Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = milled carbon fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5315 KB  
Article
Experimental Evaluation of Milling Post-Processing on the Surface Quality of MEX-Printed Carbon Fiber-Reinforced PLA Composites
by Abdullah Yahia AlFaify
Machines 2025, 13(11), 1049; https://doi.org/10.3390/machines13111049 - 13 Nov 2025
Viewed by 440
Abstract
This study explores the machinability of Material Extrusion (MEX) printed parts made from carbon fiber-reinforced polylactic acid (PLA). MEX-printed parts typically exhibit high surface roughness, necessitating post-processing to enhance their quality. In this work, milling was used as a post-processing method to improve [...] Read more.
This study explores the machinability of Material Extrusion (MEX) printed parts made from carbon fiber-reinforced polylactic acid (PLA). MEX-printed parts typically exhibit high surface roughness, necessitating post-processing to enhance their quality. In this work, milling was used as a post-processing method to improve the surface finish. Response surface methodology (RSM) experimental design was employed to investigate the effects of cutting velocity, feed rate, and depth of cut on the surface quality of the machined surfaces. Results showed that the as-built MEX-printed sample exhibited a high average surface roughness (Sa) of ~7.982 µm, indicating the need for post-processing. Post-processing milling considerably enhances the Sa by reducing it to ~1.621 µm under the optimal condition. Statistical findings showed that all considered factors have significant influence on the Sa, with feed rate as the most influential one, contributing to 47.63% of the total variation. The Sa values varied from 1.834 µm to 4.146 µm due to changes in the considered factors. Increasing feed rate leads to the emergence of cavities and ridges along the deposited filaments associated with brittle removal mechanism, resulting in higher surface roughness. Full article
(This article belongs to the Special Issue Recent Advances in Surface Integrity with Machining and Milling)
Show Figures

Figure 1

5851 KB  
Proceeding Paper
Tool Wear Assessment in Composite Helical Milling via Acoustic Emission Monitoring
by Tony Emerson Marim, Catherine Bezerra Markert, Marcio Marques da Silva, Alessandro Roger Rodrigues, Fabio Romano Lofrano Dotto and Pedro de Oliveira Conceição Junior
Eng. Proc. 2025, 118(1), 39; https://doi.org/10.3390/ECSA-12-26547 - 7 Nov 2025
Viewed by 184
Abstract
This study investigates the machining challenges of fiber-reinforced composite materials (FRCMs), focusing on carbon fiber-reinforced polymer (CFRP) plates, which exhibit high abrasiveness, delamination tendency, and accelerated tool wear. Two solid carbide helical end mills, designed for composite machining, were evaluated through helical interpolation [...] Read more.
This study investigates the machining challenges of fiber-reinforced composite materials (FRCMs), focusing on carbon fiber-reinforced polymer (CFRP) plates, which exhibit high abrasiveness, delamination tendency, and accelerated tool wear. Two solid carbide helical end mills, designed for composite machining, were evaluated through helical interpolation drilling. Acoustic emission signals were continuously acquired via a piezoelectric sensor during standardized cycles, and tool wear was assessed using confocal microscopy and a digital altimeter. Signal processing played a central role, combining energy-based metrics and damage indices to identify the onset of wear and early delamination, enhancing the understanding of tool degradation and improving machining reliability. Full article
Show Figures

