Association; 2017. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.A.; Janssen, I.; Mazzarelli, J.K.; Powell, L.H.; Dumasius, A.; Everson-Rose, S.A.; Barinas-Mitchell, E.; Matthews, K.; El Khoudary, S.R.; Weinstock, P.J.; et al. Serial Studies in Subclinical Atherosclerosis During Menopausal Transition (from the Study of Women’s Health Across the Nation). Am. J. Cardiol. 2018, 122, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Atsma, F.; Bartelink, M.L.E.; Grobbee, D.E.; Van Der Schouw, Y.T. Postmenopausal status and early menopause as independent risk factors for cardiovascular disease: A meta-analysis. Menopause 2006, 13, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Kekatpure, A.L. Postmenopausal Osteoporosis: A Literature Review. Cureus 2022, 14, e29367. [Google Scholar] [CrossRef]
- Savonitto, S.; Colombo, D.; Prati, F. Coronary artery disease after menopause and the role of estrogen replacement therapy. J. Cardiovasc. Med. 2018, 19 (Suppl. S1), e107–e111. [Google Scholar] [CrossRef]
- Ieamtairat, P.; Soontrapa, S.; Kaewrudee, S.; Promsorn, J.; Takong, W.; Somboonporn, W. Difference in carotid intima-media thickness between pre and postmenopausal women. Menopause 2019, 26, 39–44. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, D.; Wang, M.; Sun, J.-Y.; Liu, J.; Qi, Y.; Hao, Y.-C.; Deng, Q.-J.; Liu, J.; Liu, J.; et al. Association of menopause with risk of carotid artery atherosclerosis. Maturitas 2021, 143, 171–177. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, D.; Yang, X.; Wang, A.; Gao, X.; Guo, Y.; Wu, S.; Zhao, X. Effect of menopausal status on carotid intima-media thickness and presence of carotid plaque in Chinese women generation population. Sci. Rep. 2015, 5, 8076. [Google Scholar] [CrossRef]
- Ye, C.; Xu, M.; Wang, S.; Jiang, S.; Chen, X.; Zhou, X.; He, R. Decreased Bone Mineral Density Is an Independent Predictor for the Development of Atherosclerosis: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0154740. [Google Scholar] [CrossRef]
- Celik, C.; Altunkan, S.; Yildirim, M.O.; Akyuz, M. Relationship between decreased bone mineral density and subclinical atherosclerosis in postmenopausal women. Climacteric 2010, 13, 254–258. [Google Scholar] [CrossRef]
- Värri, M.; Tuomainen, T.P.; Honkanen, R.; Rikkonen, T.; Niskanen, L.; Kröger, H.; Tuppurainen, M.T. Carotid intima-media thickness and calcification in relation to bone mineral density in postmenopausal women-the OSTPRE-BBA study. Maturitas 2014, 78, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Shateri, K.; Behzadi, F.; Maleki-Miandoab, T.; Lesha, E.; Ghasemi-Rad, M.; Rosta, Y. Relationship between intima-media thickness and bone mineral density in postmenopausal women: A cross-sectional study. Int. J. Clin. Exp. Med. 2014, 7, 5535–5540. [Google Scholar] [PubMed]
- Sitthisombat, P.; Soontrapa, S.; Kaewrudee, S.; Sothornwit, J.; Eamudomkarn, N.; Promsorn, J.; Takong, W.; Somboonporn, W. Carotid plaque and lumbar bone mineral density status in post-menopausal women: An age-matched, analytical cross-sectional study. Post. Reprod. Health 2020, 26, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, N.; Mao, S.S.; Hajsadeghi, F.; Arnold, B.; Kiramijyan, S.; Gao, Y.; Flores, F.; Azen, S.; Budoff, M. The relation of low levels of bone mineral density with coronary artery calcium mortality. Osteoporos. Int. 2018, 29, 1609–1616. [Google Scholar] [CrossRef]
- Choi, S.H.; An, J.H.; Lim, S.; Koo, B.K.; Park, S.E.; Chang, H.J.; Choi, S.I.; Park, Y.J.; Park, K.S.; Jang, H.C.; et al. Lower bone mineral density is associated with higher coronary calcification and coronary plaque burdens by multidetector row coronary computed tomography in pre- and postmenopausal women. Clin. Endocrinol. 2009, 71, 644–651. [Google Scholar] [CrossRef]
- D’Agostino, R.B., Sr.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef]
- Hong, E.G.; Ohn, J.H.; Lee, S.J.; Kwon, H.S.; Kim, S.G.; Kim, D.J.; Kim, D.S. Clinical implications of carotid artery intima media thickness assessment on cardiovascular risk stratification in hyperlipidemic Korean adults with diabetes: The ALTO study. BMC Cardiovasc. Disord. 2015, 15, 114. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef]