Figure 1

16 pages, 963 KB  
Article
Agronomic Assessment of Olive Mill Wastewater Sludge Derived Composts on Lactuca sativa and Zea mays: Fertilizing Efficiency and Potential Toxic Effect on Seed Germination and Seedling Growth
by Miguel Ángel Mira-Urios, José A. Sáez-Tovar, F. Javier Andreu-Rodríguez, Silvia Sánchez-Méndez, Luciano Orden, Lucía Valverde-Vozmediano, María Dolores Pérez-Murcia and Raúl Moral
Agronomy 2025, 15(10), 2391; https://doi.org/10.3390/agronomy15102391 - 15 Oct 2025
Viewed by 537
Abstract
Olive mill wastewater is a polluting residue generated from the olive oil industry and is one which constitutes an environmental concern in Mediterranean countries. Composting has been reported as a viable valorization alternative, as it reduces the volume and the phytotoxic characteristics of [...] Read more.
Olive mill wastewater is a polluting residue generated from the olive oil industry and is one which constitutes an environmental concern in Mediterranean countries. Composting has been reported as a viable valorization alternative, as it reduces the volume and the phytotoxic characteristics of OMW. In this study, several composts derived from OMW were evaluated under controlled conditions over two growing season pot experiments using Lactuca sativa as a test crop. The analysis focused on soil quality changes, crop yield, and plant development. Additionally, potential phytotoxicity was also evaluated through a direct acute toxicity plant growth test. Application of OMW composts improved soil fertility indicators, including oxidizable carbon, Kjeldahl total nitrogen, Olsen phosphorous, and plant availability. Crop yields were comparable to those obtained with other organic amendments such as vermicompost and fresh cattle manure in both growing seasons and plant development (in terms of chlorophyll content and canopy cover) was not negatively affected. Nutrient uptake (NPK) was consistent during both growing seasons, with similar nitrogen use efficiency to that achieved in other organic treatments. Regarding the potential toxic effect, the OMW composts tested enhanced seed germination when mixed with coconut fiber at weight ratios below 29.2%. No half-maximal effective concentration (EC50) values were detected, even at 100% compost concentration, while half-maximal inhibitory concentration (LC50) values ranged between 65–75%. These results indicate that OMW composts can serve as an effective short-term source of plant-available nitrogen and a medium-term source of phosphorus, without risk of finding inhibitory or phytotoxic effects on crops. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Graphical abstract

37 pages, 9734 KB  
Review
Valorization of River Sediments in Sustainable Cementitious Gel Materials: A Review of Characteristics, Activation, and Performance
by Yuanxun Zheng, Yuxiao Xie, Yu Zhang, Cong Wan, Li Miao and Peng Zhang
Gels 2025, 11(9), 755; https://doi.org/10.3390/gels11090755 - 18 Sep 2025
Viewed by 809
Abstract
River sediments have attracted increasing attention as alternative raw materials for sustainable cementitious materials due to their abundant availability and silica–alumina-rich composition. In this study, a systematic literature search was conducted in Web of Science and Google Scholar using combinations of the keywords [...] Read more.
River sediments have attracted increasing attention as alternative raw materials for sustainable cementitious materials due to their abundant availability and silica–alumina-rich composition. In this study, a systematic literature search was conducted in Web of Science and Google Scholar using combinations of the keywords “river sediment,” “cementitious materials,” “activation,” and “pozzolanic activity,” covering publications up to July 2025. In addition, a citation network tool (Connected Papers) was employed to trace related works and ensure comprehensive coverage of emerging studies. This review systematically examines the properties of river sediments from diverse regions, along with activation and modification techniques such as alkali/acid activation, thermal calcination, and mechanical milling. Their applications in various cementitious systems are analyzed, with mix design models compared to elucidate the effects of replacing fine aggregates, coarse aggregates, and cement on workability, strength, and durability. Multi-scale characterization via XRD, FTIR, and TG-DSC reveals the mechanisms of C–S–H and C–A–S–H gel formation, pore refinement, and interfacial transition zone densification. The review highlights three key findings: (1) moderate sediment replacement (20–30%) improves strength without compromising flowability; (2) alkali–water glass activation and calcination at 600–850 °C effectively enhance pozzolanic activity; and (3) combining the minimum paste thickness theory with additives such as water reducers, fibers, or biochar enables high-performance and low-carbon concrete design. This review provides a comprehensive theoretical foundation and technical pathway for the high-value utilization of river sediments, carbon reduction in concrete, and sustainable resource recycling. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

18 pages, 6816 KB  
Article
Development of Graphene/Recycled Carbon Fiber-Reinforced PLA Composites for MEX Printing and Dry Machinability Analysis
by Abdullah Yahia AlFaify, Mustafa Saleh, Saqib Anwar, Abdulrahman M. Al-Ahmari and Abd Elaty E. AbdElgawad
Polymers 2025, 17(17), 2372; https://doi.org/10.3390/polym17172372 - 31 Aug 2025
Viewed by 1534
Abstract
Material extrusion (MEX) is an additive manufacturing process used for 3D printing thermoplastic-based polymers, including single polymers, blends, and reinforced polymer composites (RPCs). RPCs are highly valued in various industries for their exceptional properties. The surface finish of RPC MEX-printed parts is high [...] Read more.
Material extrusion (MEX) is an additive manufacturing process used for 3D printing thermoplastic-based polymers, including single polymers, blends, and reinforced polymer composites (RPCs). RPCs are highly valued in various industries for their exceptional properties. The surface finish of RPC MEX-printed parts is high due to the process-related layering nature and the materials’ properties. This study explores RPC development for MEX printing and the potential of dry milling post-processing to enhance the MEX-printed part’s surface quality. RPC MEX filaments were developed by incorporating graphene nanoplatelets (GNPs) and/or recycled-carbon fibers (rCFs) into a polylactic acid (PLA) matrix. The filaments, including pure PLA and various GNPs-PLA composites, rCF-PLA, and rCF-GNPs-PLA, were developed through ball mill mixing and melt extrusion. Tensile tests were performed to assess the mechanical properties of the developed materials. Dry milling post-processing was carried out to assess the machinability, with the aim of enhancing the MEX-printed part’s surface quality. The results revealed that adding GNPs into PLA showed no considerable enhancements in the tensile properties of the fabricated RPCs, which is contrary to several existing studies. Dry milling showed an enhanced surface quality of MEX-printed parts in terms of surface roughness (Sa and Sz) and the absence of defects such as delamination and layer lines. Adding GNPs into PLA facilitated the dry machining of PLA, resulting in reduced surface asperities compared to pure PLA. Also, there was no observation of pulled-out, realigned, or naked rCFs, which indicates good machinability. Adding GNPs also suppressed the formation of voids around the rCFs during the dry milling. This study provides insights into machining 3D-printed polymer composites to enhance their surface quality. Full article
Show Figures

Figure 1

18 pages, 8702 KB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 - 2 Aug 2025
Cited by 2 | Viewed by 1527
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

20 pages, 13699 KB  
Article
Modeling and Cutting Mechanics in the Milling of Polymer Matrix Composites
by Krzysztof Ciecieląg, Andrzej Kawalec, Michał Gdula and Piotr Żurek
Materials 2025, 18(13), 3017; https://doi.org/10.3390/ma18133017 - 25 Jun 2025
Viewed by 750
Abstract
The study investigates the problem of modeling cutting-force components through response surface methodology and reports the results of an investigation into the impact of machining parameters on the cutting mechanics of polymer–matrix composites. The novelty of this study is the modeling of cutting [...] Read more.
The study investigates the problem of modeling cutting-force components through response surface methodology and reports the results of an investigation into the impact of machining parameters on the cutting mechanics of polymer–matrix composites. The novelty of this study is the modeling of cutting forces and the determination of mathematical models of these forces. The models describe the values of forces as a function of the milling parameters. In addition, the cutting resistance of the composites was determined. The influence of the material and rake angle of individual tools on the cutting force components was also determined. Measurements of the main (tangential) cutting force showed that, using large rake angles for uncoated carbide tools, one could obtain maximum force values that were similar to those obtained with polycrystalline diamond tools with a small rake angle. The results of the analysis of the tangential component of cutting resistance showed that, regardless of the rake angle, the values range from 140 N to 180 N. An analysis of the feed component of cutting resistance showed that the maximum values of this force ranged from 46 N to 133 N. The results showed that the highest values of the feed component of cutting resistance occurred during the machining of polymer composites with carbon fibers and that they were most affected by feed per tooth. It was also shown that the force models determined during milling with diamond insert tools had the highest coefficient of determination in the range of 0.90–0.99. The cutting resistance analysis showed that the values tested are in the range of 3.8 N/mm2 to 15.5 N/mm2. Full article
(This article belongs to the Special Issue Cutting Processes for Materials in Manufacturing—Second Edition)
Show Figures