- Galderisi, M.; Henein, M.Y.; D’hooge, J.; Sicari, R.; Badano, L.P.; Zamorano, J.L.; Roelandt, J.R.; European Association of Echocardiography. Recommendations of the European Association of Echocardiography: How to use echo-Doppler in clinical trials: Different modalities for different purposes. Eur. J. Echocardiogr. 2011, 12, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Gardin, J.M.; Adams, D.B.; Douglas, P.S.; Feigenbaum, H.; Forst, D.H.; Fraser, A.G.; Grayburn, P.A.; Katz, A.S.; Keller, A.M.; Kerber, R.E.; et al. Recommendations for a standardized report for adult transthoracic echocardiography: A report from the American Society of Echocardiography’s Nomenclature and Standards Committee and Task Force for a Standardized Echocardiography Report. J. Am. Soc. Echocardiogr. 2002, 15, 275–290. [Google Scholar] [CrossRef] [PubMed]
- Touboul, P.-J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez, R.H.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Nyman, E.; Vanoli, D.; Näslund, U.; Grönlund, C. Inter-sonographer reproducibility of carotid ultrasound plaque detection using Mannheim consensus in subclinical atherosclerosis. Clin. Physiol. Funct. Imaging. 2020, 40, 46–51. [Google Scholar] [CrossRef]
- Agatston, A.S.; Janovitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef]
- Lewiecki, E.M.; Binkley, N.; Morgan, S.L.; Shuhart, C.R.; Camargos, B.M.; Carey, J.J.; Gordon, C.M.; Jankowski, L.G.; Lee, J.-K.; Leslie, W.D. International Society for Clinical Densitometry. Best Practices for Dual-Energy X-ray Absorptiometry Measurement and Reporting: International Society for Clinical Densitometry Guidance. J. Clin. Densitom. 2016, 19, 127–140. [Google Scholar] [CrossRef]
- Compston, J. Postmenopausal osteoporosis. Lancet 2001, 357, 1377–1386. [Google Scholar]
- Mendelsohn, M.E.; Karas, R.H. The protective effects of estrogen on the cardiovascular system. N. Engl. J. Med. 1999, 340, 1801–1811. [Google Scholar] [CrossRef]
- Towler, D.A.; Demer, L.L. Thematic review series: The skeleton as an endocrine organ—Regulation by osteocalcin and its role in cardiovascular function. Nat. Rev. Endocrinol. 2012, 8, 529–543. [Google Scholar]
- Hak, A.E.; Pols, H.A.P.; van Hemert, A.M.; Hofman, A.; Witteman, J.C.M. Progression of aortic calcification is associated with metacarpal bone loss during menopause: A population-based longitudinal study. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1926–1931. [Google Scholar] [CrossRef]
- Iribarren, C.; Sidney, S.; Sternfeld, B.; Browner, W.S. Calcification of the aortic arch: Risk factors and association with coronary heart disease, stroke, and peripheral vascular disease. JAMA 2000, 283, 2015–2021. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; Gul, K.M. Expert review on coronary artery calcium scoring. Curr. Cardiol. Rep. 2008, 10, 104–110. [Google Scholar]
- O’Leary, D.H.; Polak, J.F.; Kronmal, R.A.; Manolio, T.A.; Burke, G.L.; Wolfson, S.K., Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N. Engl. J. Med. 1999, 340, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.B.; Danilevicius, C.F.; Takayama, L.; Menezes, P.R.; Caparbo, V.F.; Scazufca, M. Bone mineral density and carotid atherosclerosis in low-income elderly population: The São Paulo Ageing & Health Study (SPAH). Osteoporos. Int. 2012, 23, 1943–1951. [Google Scholar]
- Tankó, L.B.; Christiansen, C.; Cox, D.A.; Geiger, M.J.; McNabb, M.A.; Cummings, S.R. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J. Bone Miner. Res. 2005, 20, 1912–1920. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismaili, J.; Poniku, A.; Berisha-Muharremi, V.; Batalli, A.; Tafarshiku, R.; Henein, M.Y.; Bajraktari, G. Decreased Bone Mineral Density Is Associated with Subclinical Atherosclerosis in Asymptomatic Non-Diabetic Postmenopausal Women. J. Clin. Med. 2025, 14, 4033. https://doi.org/10.3390/jcm14124033
Ismaili J, Poniku A, Berisha-Muharremi V, Batalli A, Tafarshiku R, Henein MY, Bajraktari G. Decreased Bone Mineral Density Is Associated with Subclinical Atherosclerosis in Asymptomatic Non-Diabetic Postmenopausal Women. Journal of Clinical Medicine. 2025; 14(12):4033. https://doi.org/10.3390/jcm14124033
Chicago/Turabian StyleIsmaili, Jehona, Afrim Poniku, Venera Berisha-Muharremi, Arlind Batalli, Rina Tafarshiku, Michael Y. Henein, and Gani Bajraktari. 2025. "Decreased Bone Mineral Density Is Associated with Subclinical Atherosclerosis in Asymptomatic Non-Diabetic Postmenopausal Women" Journal of Clinical Medicine 14, no. 12: 4033. https://doi.org/10.3390/jcm14124033
APA StyleIsmaili, J., Poniku, A., Berisha-Muharremi, V., Batalli, A., Tafarshiku, R., Henein, M. Y., & Bajraktari, G. (2025). Decreased Bone Mineral Density Is Associated with Subclinical Atherosclerosis in Asymptomatic Non-Diabetic Postmenopausal Women. Journal of Clinical Medicine, 14(12), 4033. https://doi.org/10.3390/jcm14124033