Figure 1

16 pages, 3120 KB  
Article
A Novel Method for Manufacturing Molds for CFRP Prepreg Lamination Using Polymeric Acrylic Resin–Aluminum Trihydrate
by Mihai Părpăriță, Paul Bere and Mircea Cioază
J. Manuf. Mater. Process. 2025, 9(6), 195; https://doi.org/10.3390/jmmp9060195 - 11 Jun 2025
Viewed by 1124
Abstract
In the composite materials industry, the fabrication of complex parts often necessitates the use of specialized tools, such as milled molds with intricate geometries. Among these, machined aluminum molds are widely regarded as effective tools for laminating CFRP (Carbon Fiber Reinforced Polymer) prepreg [...] Read more.
In the composite materials industry, the fabrication of complex parts often necessitates the use of specialized tools, such as milled molds with intricate geometries. Among these, machined aluminum molds are widely regarded as effective tools for laminating CFRP (Carbon Fiber Reinforced Polymer) prepreg materials. However, the cost and time associated with machining aluminum molds can be significant. This paper presents a novel method for manufacturing molds using polymeric acrylic resin combined with aluminum trihydrate material (commercially known as DuPont Corian materials), offering a potential alternative with reduced complexity and cost. The study investigates the influence of various milling parameters, such as tool speed, tool type, feed rate, and depth of cut on the mechanical properties and surface finish of the molds. Also, laminating tests are conducted; results indicate that laminating tools produced through this method achieve competitive mechanical performance, including a hard, smooth surface with low roughness, making them viable candidates for industrial use. The proposed approach is particularly beneficial in terms of reducing machining time and overall costs while maintaining the necessary precision and durability for high-performance applications. This method, therefore, represents a promising solution for manufacturers seeking to optimize mold production processes in the composite materials industry. Full article
Show Figures

Figure 1

23 pages, 1638 KB  
Article
A Multi-Objective Optimization Approach for Generating Energy from Palm Oil Wastes
by Hendri Cahya Aprilianto and Hsin Rau
Energies 2025, 18(11), 2947; https://doi.org/10.3390/en18112947 - 3 Jun 2025
Cited by 2 | Viewed by 1223
Abstract
Palm oil production generates substantial underutilized biomass wastes, including empty fruit bunches, fiber, palm kernel shells, and palm oil mill effluent (POME). Waste-to-energy systems offer a viable pathway to convert these residues into electricity and fertilizer, supporting circular economy goals and sustainability targets. [...] Read more.
Palm oil production generates substantial underutilized biomass wastes, including empty fruit bunches, fiber, palm kernel shells, and palm oil mill effluent (POME). Waste-to-energy systems offer a viable pathway to convert these residues into electricity and fertilizer, supporting circular economy goals and sustainability targets. This study takes an example of palm oil waste from the Indragiri Hulu region in Riau Province in Indonesia. It develops a multi-objective optimization framework to evaluate palm oil mill WtE systems from economic, environmental, and energy output. Three scenarios are analyzed: maximal profit (MP), maximal profit with carbon tax (MPCT), and all waste processing (AWP). The MP scenario favors high-return technologies such as gasification and incineration, leading to significant greenhouse gas emissions. The MPCT scenario favors lower-emission technologies like composting and excludes high-emission, low-profit options such as POME digestion. In contrast, the AWP scenario mandates the processing of all wastes, leading to the lowest profits and the highest emissions among all scenarios. The sensitivity analysis reveals that POME processing is not feasible when electricity prices are below the government-set rate, but becomes viable once prices exceed this threshold. These findings offer valuable insights for companies and policymakers seeking to develop and implement effective strategies for optimal waste utilization. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

25 pages, 4065 KB  
Article
Selective Enrichment of Fibrous Fragments Formed from Milled Carbon Fibers by Means of Gravitational Settling in a Liquid
by Nicolas Rodriguez y Fischer, Kerstin Kämpf, Torben Peters, Nico Dziurowitz, Carmen Thim, Daniela Wenzlaff, Asmus Meyer-Plath and Daphne Bäger
Fibers 2025, 13(6), 69; https://doi.org/10.3390/fib13060069 - 26 May 2025
Cited by 1 | Viewed by 1498
Abstract
The aim to reduce health risks of workers related to inhalative exposure to potentially toxic dusts requires the selection of appropriate measures depending on the hazard classification of the dust-composing materials. Due to their biodurability, respirable carbon fibers and their fragments can impose [...] Read more.
The aim to reduce health risks of workers related to inhalative exposure to potentially toxic dusts requires the selection of appropriate measures depending on the hazard classification of the dust-composing materials. Due to their biodurability, respirable carbon fibers and their fragments can impose such health risks but are currently lacking hazard classification. Here, a method is presented for fragmenting carbon fiber materials and enriching fibrous fragments to a level that is expected to allow differentiating between fiber and particle overload-related toxic effects. The method was applied to a commercial polyacrylonitrile-based carbon fiber. It was ground in an oscillating ball mill, homogenized in a liquid using ultrasonication and left undisturbed for gravitational settling. This way, a vertical gradient in particle size and shape formed, from which the supernatant was collected. Fragment morphologies were characterized with large ensemble statistics by semi-automated evaluation of scanning electron microscopy images employing an artificial neural network for binary semantic segmentation. The number of fibrous fragments of respirable and thus critical fiber morphology was increased from 0.36×106 to 6×106 WHO-analog fibers per mg. This corresponds to a factor of about 15 compared to the initial ground material. Since the mass percentage of non-fibrous objects was also significantly reduced, the requirements for a subsequently scheduled toxicological study with intraperitoneal application were fulfilled. Intraperitoneal testing is an accepted method for assessing the carcinogenic potential of biopersistent fibers. The developed method allows enriching fibrous fractions of concern at acceptable throughput and enables testing fiber toxicological effects of respirable fragments from disintegrated polyacrylonitrile-based carbon fibers. Full article
Show Figures

Graphical abstract

26 pages, 10757 KB  
Article
Enhancing Wear Resistance and Adhesion of Primer Coatings on Laser-Textured Milled Carbon Fiber-Filled Basalt Composites
by Özer Coşkun, Sinan Fidan, Mehmet İskender Özsoy, Mustafa Özgür Bora, Satılmış Ürgün, Alp Eren Şahin and Taner Yılmaz
Polymers 2025, 17(9), 1150; https://doi.org/10.3390/polym17091150 - 23 Apr 2025
Cited by 4 | Viewed by 1772
Abstract
The present study explores the effects of pre-coating on the wear performance of milled carbon fiber-filled basalt composites via laser texturing. Laser texturing was used to change surface topography, enhancing adhesion and wear resistance. Incorporated 0 wt.% and 5 wt.% milled carbon fibers [...] Read more.
The present study explores the effects of pre-coating on the wear performance of milled carbon fiber-filled basalt composites via laser texturing. Laser texturing was used to change surface topography, enhancing adhesion and wear resistance. Incorporated 0 wt.% and 5 wt.% milled carbon fibers in an epoxy matrix. A fiber laser system was employed for surface treatment, in which power, scanning speed, and pulse frequency were optimized. For pre-coating, an epoxy-based primer was used, and the adhesion and wear performance of the coating was studied using ball-on-disc wear tests. Experimental results demonstrate that laser texturing significantly increases coating adhesion by enhancing the surface roughness and mechanical interlocking. The laser-induced textures displayed mostly square-shaped dimples, reducing practically by around 22% the deformation of the primer coating when used in combination with 5 wt.% carbon fiber milling. The textured surfaces reduced friction noticeably, leading to a decrease of as much as 23% in the coefficient of friction from untreated surfaces. SEM and 3D profilometry analysis indicate that the lower delamination observed in the laser treatment led to optimal coating retention. The original contribution of this work consists of the unique integration of laser surface engineering with pre-coating treatments toward improved tribological performance. Full article
Show Figures

Figure 1

12 pages, 2766 KB  
Article
Determining Optimal Processing Conditions for Fabricating Industrial Moulds with Additive Manufacturing
by Daniel Moreno Nieto, Francisco Javier Puertas Morales, Julia Rivera Vera, Pedro Burgos Pintos, Daniel Moreno Sanchez and Sergio I. Molina
Appl. Sci. 2025, 15(8), 4572; https://doi.org/10.3390/app15084572 - 21 Apr 2025
Viewed by 1058
Abstract
Additive manufacturing has reached a level of reliability and credibility that has already been integrated into specific industries producing final parts or tooling. Among Material Extrusion (ME) techniques, the Fused Granular Fabrication (FGF) method has enabled the development of Large Format Additive Manufacturing [...] Read more.
Additive manufacturing has reached a level of reliability and credibility that has already been integrated into specific industries producing final parts or tooling. Among Material Extrusion (ME) techniques, the Fused Granular Fabrication (FGF) method has enabled the development of Large Format Additive Manufacturing (LFAM) using polymeric materials, which has also established its presence in industries working with large prototypes, molds, and tools. This cost-efficient process has proven its applicability and success in manufacturing molds for composites, particularly in short and medium production runs, significantly reducing production times and costs. This paper presents two experiments designed to optimize process parameters when producing molds using the combined FGF and milling approach. These experiments identified optimal extrusion temperatures and extrusion multipliers to minimize defects at both the macro- and microscales for ASA 20 wt.% carbon fiber (CF) material; additionally, a correlation between milling speed, milling strategy, and surface roughness was established. These findings are valuable for industries adopting this innovative production method, as they provide guidance for defining process parameters to achieve the desired surface roughness of a specific part. A case study of the design of an automobile carter mold is presented, concluding that a specific range of milling speeds is required for conventional or climbing milling strategies to achieve a defined surface roughness range. Full article
(This article belongs to the Special Issue Advances in Carbon Fiber Reinforced Polymers (CFRPs))
Show Figures

Figure 1

22 pages, 2307 KB  
Review
Bio-Resource Availability in Ireland: A Practical Review of Potential Replacement Materials for Use in Horticultural Growth Media
by Akinson Tumbure, Christian Pulver, Lisa Black, Lael Walsh, Munoo Prasad, James J. Leahy, Eoghan Corbett and Michael T. Gaffney
Horticulturae 2025, 11(4), 378; https://doi.org/10.3390/horticulturae11040378 - 31 Mar 2025
Cited by 4 | Viewed by 2234
Abstract
The ability to substitute peat use in horticulture with potentially more sustainable alternatives hinges on the local availability of suitable biomass resources and whether these resources can be easily processed to achieve similar agronomic effectiveness to peat. This review estimates potential biomass availability [...] Read more.
The ability to substitute peat use in horticulture with potentially more sustainable alternatives hinges on the local availability of suitable biomass resources and whether these resources can be easily processed to achieve similar agronomic effectiveness to peat. This review estimates potential biomass availability in Ireland by reviewing production statistics and industry reports and identifying current uses and hypothetical processed biomass quantities. Annual estimates of the major biomass resources available in Ireland are 488,935 m3 of woody residues (mainly Sitka spruce pine) and 789,926 m3 of arable straws (from oats, wheat, barley, oil seed rape). The potential major processing pathways for the available biomass are mechanical (extruded, thinscrew, hammer milled, disc refined), carbonization (pyrolysis and hydrothermal carbonization) and composting. This review of the literature indicates that the major challenges to pyrolyzed alternatives in growth media include high alkalinity, high salinity and low water holding capacity. When biomass is processed into fibers, it requires additional processing to address nutrient immobilization (nitrogen and calcium) and the presence of phytotoxic compounds. We discuss possible solutions to these challenges in terms of agronomic management (altering fertigation, irrigation rates etc.), biomass conversion process optimization (changing conditions of processes and applying additives) and novel growth media formulations with various material inputs that complement each other. We conclude that while national alternative biomass resources are available in sufficient volumes to potentially meet growing media requirements, significant further research and demonstration are required to convert these materials to growth media acceptable to both commercial and retail sectors. Research needs to focus on transforming these materials into growth media, and how they will impact agronomic management of crops. Furthermore to this, the optimization of biomass conversion processes and novel formulations incorporating multiple types of biomass need to be the focus as we transition from peat products in professional horticulture. Full article
(This article belongs to the Section Processed Horticultural Products)
Show Figures

Figure 1

24 pages, 7880 KB  
Article
Study of the Material Removal Mechanism and Surface Damage in Laser-Assisted Milling of CF/PEEK
by Qijia Wang, Minghai Wang, Li Fu, Kang Xiao and Xuezhi Wang
Materials 2025, 18(4), 791; https://doi.org/10.3390/ma18040791 - 11 Feb 2025
Cited by 3 | Viewed by 1286
Abstract
Carbon-fiber-reinforced polyetheretherketone (CF/PEEK) composites are being increasingly used in aerospace, biomedical, and other industries due to their superior mechanical properties. However, CF/PEEK structural components require secondary processing after curing and molding to meet connection and assembly precision requirements. This process, however, often results [...] Read more.
Carbon-fiber-reinforced polyetheretherketone (CF/PEEK) composites are being increasingly used in aerospace, biomedical, and other industries due to their superior mechanical properties. However, CF/PEEK structural components require secondary processing after curing and molding to meet connection and assembly precision requirements. This process, however, often results in defects such as burrs and pits, which significantly compromise the mechanical performance and assembly quality of the structural components. This study first employed finite element simulations to analyze the laser-assisted milling of CF/PEEK composites, investigating the material removal mechanism under thermal coupling, which was then experimentally validated. Variations in the cutting force, cutting heat, surface damage, and fiber fracture mechanisms during milling were investigated. During laser-assisted milling, the fibers fractured mainly in bending at a cutting angle of 0°, in bending shear at a cutting angle of 45°, in compression at a cutting angle of 90°, and in compression shear at a cutting angle of 135°. The experimental findings were generally consistent with the simulation results. In addition, laser-assisted milling effectively reduced the cutting forces, cutting temperatures, and surface damage compared to conventional milling; laser-assisted milling reduced the cutting forces in the 90° fiber direction by 24.8% (total cutting forces) and 16.3% (feed-cutting forces). The fiber integrity was further increased with increasing spindle speed. Full article
Show Figures

Figure 1

17 pages, 94163 KB  
Article
Investigation of Machining Characteristics and Parameter Optimization for Laser-Assisted Milling of CF/PEEK Composites
by Qijia Wang, Li Fu, Minghai Wang, Kang Xiao and Xuezhi Wang
Micromachines 2025, 16(2), 151; https://doi.org/10.3390/mi16020151 - 28 Jan 2025
Cited by 3 | Viewed by 1608
Abstract
Carbon fiber/polyether ether ketone (CF/PEEK) is widely used in aerospace, transportation, and other high-end industries for its light weight, high strength, and recyclability. However, its inherently brittle–ductile two-phase structure presents challenges in processing CF/PEEK. This paper introduces a laser-assisted milling method, wherein four [...] Read more.
Carbon fiber/polyether ether ketone (CF/PEEK) is widely used in aerospace, transportation, and other high-end industries for its light weight, high strength, and recyclability. However, its inherently brittle–ductile two-phase structure presents challenges in processing CF/PEEK. This paper introduces a laser-assisted milling method, wherein four types of CF/PEEK unidirectional plates (0°, 45°, 90°, and 135°) are milled under varying laser powers and spindle speeds. The results are compared with conventional milling (CM) techniques, based on cutting forces, temperatures, surface roughness, and damage defects. The cutting force, temperature, and surface quality were optimal at a fiber direction of 0° and were least favorable at 90° under identical machining conditions. When the fiber direction was 90°, the milling temperatures at 400 W and 500 W laser power decreased by 19.8% and 7.9%, respectively, while the average values of Fx and Fy decreased by 20.5% and 9.55%, compared to conventional milling. Furthermore, the laser-assisted milling method significantly reduces surface defects and improves surface roughness. In CF/PEEK composites, brittle fracture is the primary material removal mechanism, with damage characteristics such as fiber fracture, fiber pullout, and fiber/matrix debonding. The optimal parameter combination is a 0° fiber orientation, 400 W laser power, and a spindle speed of 4000 rpm. This study provides theoretical and technical support for the high-quality processing of CF/PEEK composites. Full article
Show Figures

Figure 1

Back to TopTop